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Ultimate Solution

A1 A2 A3Abstract—THz light field imaging inherently allows capturing the 3D
geometry of a target but at the cost of an increased data volume.
Compressive sensing techniques are instrumental in minimizing data
acquisition requirements. However, they often rely on computation-
ally expensive sparse reconstruction approaches with high memory
footprint. This research introduces an advanced coarse-to-fine (CTF)
sparse 3D reconstruction strategy aimed at enhancing the precision
of reconstructed images while significantly reducing computational
load and memory footprint. By employing a sequence of sensing matrices of increasing resolution, our approach avoids
falling into an ill-conditioned inversion and strikes a balance between reconstruction quality and computational efficiency.
We demonstrate the effectiveness of this CTF strategy through its integration with several established algorithms, including
Basis Pursuit (BP), Fast Iterative Shrinkage-Threshold Algorithm (FISTA), and others. The results showcase the potential
of the CTF approach to improve 3D image reconstruction accuracy and processing speed in THz light field imaging.

Index Terms—Coarse-to-Fine Approach, THz Light-Field Imaging, Compressive Sensing, Computational Imaging, Sparse reconstruction.

I. INTRODUCTION

Terahertz (THz) imaging has emerged as a pivotal technology
in non-invasive, high-resolution diagnostics and analysis, surpassing
the capabilities of traditional visible and infrared light imaging [1].
THz radiation, unlike other imaging modalities, can penetrate opaque
materials like plastics, ceramics, and clothing, making it uniquely
valuable in various applications, from security screening to industrial
component inspection [2]. 3D THz imaging is highly effective
in the security, biomedical, and industrial sectors [3]. Techniques
such as triangulation and backpropagation enable rapid 3D image
reconstruction from THz data, though they compromise precision
[4]. Addressing the computational challenges caused by the vast data
volumes and the large ambient dimension arising from the uniform
3D grid is crucial for improving accuracy [5].

Sparse reconstruction algorithms, key to compressive sensing [6],
enhance THz imaging efficiency by reducing data volume through
sparsity [7]. However, although they decrease sensing demands, they
do not lessen the computational effort needed to solve the inverse
problem, highlighting the need for advanced techniques.

This paper introduces a novel form of optimization of sparse
reconstruction algorithms through a coarse-to-fine (CTF) approach,
building on the foundations laid in [8], [9]. The proposed CTF
scheme is illustrated in the graphical abstract. It starts with a coarse
reconstruction to identify regions of interest, leveraging a low-
resolution sensing matrix, 𝐴𝐴𝐴1, to solve the optimization problem. The
initial estimated solution ®̂𝑥 (1) is refined using Otsu’s thresholding [10]
to define a support set Ω̂(1) . This support is propagated to the next
scale using the mapping P, resulting in the support for the next
step Ω̃2. This process is repeated until the finest scale is reached,
corresponding to the full-resolution sensing matrix. We applied this
strategy across various algorithms, including Basis Pursuit (BP), Basis
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Pursuit Denoising (BPDN), and others, demonstrating its effectiveness
in enhancing the precision and efficiency of sparse reconstructions.

THz light-field data, which captures both the intensity and direction
of THz rays allowing for dynamic refocusing and perspective changes,
is the ongoing focus of our research group. However, in this paper,
we consider solely the 3D-resolved intensity aspect of the light-
field data, treating it in the same way as traditional volumetric data.
Consequently, the CTF approach developed for THz light-field data
can also be applied to other forms of volumetric data, such as MRI
and CT scans [11], by respective modification of the sensing model.

II. RELATED WORK

Recent advances in sparse reconstruction techniques have signifi-
cantly impacted high-resolution imaging. A noteworthy development
in this field is the Coarse-to-Fine (CTF) estimation method proposed
in [12], which enhances the capabilities of inverse synthetic aperture
radar (ISAR) imaging. Building upon the principles of CS, this
method optimizes the imaging process by progressively discarding
columns from the sensing matrix as the reconstruction transitions
from coarser to finer scales.

The novel strategy of substituting a single large sensing matrix with
a sequence of smaller ones significantly reduces the computational
load. Building upon this concept, we explore similar optimization
strategies in THz light-field imaging, widening the range of methods
considered to solve the resulting sub-problems, from conventional
least squares to sparsity-promoting approaches.

A similar approach had previously been suggested in [9] for jointly
reconstructing sets of Time-of-Flight (ToF) raw images, leveraging the
multi-scale nature of wavelets within a rank-aware Order Recursive
Matching Pursuit (ORMP) [13] sparse reconstruction procedure. The
tree structure of 1D signals in multiscale bases such as wavelets had
initially been exploited to improve the performance of Orthogonal
Matching Pursuit (OMP) in [8].
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III. METHODOLOGY AND FOUNDATIONS

A. THz System Architecture and Design

As shown in Fig. 1, our THz imaging system features a 3 × 3
matrix of independently operating TicWave TWS-ID02 THz cameras.
Each camera offers up to 50 FPS, a 0.3-1.1 THz bandwidth, 1G
counts/W responsivity, and 10-20 pW/

√
Hz sensitivity at 320 GHz.

With a 33 × 33 pixel Focal Plane Array (FPA) per aperture, the
system captures up to 𝑚 = 9 × 33 × 33 measurements in a single
shot. We consolidate these measurements from all apertures into a
single column vector, ®𝑦 ∈ R𝑚. For more details, see section IV.

Fig. 1: (a) Schematic overview of the multi-aperture-based system
operation; (b) The primary camera unit utilized in the system.

B. Sensing Matrix Configuration

In our THz imaging system, the measurement vector ®𝑦 ∈ R𝑚

represents the direct output from the sensing process. The original
scene is visualized as a 3D cubic volume uniformly discretized with
dimensions 𝑅𝑥×𝑅𝑦×𝑅𝑧 . The discretization step size isΔ𝑥 = Δ𝑦 = Δ𝑧,
which results in a 3D tensor 𝑋 ∈ R𝑛𝑥×𝑛𝑦×𝑛𝑧 , where 𝑛𝛾 := 𝑅𝛾/Δ𝛾,
∀𝛾 ∈ {𝑥, 𝑦, 𝑧}. This tensor 𝑋 is then reshaped into the vector ®𝑥 ∈ R𝑛,
where 𝑛 :=

∏
𝛾 𝑛𝛾 represents the total number of discretization points

in the volume. The linear sensing model is defined by the equation:

®𝑦 = 𝐴𝐴𝐴®𝑥 + ®𝑛, (1)

where 𝐴𝐴𝐴 ∈ R𝑚×𝑛 is the sensing matrix that represents a linear
transformation of the scene’s discretized volume ®𝑥 into the data
space of the measurements ®𝑦. The vector ®𝑛 denotes the noise in
the measurements. Each column of 𝐴𝐴𝐴, denoted ®𝑎𝑘 , represents the
response pattern of all pixels to each corresponding element 𝑥𝑘 = ®𝑥 [𝑘]
in the 3D cubic volume. This response is empirically determined by
placing a point THz source at 𝑥𝑘 and recording the readings from
all pixels, yielding a total of 𝑚 = 9 × 33 × 33 data points.

C. Computational Imaging Algorithms

The primary goal in THz 3D imaging reconstruction is to extract
the true signal ®𝑥 from the noisy light field data ®𝑦. This involves solving
the inverse problem defined in (1). Several computational algorithms
have been employed to address this challenge, each designed to solve
mathematical challenges inherent in extracting the true signal ®𝑥 from
the measurement vector ®𝑦.

The so-called right Moore–Penrose pseudoinverse (PI) method [14]
is utilized to solve the linear least squares problem:

min
®𝑥

∥𝐴𝐴𝐴®𝑥 − ®𝑦∥2
2 (2)

The solution is given by:

®̂𝑥 = 𝐴𝐴𝐴†®𝑦, 𝐴𝐴𝐴† := 𝐴𝐴𝐴⊤ (
𝐴𝐴𝐴𝐴𝐴𝐴⊤)−1 (3)

This approach is used when direct inversion of the matrix 𝐴𝐴𝐴 is
not feasible, a common occurrence in practical scenarios.

Basis Pursuit (BP) method [15] is designed to find the sparsest
solution to a linear system by minimizing the 𝑙1 norm:

®̂𝑥 = arg min
®𝑥

∥®𝑥∥1 subject to ®𝑦 = 𝐴𝐴𝐴®𝑥, (4)

To account for noise in the measurements, Basis Pursuit Denoising
(BPDN) [16] extends BP by incorporating a regularization term that
balances sparsity with fidelity to the observed data:

®̂𝑥 = arg min
®𝑥

∥®𝑥∥1 subject to ∥𝐴𝐴𝐴®𝑥 − ®𝑦∥2 ≤ 𝜀, (5)

where 𝜀 is a tolerance parameter that specifies the acceptable level
of error or deviation from the exact solution. It reflects the expected
noise level or uncertainty in the measurements. For solving both BP
and BPDN problems, the SPGL1 library is utilized [17]

Another two advanced iterative methods are the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [18] and the Fast
Adaptive Shrinkage/Thresholding Algorithm (FASTA) [19]. They
effectively solve optimization problems of the following form:

min
®𝑥

(
𝑓 (𝐴®𝑥) + 𝑔(®𝑥)

)
(6)

where 𝑓 (𝐴®𝑥) is a smooth function and 𝑔(®𝑥) is a possibly non-
smooth function, often used to promote sparsity in the solution ®̂𝑥.
These algorithms can be used to solve the Sparse Least Squares
(SLS) problem, which is formulated as:

min
®𝑥

(
∥𝐴𝐴𝐴®𝑥 − ®𝑦∥2

2 + 𝜆∥®𝑥∥1

)
, (7)

where ∥𝐴𝐴𝐴®𝑥 − ®𝑦∥2
2 represents the smooth function 𝑓 (𝑥) and 𝜆∥®𝑥∥1

acts as the sparse-promoting function 𝑔(𝑥).

D. Coarse-to-Fine Approach (CTF)

The CTF approach is a multi-scale technique used in image process-
ing and signal reconstruction. This strategy involves progressively
refining the resolution of the solution. It leverages the idea that
solutions at coarser scales can provide good initial estimates for
finer scales, thus potentially reducing the computational complexity
and improving convergence rates. We have applied the CTF strategy
to all the optimization problems defined earlier in this section. For
simplicity, let us consider the PI method that solves the linear least
square problem presented in (2). We start with a low-resolution matrix
at scale 𝑘 , 𝐴𝐴𝐴(𝑘) , for which the estimated solution of the problem
is given by ®̂𝑥 (𝑘) = 𝐴𝐴𝐴(𝑘)† ®𝑦. By implementing Otsu’s thresholding
technique on ®̂𝑥 (𝑘) , one can determine the support set as follows:

𝑇 = 𝜏Otsu

(
®̂𝑥 (𝑘)

)
, Ω̂(𝑘) =

{
𝑖 : 𝑥 (𝑘)

𝑖
> 𝑇

}
(8)

We introduce the operator P that maps the support set of a low-
resolution matrix to the support set of a higher-resolution matrix,
where each element of the former is mapped to a subset of the
latter. P thus propagates the support set, Ω̂(𝑘) , to the subsequent,
higher resolution level. The propagated support set, Ω̃(𝑘+1) , which
satisfies 𝑛𝑘+1 >

��Ω̃(𝑘+1)
�� > ��Ω̂(𝑘)

��, is employed with the finer matrix
𝐴𝐴𝐴(𝑘+1) to refine the solution iteratively. This iterative enhancement
is captured in (9) and continues progressively until the finest scale
(full-resolution matrix) is reached:

Ω̃(𝑘+1) = P(Ω(𝑘) ), ®̂𝑥 (𝑘+1) = 𝐴𝐴𝐴
(𝑘+1)†
(:, Ω̃(𝑘+1) ) ®𝑦 (9)
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Fig. 2: Robustness to noise: Performance of the Coarse-to-Fine scheme for multiple reconstruction algorithms across varying noise levels,
𝑠GT = 8

IV. DATA COLLECTION AND ANALYSIS RESULTS

A. Data Acquisition Process

1) Virtual 3 × 3 Camera Array: We sequentially position the
camera at nine distinct locations within a plane to emulate a 3 × 3
camera array. We capture an image at each location and later compile
these nine images to create a dataset equivalent to what a 3×3 camera
array would capture in a single shot, see Fig. 1 (a).

2) Virtual Imaging Target: A virtual cubic volume is defined by
systematically moving the THz source across a 3D grid within this
volume using a Universal Robot UR5e. The robot ensures precise
placement with a delay of 200 ms between movements. This setup
captures the system response to point sources located on a uniform
grid within the cubic volume.

3) Data Synthesizing: At each point within the 3D grid of the
virtual cube, our virtual 3× 3 camera array captures nine images of
the THz source. At each camera position, an image is captured with
a 33 × 33 pixels resolution, resulting in a combined resolution of
9× 33× 33 pixels for each grid point. These images are synthesized
to simulate the effect of a 3 × 3 camera array capturing images of
the entire cubic volume in one shot.

4) Empirical Sensing Matrix: The nine images captured for each
grid point are converted into a vector ®𝑦𝑖 ∈ R𝑚. The sensing matrix
𝐴𝐴𝐴 ∈ R𝑚×𝑛 is empirically constructed as:

𝐴𝐴𝐴 := [®𝑦𝑘]𝑛𝑘=1 (10)

5) Experimental Setup: The virtual cube used in the experiment
has an edge length of 12 cm and a grid step size of 0.8 cm, leading
to 𝑛 = 163 grid points. The camera array is positioned 20 cm from
the cube’s center. For all experiments, ground truth (GT) sparse
targets, ®𝑥 ∈ R𝑛, are simulated by activating 𝑠GT components chosen
uniformly across the cube. Measurements, ®𝑦, follow the model in (1),
with statistics derived from 64 realizations of measurement noise, ®𝑛.

B. Stability to Noise Fluctuations

The CTF method enhances stability against noise by focusing
computational efforts on columns indexed by Ω̃(𝑘+1) at each scale
𝑘 + 1, reducing dimensionality and minimizing noise impact, as
demonstrated in Fig. 2. The PI method exhibits remarkable noise
stability, with RMSE decreasing from 40 to 0.03 as SNR ranges
from −20 dB to 40 dB, highlighting its robustness within a CTF
framework (Fig. 2 (a)). Additionally, the CTF framework leads to
an RMSE reduction by a factor of approximately 3.8, as shown in
Fig. 3 (left). Evaluations of the PI method, both with and without
CTF integration, reveal significant improvements, showcasing the
advantages of incorporating the CTF framework.

We present visual reconstructions of object "4" using the PI
approach, with and without CTF integration. Fig. 3 (right) shows
comparisons between the ground truth (GT), the PI method without
CTF (PI), and the PI method with CTF integration (PI-CTF),
demonstrating the enhanced contrast achieved through the CTF
framework. Additionally, the figure also displays reconstructions of
object "4" through progressively thicker High-density Polyethylene
(HDPE) plates of 2 mm, 4 mm, and 6 mm, showcasing THz radiation’s
capacity to penetrate materials opaque to visible and infrared light.
However, poor SNR degrades image quality beyond 6 mm.

Both BP and BPDN algorithms exhibit similar noise stability, with
RMSE decreasing from 60 to about 0.04, as shown in Fig. 2 (b) and
(c). Despite being slightly less effective than the PI method, they
benefit from the CTF framework, enhancing reconstruction accuracy
as noise levels decrease. However, the FISTA and FASTA algorithms
show less improvement within the CTF framework (Fig. 2 (d) and
(e)), indicating that these iterative methods may not fully leverage
the incremental refinements of the CTF framework.

SNR [dB]

N
-R

M
S

E
 [

a
.u

.]

PI-CTF (2mm-HDPE)

PI-CTF (4mm-HDPE)

PI-CTF (6mm-HDPE)

Fig. 3: (left) RMSE vs. SNR for the PI method with/without CTF
integration, 𝑠GT = 8. (right) Ground truth (GT) and reconstructions
of object "4" for PI and (PI-CTF) algorithms, followed by PI-CTF
through increasing HDPE plate thicknesses of 2mm, 4mm, and 6mm.

C. Stability to Sparsity Levels

Finally, we evaluated the performance of the reconstruction
algorithms endowed with a CTF structure for different levels of
sparsity, ranging from 𝑠GT = 1 to 𝑠GT = 256. Our findings show
that the median of the RMSE begins at approximately 0.007 for a
sparsity level of 𝑠GT = 1 across all methods and remains below 0.1
as the sparsity level increases to 8, as illustrated in Fig. 4. However,
beyond a sparsity level of 𝑠GT = 8, the RMSE increases, with its
median fluctuating between 0.1 and 0.3, which indicates a rise in
reconstruction error as sparsity increases. Average RMSE values per
percentiles versus 𝑠GT are reported for the CTF-PI method in Table 1
up to 𝑠GT = 16.
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Fig. 4: Robustness to sparsity: Performance of the Coarse-to-Fine scheme for multiple reconstruction algorithms across varying sparsity,
SNR = 40.

Target N-RMSE per Percentile [a.u.]
Sparsity 0-75% 75-85% 85-95% 95-99%

1 0.0067 0.0227 0.0337 0.6762
2 0.0079 0.0214 0.4151 0.8427
4 0.0173 0.0360 0.2978 0.7767
8 0.0380 0.3088 0.4538 0.5635
16 0.1620 0.3555 0.4092 0.4891

Table 1: Per-percentile average values of normalized RMSE obtained
using PI integrated into the CTF framework to reconstruct punctual
targets with varying sparsity.

V. CONCLUSION

In this work, we have considered the problem of retrieving the
3D structure of sparse targets in light field THz imaging. To cope
with the large ambient dimension with limited computational power
without compromising accuracy, a Coarse-to-Fine methodology has
been introduced that solves a sequence of sparse reconstruction
problems at scales of increasing resolution. We have provided a
comprehensive performance evaluation of well-known least-squares
and sparse reconstruction algorithms optimized through the CTF
approach. Our results underscore the effectiveness of the CTF
strategy in enhancing these algorithms’ performance. Specifically,
our findings highlight the computational advantages of integrating
the CTF framework with the PI method, resulting in an RMSE
reduction by a factor of approximately 3.8, as illustrated in Fig 3
(left). Additionally, the results demonstrated that the CTF framework
has improved the performance of all other algorithms examined in
this study, highlighting its broad applicability.

Regarding sparsity, the CTF approach proved efficient across
various sparsity levels. Our findings indicate that the RMSE remained
consistently low, below 0.1 for sparsity levels up to 8. Fig. 4 shows
that integrating the CTF strategy maintained good reconstruction
accuracy across all tested methods.

However, the CTF approach is not without its limitations. A
significant challenge lies in the potential error propagation through the
cascade of reconstruction stages. If the initial coarse reconstructions
suffer from inaccuracies, particularly in estimating support, these
errors can cascade through subsequent refinements, leading to
significant degradation in the final reconstruction quality. Moreover,
PI-based approaches are inherently more computationally intensive
than transpose-based ones, such as [4]. Additionally, the iterative
refinement process can lead to increased memory usage, making it
challenging for systems with limited resources.
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