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Abstract—Terahertz (THz) imaging holds promise in a wide
range of application fields due to the penetration ability of THz
radiation, in combination with a relatively low wavelength, as
compared to radar, which facilitates generating sharp images.
However, existing THz imaging techniques typically rely on
sequential scanning due to the unavailability of large detector
arrays. The use of Compressive Sensing (CS) techniques can
reduce the number of measurements but does not solve its
sequential acquisition. In this work, we show the feasibility of
single-shot THz 3D imaging leveraging a multi-aperture THz
camera. Adopting a CS perspective, we construct a linear
sensing model and assume target sparsity. Our experimental
validation confirms that sparsity-promoting methods succeed in
reconstructing 3D volumes from a few intensity measurements.

Index Terms—THz imaging, 3D imaging, computational imag-
ing, compressive sensing, sparse reconstruction

I. INTRODUCTION

Non-scanning THz imaging approaches fall into two cat-
egories: those using a single detector with computational
sensing for image reconstruction, and those using THz detector
arrays forming a THz camera. The first category utilizes spatial
modulation of THz radiation, leveraging compressive sensing
(CS) theory [1]–[3] to efficiently capture information with
fewer measurements by exploiting signal sparsity. The second
category employs THz lenses and a focal plane array (FPA)
of detectors to attain lateral resolution, in the art of optical
imaging. However, the larger wavelength of THz radiation and
the limitations of THz optics result in broader per-pixel sensing
fields, reducing the effective lateral resolution of a THz camera
compared to the detector array size.

This issue only gets aggravated when attempting to sense
in 3D, as the 3D sensing functions will certainly widen
along the range direction. In this work, we aim to close the
existing gap between the two mentioned methods of attaining
lateral resolution. More specifically, we will rely on a realistic
sensing model in order to robustly solve the 3D reconstruction
computationally, in the art of computational sensing. Crucially,
the necessary measurement diversity is obtained thanks to
a multi-aperture configuration leveraging THz FPAs (Focal
Plane Arrays), while 3D reconstruction relies on both an
accurate sensing model and sparsity of the target, as in CS.

This work received partial funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 101019972).

II. RELATED WORK

A. Computational Terahertz Imaging

Leveraging CS theory, the single-pixel camera, as demon-
strated in [4], allows for reconstructing full-resolution images
from a few random projections obtained using a single detector
in combination with a Digital Micromirror Device (DMD).
Building upon this concept, further research [5] utilizes spa-
tially structured illumination and CS algorithms to eliminate
the need for mechanical scanning in THz imaging systems.
Through experimental validation, he demonstrates the critical
role of precise THz mask projection and the necessity for rig-
orous calibration to maintain image quality. This concept was
extended to obtain CS THz video in [6], using femtosecond-
pulsed modulation and demodulation. Additionally, tailored
mask design aimed at lowering the coherence of the resulting
sensing matrix has been shown to yield superior reconstruction
performance in [7], as compared to conventional binary pat-
terns. Multiple regularization techniques for robustly solving
the CS THz imaging problem are studied in [8], including
Total Variation (TV) and ℓ1 regularization, also considered
in this paper, as well as the use of representation bases or
dictionaries to boost target sparsity.

B. 3D and Light Field Terahertz Imaging

An experimental THz imaging setup, incorporating a virtual
camera array and a high-power THz source, was developed
in [9]. By integrating a novel synthetic aperture approach
within the framework of Light Field Imaging, they achieved
notable enhancements in image quality and effectively reduced
distortion. The process of 3D scene reconstruction in the
THz domain, as outlined in [10], involves capturing images
from multiple viewpoints to derive depth and spatial relation-
ships. This process includes the identification and matching
of features across these images, precise estimation of camera
parameters, and the application of triangulation to compute 3D
coordinates [10].

Furthermore, dense 3D reconstruction for a 3 × 3 cube
is attempted by means of backpropagation. Although this
reconstruction approach is fast, its accuracy is compromised by
the non-orthogonality of the sensing model. Light field tech-
niques, traditionally used for visible light, have been applied
to THz radiation [11]. This involves the use of camera arrays
and masks to capture the comprehensive light field, enabling
post-capture image processing techniques such as refocusing
and synthetic aperture imaging. This approach significantly



improves the depth of field, dynamic range, and capability to
produce true 3D THz images.

III. METHODOLOGY

In this section, we introduce our computational THz cam-
era and its sensing model, exploring alternative methods to
reconstruct 3D structures from a limited set of incoherent THz
measurements.

A. THz Hardware Co-design

Our multi-aperture imaging system comprises indepen-
dently operating TicWave WS-ID02 THz cameras, courtesy of
TicWave-Solutions GmbH. It boasts a frame rate capability of
up to 50 frames per second (FPS), a bandwidth of 0.3-1.1 THz,
a responsivity of 1G counts/W, and a sensitivity NEP (Noise
Equivalent Power) of 10 − 20 pW/

√
Hz, both at 320 GHz.

A critical advantage of our imaging system lies in its ability
to capture 3D information using a multi-aperture FPA, as
illustrated in Fig. 1. This configuration enables the system
to collect images from multiple perspectives, significantly
enhancing depth perception and spatial resolution.

Fig. 1: Schematic representation of the operation of our multi-
aperture light-field THz camera.

The THz light-field imaging system shown in Fig. 1 features
an array of P × Q apertures, yielding Na = PQ identical
apertures, each equipped with a silicon lens, and distributed
co-planarly on a uniform grid. Specifically, we consider a
square multi-aperture system with P = Q = 3, resulting in
Na = 9. Each aperture contains an FPA of incoherent THz
pixels of equal size, nrows × ncols, yielding npix = nrowsncols

THz pixels per aperture. Therefore, the computational THz
imaging sensor can provide up to m0 = Nanpix measurements
per exposure. For simplicity, these multi-aperture THz mea-
surements will be regarded as stacked in a single measurement
vector y⃗0 ∈ Rm0 .

B. Sensing Model

In this work, we focus on a discrete scenario and restrict
our attention to a linear sensing model, i. e., each measurement
in y⃗ ∈ Rm will be explained as a linear combination of an
unknown signal x⃗ ∈ Rn, where n ̸= m in general. Provided
that the ultimate goal is to retrieve the 3D geometry of the
observed scene, a uniform discretization of a cubic 3D volume
of size Rx×Ry×Rz with uniform step ∆x = ∆y = ∆z would
yield a 3D tensor X ∈ Rnx×ny×nz , where nγ := Rγ/∆γ,
∀γ ∈ {x, y, z}. Then, the unknown vector resulting from

restructuring X into vector form is of size n :=
∏

γ nγ . Thus,
the hypothesized linear sensing model is given by:

y⃗0 = A0A0A0x⃗+ n⃗, (1)

where A0A0A0 ∈ Rm0×n denotes the sensing matrix that ex-
plains y⃗0 from x⃗ and n⃗ models the measurement noise,
which accounts both for a potential model mismatch, detector
noise, readout noise, and quantization noise. Without loss of
generality, the aggregated noise vector is assumed to follow
n⃗ ∼ N (0, σ). Each row of AAA, denoted a⃗i, contains a discrete
sensing function, which linearly explains how each pixel
perceives the scene. The model in (1) holds for intensity
measurements under incoherent THz illumination. In the case
of coherent illumination, A0A0A0 models not only the response of
the imaging sensor but also the diffracted propagation of light,
as explained in [7]. The restriction to incoherent illumination
and incoherent detection allows for a phaseless formulation, in
which xi ∈ R+, ∀i. Furthermore, it also adds to the stability
of A0A0A0, which can be constructed empirically, leveraging the
superposition principle. To this end, the location of a punctual
source is swept over the entire signal domain. At each source
location, we collect a set of Nacq independent measurements.
Each measurement follows y⃗0

(i)
k = A0A0A0x⃗

(i)
k + n⃗

(i)
k , for 1 ≤ i ≤

Nacq. In this setup, each vector x⃗k is specifically designed to
be 1-sparse; it contains a single nonzero element at the kth

position (i.e., x⃗k[i] ̸= 0 ⇐⇒ i = k), and, for simplicity, this
nonzero element is uniformly set to 1. This design ensures
that each measurement directly corresponds to the kth source
location, which correlates directly to the kth column of A0A0A0.

Assuming isotropic emission over an unrestricted field of
view (FOV), for Nacq large enough, the kth column of A0A0A0 can
be empirically approximated by:

A0A0A0 := [a⃗0k]
n
k=1 , a⃗0k ≈ 1

Nacq

Nacq∑
i=1

y⃗0
(i)
k , (2)

with expected ℓ2 approximation error σ/
√
Nacq → 0 as

Nacq → ∞. Details on the experimental procedure followed to
empirically obtain the collections of reference measurements
y⃗0

(i)
k are detailed in section IV-A.

C. Computational 3D Reconstruction

At the light of the sensing model introduced in section III-B,
the goal of a computational THz 3D imaging reconstruction
method is to obtain an estimate of x⃗ given a realization
of y⃗0, exploiting (1) and any available a priori knowledge
of x⃗. More specifically, in this paper we demonstrate the
impact of considering a sparsity assumption on x⃗, i. e., low
s := |supp (x⃗)|, where supp (·) denotes support of a sparse
vector. In the following, we outline a set of techniques to solve
this inverse problem.

1) Automatic Reduction of the Measurement Space: Lenses
are crucial for achieving 2D and 3D resolution, as focusing
the light on the FPA yields angular selectivity. Fortunately, the
relatively low wavelengths of THz radiation, as compared to



classical radio bands, allow for focusing using silicon lenses.
On the other hand, perfect focusing of an image on the FPA
would go against the basic principles of CS, which require
certain incoherence between the sensing functions and the
sparsity basis, which for sparse signals coincides with the
trivial basis of Rn. Indeed, it is easy to see that the better
the focus, the higher will be the number of uninformative
(ideally zero) measurements. Interestingly, quasi-optical THz
radiation allows for exploring a turning point, where the
existence of a focusing element will project a finite 3D volume
(Rx ×Ry ×Rz) into a limited region of the FPA, at the time
that spatially-varying imperfect focusing spreads the power of
sparse targets over wide regions of the measurement space, as
required by CS. In this section, we present a preprocessing
step that leverages the mentioned fact to further condense the
measurement space into m < m0 dimensions. The procedure
identifies uninformative sensing functions and eliminates them
from the sensing model and is, thus, non-adaptive with respect
to y⃗0. Given an initial sensing matrix, A0A0A0 ∈ Rm0×n, a more
compact sensing model is obtained as:

AAA := A0A0A0(Ω,:), where: Ω :=

{
i : max

j
(ai,j > ε)

}
, (3)

where ε is a threshold related to model fidelity (thus to
σ/

√
Nacq). From (1) immediately follows that only the subset

of measurements y⃗ := y⃗0Ω ∈ Rm, with m = |Ω| < m0 will
be considered to reconstruct x⃗.

2) Least-squares Estimation: Even for moderate 3D res-
olution, the reduced sensing matrix from (3), AAA ∈ Rm×n

is wide with m ≪ n. Consequently, the inverse problem is
underdetermined and no unique solution exists. A classical
approach is to enforce minimal l2 norm, i. e., to solve

ˆ⃗x = argmin
x⃗

∥x⃗∥2 subject to y⃗ = AAAx⃗. (4)

The solution to (4) is given by the so-called right Moore-
Penrose pseudoinverse (PI) of AAA:

ˆ⃗x = AAA†y⃗, AAA† := AAA⊤ (
AAAAAA⊤)−1

(5)

The latter estimator boils down to the back-projection used
in [10] (ˆ⃗x = AAA⊤y⃗) when AAA is orthonormal by rows, which is
generally not the case.

3) Truncated Singular Value Estimation: Despite the model
pruning imposed in (3), measurements y⃗ are redundant to a
great extent, due to the sub-optimal combination of uniform
distribution of the apertures and uniform 2D-spatial sampling
within each aperture. As a consequence, despite (3) may
suffice to ensure rank(AAA) = m numerically, clustering of
multiple eigenvalues around zero will occur, effectively desta-
bilizing the inverse problem. Consequently, rank-awareness
becomes key. The latter can be attained leveraging a truncated
singular value decomposition ofAAA, namelyAAA = UUUΣΣΣVVV ∗, where
UUU and VVV are unitary matrices and the diagonal elements of
ΣΣΣ, σi, are the singular values of AAA. Then, the truncated SVD
(t-SVD) solution can be obtained as:

ˆ⃗x =

K∑
k=1

⟨ u⃗k, y⃗⟩
σk

v⃗k ⇐⇒ ˆ⃗x = VVV :,ΩLRΣΣΣ
−1
ΩLR

UUU⊤
:,ΩLR

y⃗, (6)

where ΩLR := {1, . . . ,K} with K set to meet some re-
quirement on data explainability. We set the minimum K :∑

k/∈ΩLR
σ2
k/

∑K
k=1 σ

2
k < 10−3, i. e., the fewest eigenvalues

necessary to retain 99.9% of ∥AAA∥2.
4) Sparsity-aware Estimation: The solutions provided by

(5) and (6) ignore relevant prior knowledge on x⃗, namely, its
natural sparsity due to the negligible contributions of objects
with poor THz reflectivity, tilted reflective surfaces, or distant
scatterers. Acknowledging the sparsity of x⃗ turns the inverse
problem into a linearly-constrained ℓ0 minimization, which
is known to be NP-hard. However, under certain conditions,
its convex relaxation, namely, a linearly-constrained ℓ1 mini-
mization, converges to the same solution [12] and, thus, the
optimization reads:

ˆ⃗x = argmin
x⃗

∥x⃗∥1 subject to y⃗ = AAAx⃗, (7)

which is known as the basis pursuit (BP) problem in CS. In
order to account for measurement noise and model mismatch,
the equality constraint can further be relaxed into an inequality
on the ℓ2 norm, yielding the basis pursuit denoising (BPDN)
problem:

ˆ⃗x = argmin
x⃗

∥x⃗∥1 subject to ∥AAAx⃗− y⃗∥2 ≤ ε, (8)

where ε is set to be coincident with that in (3). We use the
SPGL1 library [13] for solving (7) and (8). SPGL1 leverages
a method based on root-finding on the Pareto frontier induced
by the two-objective optimization in (8) [14].

IV. EXPERIMENTS AND RESULTS

A. Data Acquisition Procedure

In this study, the imaging target domain is a virtual cube
created by a precise movement of a THz source controlled
by a Universal Robot UR5e. The robot is configured with
a 0.5 Kg payload capacity and a 200 ms sleep-time between
each movement to ensure precise positioning. To construct
a virtual cube of Rx × Ry × Rz = L3cm3, the robot is
programmed to navigate uniformly across a 3D grid. At each
grid point, a camera array of P × Q units records an image
of the THz source. To improve the Signal-to-Noise Ratio
(SNR), the camera averages Nacq = 10 acquisitions per
position. These images are then saved with a resolution of
(P × nrows)× (Q× ncols) pixels. Afterwards, every recorded
2D image is transformed into a single vector y⃗i ∈ Rm. The
initial sensing matrix, A0A0A0, is then defined as in (2). In our
experiment, the parameters are set as follows: The edge of the
virtual cube is L = 8 cm. Adopting a step size of ∆ = 0.8 cm,
the total number of grid points is n = 113. The distance
between the cube’s center and the camera array is d = 24 cm.
These experimental parameters are chosen carefully to align



with the emission characteristics of the THz radiation source,
ensuring sufficient signal strength at all grid points.

B. Robustness to Measurement Noise

For this analysis on noise robustness, the imaging object
comprises eight randomly positioned points within the cube’s
volume, corresponding to a sparsity level of sGT = 8, as
shown by the blue points in Fig. 1. The measurement vector
is y⃗ = AAAx⃗.

To examine the algorithm’s performance under various noise
conditions, we add white Gaussian noise to the measurement
vector y⃗ = AAAx⃗+ n⃗. The image is then reconstructed using the
noisy measurement vector. The evaluation of the reconstruc-
tion methods is quantified by plotting the Normalized Root
Mean Square Error (N-RMSE) versus the SNR in decibels
(dB), as illustrated in Fig. 2.
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Fig. 2: Analysis of the reconstruction error obtained for the
four reconstruction methods under varying noise levels, with
sparsity level set at sGT = 8.

The PI method shows improved performance as SNR rises
from -20 to 35 dB, highlighting a high sensitivity to noise.
At about 35 dB, the error stabilizes, signaling a saturation
point where image reconstruction is no longer noise-limited.
Conversely, the t-SVD method reduces the impact of noise
by discarding minor singular values and vectors, but it sat-
urates earlier, around 10 dB. This early saturation points to
limitations from the truncation process, including information
loss from disregarded smaller singular values due to the rank
selection for the approximation (see top-right plot in Fig.2).

Both Basis Pursuit (BP) and Basis Pursuit Denoising
(BPDN) significantly outperform PI and t-SVD methods,
showing a substantial reduction in normalized error across
the same SNR range, as illustrated in Fig. 2-bottom. This is
because they are designed to exploit the inherent sparsity of
the target.

Furthermore, PI and t-SVD offer faster computational times
of 0.0353 and 0.0441 seconds respectively but struggle with
accurate image reconstruction in noisy conditions. Conversely,
BP and BPDN deliver better imaging fidelity but require longer
times of 1.1148 and 1.1338 seconds. Future research will focus

on enhancing PI and t-SVD accuracy through a Coarse-to-Fine
approach to leverage their reduced computational demand.

C. Effect of Target Sparsity

The effect of target sparsity on the reconstruction accuracy
varies among different algorithms. For both PI and t-SVD
methods, the normalized error remains notably constant
(N-RMSE ≈ 100 ) over a sparsity range of sGT ∈ [1, 23].
Beyond the sparsity level sGT > 23, the error increases
rapidly, demonstrating a threshold effect. This behavior is
illustrated in the top plots of Fig. 3.
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Fig. 3: Impact of the sparsity level sGT on the reconstruction
error for the four methods considered, with SNR = 40 dB.

As mentioned previously, the BP and BPDN methods are
specifically designed to exploit sparsity. They exhibit the
same threshold effect behavior but demonstrate a significantly
reduced normalized error (N-RMSE ≈ 10−1), as demonstrated
in the bottom plots of Fig. 3. Throughout these experiments,
we systematically increase the sparsity level from sGT = 1 to
28, progressively adding more nonzero elements to the ground
truth vector while maintaining a constant SNR of 40 dB. This
approach tests the algorithm’s efficiency in handling higher
densities of active elements under consistent noise conditions.

D. Reconstruction of Non-punctual Targets

The evaluations in Sections IV-B and IV-C initially focused
on punctual targets to derive general performance indicators.
To address the performance on more complex 3D targets with
spatial signal clustering, we utilize the MNIST dataset [15].
We assess reconstruction performance using RMSE for 3D
targets formed by rotating scaled MNIST images at angles
of α ∈ {−45◦, 0◦, 45◦}. RMSE statistics are compiled over
N = 104 MNIST images.

The results, including N-RMSE and execution times for the
methods, are shown in Fig. 4. Additionally, Fig. 5 features
3D renderings of the reconstructed volumes for one dataset
instance featuring the handwritten number “4”. Notably, BP
and BPDN show similar reconstruction quality, whereas PI
and t-SVD struggle with 3D shape recovery due to inadequate
regularization.



Target N-RMSE per Percentile [a.u.]
Sparsity 0-75% 75-85% 85-95% 95-99%

1 0.2143 0.4184 0.4865 0.5506
2 0.2400 0.3820 0.4536 0.5575
4 0.3101 0.4326 0.4775 0.5588
8 0.3412 0.4556 0.5232 0.5648
16 0.4510 0.5474 0.5516 0.5891

TABLE I: Percentile normalized RMSE obtained when using
BPDN to reconstruct punctual targets of varying sparsity.
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Fig. 4: Normalized RMSE and execution time obtained for
three rotations (−45◦, 0◦, 45◦, per rows) of 104 targets from
the MNIST dataset.

V. CONCLUSIONS

In this work, we have shown that novel multi-aperture FPAs
of THz detectors, combined with tailored algorithmic tools,
allow for single-shot 3D THz imaging. The first provides
unprecedented measurement diversity, while the second em-
beds valuable a priori knowledge, such as rank-awareness or
target sparsity. We have conducted an extensive validation
of the performance of reconstruction methods of varying
complexity under different conditions, including noise level,
target sparsity, and the reconstruction of non-punctual targets.
We observed that while the PI and t-SVD methods offer

(a) GT (b) PI (c) t-SVD (d) BP (e) BPDN

Fig. 5: Surface rendering of the 3D reconstructions obtained
by the four reconstruction methods considered for different
rotations (−45◦, 0◦, 45◦, per rows) of a sample MNIST image.

moderate performance in signals characterized by low noise
and low sparsity levels, they exhibit limitations in handling
signals with high noise or high sparsity levels. In contrast,
the BP and BPDN methods demonstrate higher efficiency and
robustness, maintaining lower normalized errors compared to
the previous two approaches. Moreover, the examination of
non-punctual targets using the MNIST dataset highlighted the
challenges of reconstructing realistic 3D objects that exhibit
spatial clustering. Here, the BP and BPDN models proved
again their effectiveness in achieving high-quality reconstruc-
tions. Conversely, the PI and t-SVD methods failed due to their
lack of an appropriate regularization mechanism. In future
work, we plan to extend our investigation to include the
challenges presented by dynamic scene reconstruction in 3D
THz imaging.
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