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I. INTRODUCTION 

After the discovery of quantum mechanics, nothing quite so excited the imagination of 

physicists as Dirac's prediction1 of the existence of antimatter. Within a few years Anderson had 

demonstrated2 the existence of the positron as the antiparticle of the electron, and within decades 

the antiproton3 had also been found. Although Dirac’s line of reasoning involved first and 

foremost his treatment1 of the fine structure in the spectra of hydrogenic atoms, the ultimate 

theoretical basis for his prediction can be traced back years before to Einstein and the special 

theory of relativity (SR).4 The famous mass-energy equivalence relation, E=mc2, was given a 

more concrete interpretation by Dirac, namely that two particles of equal rest mass but opposite 

electric charge could be converted entirely into energy.  In the case of e+ and e-, the energy 

appears as electromagnetic radiation or photons, whose frequency  is related to the released 

energy by the Planck relation,5 E=h.  A key element in this interpretation is the series of 

mechanical laws of classical physics, particularly the conservation of energy and each of the 

components of linear and angular momentum, which were enunciated in the seventeenth century 

by Newton6 and Galileo.7 

The creation and annihilation of matter, as this phenomenon is generally called, is central 

to the theory of modern physics, ranging from the sub-microscopic regime of atoms, electrons, 

photons and more exotic elementary particles to the super-macroscopic world comprising 

astronomy and cosmology.  Indeed, one uses these terms to discuss processes which are 

commonplace in our everyday experience, such as the absorption and emission of light.  Energy 

released or gained upon electronic transitions in atoms or molecules is said to cause the creation 

or destruction of a photon, again in accordance with the Planck frequency relation. 

As with other fundamental theoretical concepts of natural science, the principle of 

creation and annihilation of matter forced a rethinking of old themes from the realm of 

philosophy and metaphysics.  For example, a new interpretation could be given to the famous 

statement8 of Lucretius in the first century B.C. in de Rerum Natura: “Nothing can be created 

from nothing,” which is paraphrased by Shakespeare9 in King Lear as "Nothing will come of 

nothing."  In other words, energy in the form of photons of a given frequency is to be 
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distinguished from nothing and therefore the production of electrons and positrons from it is thus 

not inconsistent with Lucretius’s rule. 

Yet it is clear that the creation-annihilation concept still represents a revolutionary 

departure from ancient precepts, particularly certain aspects of the atomic theory of matter dating 

back to the work of Democritus.10  According to this traditional view, the elements from which 

all matter is assumed to be constructed possess very definite characteristics.  Again in the words 

of Lucretius:11 "Material objects are of two kinds, atoms and compounds of atoms.  The atoms 

themselves cannot be swamped by any force, for they are preserved indefinitely by their absolute 

solidity."  Suffice it to say that the annihilation of an electron and positron to produce pure 

energy is not consistent with this statement. The present investigation concerns itself with the 

theory underlying this revolutionary process in which material particles interact with one another 

with such force that they are claimed to lose the very identity that Lucretius imagined was their 

inherent property. 
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II. POSITRONIUM DECAY AND THE CREATION-ANNIHILATION HYPOTHESIS 

In a book12 published in 1661, entitled The Skeptical Chymist, Robert Boyle originated 

the modern concept of chemical elements.  Simply stated, he suggested that the elements can be 

distinguished from all other substances by virtue of the fact that they cannot be split up by 

chemical reactions into simpler substances.  The relationship between his ideas and the atomic 

theory of Democritus and continuing on to Lucretius is unmistakable.  The concepts were made 

more concrete in Dalton's atomic theory,13 proposed in 1803, which provided a sound basis for 

interpreting known facts of chemistry.  Thus, when one observed two different gases, oxygen 

and hydrogen, coming together to react explosively to form steam, one could speak of the 

process as involving two elements which were simply joined together in different ways before 

and after the reaction. 

Until the advent of Einstein's SR,4  it was believed that each element had a fixed mass and 

that the sum of the masses of the reactants was exactly equal to that of the products.  Even today 

one adheres to the underlying principle that the numbers of each type of element are unchanged 

in the course of chemical reactions, and thus the concept of a balanced equation remains an 

integral part of the teaching of fundamental chemistry to the present time.  Special relativity 

merely rejects the assumption of fixed masses for the elements and replaces it with the principle 

that energy absorbed or emitted in the course of a physical transformation must be taken into 

account by means of the E=mc2 relation in order to predict the combined mass of the products 

from that of the reactant species. 

The concept of elemental balance in chemical reactions is in no way disturbed by this 

adjustment, and with its help it was possible to carry over the ideas of the early chemists to the 

interpretation of nuclear reactions involving much larger energy changes. For example, when 

two deuterium atoms combine to form an alpha particle the energy released is great enough to 

allow for direct measurement of the corresponding loss of mass of the product system relative to 

that of the reactants. The discovery of the neutron by Chadwick14 in 1932 made it possible to 

specify more precisely what the elements are in this process. The deuteron is thus a compound 

consisting of a single proton and neutron, whereas the alpha particle is the 4He nucleus composed 

of pairs of each of these elements. 

Nonetheless, one of the casualties of the creation-annihilation concept is the principle of 

elemental balance in all physical transformations. The above example involving a nuclear 
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process is more the exception than the rule in the theory of modern physics, particularly as one 

makes the transition into the field of elementary particles.  If particles can simply be converted 

into pure energy, there is no longer any basis for demanding that the same number and type of 

elemental species is present before and after a reaction has occurred.  One need only try to 

imagine how the development of the theory of chemical transformations would have been 

affected if the principle of a balanced reaction had not been enunciated in order to appreciate the 

consequences of rejecting the idea in other branches of the natural sciences. 

 

A. ELECTRON-POSITRON INTERACTION 

With this background it is interesting to analyze in some detail the process which first led 

to the postulation of the creation and annihilation of matter, namely the interaction of an electron 

with its antiparticle, the positron. For this purpose, it is important to consider the experimental 

data with reference to familiar theoretical models without accepting their conclusions a priori, 

recalling Newton's prescription15 that "these laws must be considered as resting on convictions 

drawn from observation and experiment, not on intuitive perception."  Assuming the positron 

and the electron to be initially at rest, the first observation is that they form a weakly bound 

complex known as positronium.  After a short lifetime (ca. 10-10 s) something much more 

dramatic happens to the system, however.  In the most commonly observed process, the decay of 

positronium leads to the production of two high-energy photons which fly away in opposite 

directions to one another.  In another branch of this reaction which occurs much less frequently, 

three photons appear. In the primary decay process the two photons are always found to show 

opposite polarization, whether circular, plane or elliptical, and have equal energy (frequency). 

The existing theory for these various observations can be summarized as follows.  First, a 

typical low-energy phenomenon occurs, corresponding to the binding of the electron and 

positron together.  This process can be described accurately in close analogy to the treatment of 

the hydrogen atom by means of the non-relativistic Schrödinger equation.  An even more 

thorough description in terms of quantum electrodynamics is also possible.16   One knows that 

the ionization potential of the hydrogen atom is 13.605 eV (0.5 hartree) and the Bohr theory17 of 

1913 had shown that the amount of binding is proportional to the reduced mass µ =  

m1m2/(m1 + m2) of the proton-electron system.  The equality of the rest masses of the electron 

and positron leads to the conclusion that µ for positronium is only about half that of the hydrogen 
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atom.  Hence, the binding energy in this case is one-half as large (6.80 eV).  However, the 

instability of the positronium complex stands in sharp contrast to the known characteristics of 

the corresponding H atom, which is quite stable and appears to exist in this state for indefinite 

periods in the absence of any outside influence.18 

Were it not for the spontaneous decay of positronium, one would have no difficulty 

relating these observations to Dalton's atomic theory.13   In this case, the elements are one 

electron and one positron. At the beginning of the reaction they are separated (existing in 

elemental form, to use Boyle's terminology12), whereas afterwards the compound positronium is 

formed in which the two elements are bound together.  Why then must we give up the atomic 

theory of elements when it comes to the decay of positronium?  The conventional answer to this 

question is that the elements with which we started, namely an electron and a positron, are no 

longer present at the conclusion of the process.  Instead, one is left with a pair of photons in the 

most commonly occurring case. 

Yet in a strict sense the creation-annihilation explanation for positronium decay violates 

Newton's prescription about always basing theory firmly on observation.  How can one truly 

observe that something disappears?  If natural science is restricted to the domain of observation, 

how does one fit the phenomenon of creation and destruction into the picture?  By definition, 

these processes involve material transformations either to or from nothing, and therefore can 

never be observed direct1y in their entirety. There is clearly something about nothingness which 

defies observation.  By the same token, it is impossible to prove that things do not disappear.  It 

only seems prudent to recognize that the inability to observe an object is not an unambiguous 

sign that it has ceased to exist. 

Especially since the natural sciences underwent a long and successful development 

without having to yield on the ancient view that all material objects are synthesized from 

impermeable elements, it is important to probe the creation-annihilation hypothesis with utmost 

scrutiny.  To this end let us follow the tried-and-true principle of mathematics employed 

whenever a theorem is to be proven, namely to assume the opposite and examine whether a 

contradiction can be derived as a result.  In the physical sciences the definitions of initial 

assumptions cannot always be as clearly drawn as in mathematics, however, so it is difficult to 

be certain that the list of alternative hypotheses has been exhausted.  In the present discussion of 

particle-antiparticle interactions the finding of an incontrovertible hypothesis which does not 
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require that matter is created or destroyed under any circumstances would have its merit, 

particularly from the point of view of the proponents of the classical atomic theory.  To 

paraphrase another author with less direct involvement with the physical sciences who put these 

words in the mouth of Sherlock Holmes:19 "When you have eliminated the impossible, whatever 

remains, however improbable, must be the truth." 

 

B. IS THERE A NON-HYDROGENIC STATE OF POSITRONIUM? 

In the first stage of the electron-positron interaction, there is a close analogy to what is 

observed in the hydrogen atom formation.  However, the fact that the 1s state of positronium 

undergoes spontaneous decay clearly distinguishes it from the proton-electron combination.  In a 

broader sense, however, the positronium decay is similar to emission processes occurring in 

excited hydrogenic states such as the 2Pl/2 species, for example.  After a short lifetime a decay 

photon is observed as the hydrogen atom returns to its ground state.  Again quantum 

electrodynamics is able to describe this process with extremely high accuracy.  The fact that no 

subsequent emission has ever been observed from the hydrogen 2S1/2 state is why one refers to it 

as the ground state of this system.  But does this mean that the analogous 1s state of positronium 

is its ground state?  The close similarity between the hydrogenic and postitronium spectra 

predicted by quantum mechanical theories ranging from the non-relativistic Schrödinger 

equation to quantum electrodynamics is the primary justification for answering this question in 

the affirmative, but the observed positronium decay from its 1s state raises at least the possibility 

that this conclusion is incorrect.  If there is a state of positronium below that of the 1s species, 

the observed photon appearance can be explained in a different manner. 

To explore this possibility let us examine the mechanics of the Pl/2–Sl/2 emission process 

in more detail for the hydrogen atom.  The initial system is clearly the atom in one of its excited 

states, whereas the final system consists of the same atom in its ground state along with a photon 

associated with a characteristic frequency.  With reference to what has been said previously, it 

can be noted that this theoretical description does not represent a balanced reaction in the 

traditional sense.  Nonetheless, there are clear similarities between this process and the 

positronium decay from its 1s state.  This can be seen by considering the distribution of energy 

and momentum among the partners of the transition.  Because of the relatively large mass of the 

H atom, conservation of energy and linear momentum requires that the photon carry away most 
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of the energy accompanying the transition, but not all of it.  In order that momentum is also 

conserved in the process, it is necessary that the H atom recoil slightly relative to its initial 

position.  The momentum of the atom is thus given by the de Broglie relation20 as p= h/, where 

 is the wavelength of the emitted radiation and h is Planck's constant.  Consequently, some of 

the energy lost in the transition is also carried away by the H atom, specifically an amount equal 

to p2/2MH, where MH is the total mass of the atom, i.e., electron plus proton.  For higher-energy 

transitions, such as gamma decays in nuclear processes, the recoil energy can be so large that the 

energy of the emitted photon differs considerably from the internal energy difference of the pair 

of nuclear levels involved (Mössbauer effect21). 

The decay of positronium can be viewed as similar in nature to the above emission 

processes, differing from them only in quantitative detail, provided one makes a crucial 

assumption, as outlined in what follows.  It is generally accepted, for example, that the reason at 

least two photons are always observed after positronium decay is because of the need to conserve 

energy and momentum in the process.  The rest masses of the particles present after positronium 

decay are equal, however, whereas in the other case the hydrogen atom is far more massive than 

the emitted photon. Consequently in the two-photon positronium decay the available energy and 

momenta are equally distributed (at least as viewed from the original center of mass of 

positronium), whereas a much less equal distribution is found among the H atom emission 

products.  The assumption of a low-energy state of positronium below the 1s entity clearly would 

give more substance to this analogy, but there still remain difficulties as to how best to correlate 

the various product and reactant systems in the two processes.  To begin with, it seems 

straightforward to associate the emission quantum in the H-atom case to one of' the photons 

observed in positronium decay.  The energies of the H atom and positronium photons are 

different to be sure, but so as to perfectly satisfy the pertinent conservation laws in each case.  In 

order to make the analogy even closer, however, one might correlate the second photon observed 

in the positronium decay to the H-atom 1s1/2 product itself in the other example. The latter 

association is tantamount to saying that this photon continues to have the same e+e- structure as 

the initial complex, simply existing in a lower-energy state than the 1s species (see Fig. 1).  Is 

something of this nature not a possibility? 

Pursuing this supposition further, it is important not to forget that both photons 

accompanying positronium decay (again in the most frequently occurring process) appear to be 
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identical in every way, including with regard to their energies and absolute values of linear and 

angular momenta; only the directions of the latter two vector quantities are different, i.e. 

opposing.  There is thus no justification from experiment to attribute a different composition to 

one of the decay photons than to the other.  Before one can claim that particle balance has been 

achieved by the above assumption, however, it is necessary to face up to the fact that in this 

model there is apparently (at least) one more photon (even if its proposed e+e- structure is 

correct) present after the positronium decay than before it. At least there is comfort in realizing 

that the same state of affairs exists in the H-atom Pl/2–Sl/2 emission process, and therefore that the 

analogy under consideration is not weakened on this basis. 

In any atomic, molecular, nuclear or other radiative emission process, the conventional 

view holds that while the initial system consists of a single substance in an excited state, the final 

system consists of the same substance in a more stable state plus a photon of well-defined energy 

and momentum.  Despite the universality of such processes, however, there is a way to describe 

them consistently, positronium decay included, without giving up the concept of complete 

particle balance.  It is simply necessary to assume quite generally that the observed emission 

photons are also present prior to such transitions, but that their energy and momenta are exactly 

zero in these initial states. 
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FIG. 1. Energy level diagram comparing the hydrogen atom and positronium.  In the standard quantum mechanical 

theory the lowest (1s) levels of each system occur at -0.5000 and -0.2500 hartree, respectively.  Corresponding ionization 

energies for the excited states of these two systems always differ by a factor of two as well, reflecting the different reduced 

masses of the electron in the two cases. The hydrogenic ls state is known to be stable, however, whereas the corresponding 

e+e- state has a short lifetime and decays radiatively.  This suggests that the true lowest state of the e+e- system actually lies 

far below the n = l state of positronium, and as such corresponds to the massless state of the photon itself, with an 

“ionization" energy equal to 2moec2 or 37557.7306 hartree. 
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We come then to the crux of the creation-annihilation hypothesis. To deny this 

proposition is to insist at the very least that photons with zero energy and momentum exist in 

their own right, despite the fact that according to the theory of special relativity they must be 

in a massless state under these conditions. Furthermore, the fact that radiative emission is 

observed whenever a system populates an excited internal state inevitably forces a new 

assumption, namely that such massless particles can be found in sufficient numbers anywhere 

throughout the universe at all times. 

C. RELATIVISTIC CONCLUSIONS ABOUT PHOTONS OF ZERO ENERGY 

The concept of photons other than the real variety encountered in everyday experience 

is by no means foreign to physical theory.  So-called virtual photons22 play a key role in 

relativistic quantum electrodynamics and are invoked to explain details of the interaction of 

radiation with matter wherever it exists.  Care is generally taken to exclude the possibility 

that such entities have any but a theoretical existence, however.  One prefers instead to speak 

of them as a field quantity, with the non-localized properties of a wave-like substance, rather 

than simply as particles in the Newtonian sense.  Even in classical electrodynamics it has 

long been known that there is a need to attribute non-zero energy and momenta to an 

electromagnetic field.23  It is easy to find situations where failure to do this is tantamount to 

assuming that neither quantity is conserved in such processes.  This line of approach is at 

least a clear indication that the properties of photons must be assumed to be present on a 

large scale everywhere in the universe, even if it is insisted that the particles as such are non-

existent. 

But why not actual particles?  A typical argument is drawn from SR, asserting that 

once a particle with zero rest mass (as one assumes for a photon in vacuo) does not move 

with the speed of light c, it ceases to exist. The justification comes from the law of mass 

dilation:4 m=mo (1- v2/c2)-1/2 = mo, where mo is the rest mass and m is the relativistic 

mass of the particle moving relative to the observer with speed v. Accordingly, if mo= 0 

and v < c, then  is finite and m= 0. On this basis it is generally concluded that the 

corresponding particle cannot exist. 

Yet examination of this argument shows that the supposed non-existence of the 

zero-mass photon is really just an assumption. All one learns with certainty from the 
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above formula is that 0 < v < c is a condition under which the relativistic mass of such a 

particle vanishes.  It does not say that the particle itself necessarily ceases to exist as a 

result, however.  The equation of non-zero mass with the possibility of a particle's 

existence cannot be said to be a logical consequence of the theory of special relativity. 

Instead, it constitutes an additional assumption which has had enormously broad 

consequences over the length and breadth of modern physical theory.  At the very least it 

seems only prudent to give careful consideration to alternative interpretations of the 

possible meaning of a massless state of a system, as will be done below. 

To begin with, it is possible to give a simple continuity argument which makes the 

existence of zero-mass photons plausible.  Combining the mass-energy equivalence with 

the Planck frequency relation gives: E = h = mc2.  If m = 0, it follows that the 

corresponding frequency of the radiation is also of vanishing magnitude, whereas the 

wavelength  = /c is infinitely large.  A photon field with infinite wavelength is 

inaccessible to experimental detection and thus is not observable in the traditional sense.  

However, there is a clear distinction to be drawn between non-observability and non-

existence.  When an infinitesimal amount of energy is added to the same system, the 

above equation indicates that the photons now correspond to a non-zero frequency and a 

finite wavelength, which at least in principle can be measured.  While there are definite 

limits as to how long a wavelength or how short a frequency can be measured in practice, 

it seems arbitrary to insist that beyond this point we dare not think of the particles as 

continuing to exist.  If one can systematically withdraw energy from a single photon, at 

what point can it be safely assumed that it has been annihilated?  The point is surely not 

that one can prove that a photon with exactly zero energy exists, but rather that the 

converse cannot be proven by this or any other means either.  There is even a certain logic 

in dealing with the massless photon simply as the limiting case in the above experiment as 

the wavelength of the radiation becomes infinitely large. 

Another mathematical point relating to the mass dilation formula should also be 

considered in the present context.  If m = 0 for a particle of zero rest mass, must it 

continue to move at the speed of light?  The answer based on the formula alone is clearly 

negative.  Any value of the speed v up to and including c is consistent with zero 

relativistic mass for a system of zero rest mass.  Even v > c is not inconsistent, which fact, 
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if nothing else, demonstrates that the mass dilation formula is really not at all restrictive 

on this point.  The possibility exists in particular that a massless photon is at rest in a 

given rest frame, unlike photons with non-zero relativistic mass.  There is no contradiction 

in this with regard to the postulates of SR, since such photons defy observation in any and 

all inertial systems.  The photon in a massless state actually corresponds to the null world-

vector of energy, which means that application of any Lorentz transformation with v < c 

leaves it unchanged. This characteristic thus precludes the possibility that observers in 

inertial systems moving relative to one another would ever come to different conclusions 

about whether a given photon's mass is zero or not.  A zero-energy photon thus remains 

undetectable to all observers regardless of their velocities relative to one another.  The 

same conclusion is reached by consideration of the relativistic Doppler effect,24 which 

holds that the frequency of light as measured by an observer moving relative to the source 

with a speed v < c is a finite multiple of the frequency measured in the inertial system of 

the source itself.  With reference to the Gedanken experiment of the last paragraph, a 

photon with decreasing energy continues to move at the speed of light as long as its mass 

exceeds null.  In the limit of zero energy it becomes free to change its speed over a 

continuous range, although it must not do so.  As a massless system, its momentum is 

unaffected by a change in velocity, so that a gradual reduction to zero velocity in any 

given inertial system is possible without altering its energy. 

 

D. STATISTICAL MECHANICS OF MASSLESS PARTICLES  

In order to obtain a satisfactory explanation for spontaneous radiative emission 

which avoids the creation-annihilation hypothesis, it is not only necessary to assume that 

photons can exist with zero energy and momentum, but also that they exist in great 

numbers everywhere in the universe.  One can approach this aspect of the problem on two 

levels.  The first simply relies on the arguments of the last section and takes them a step 

further, namely if it is not possible to observe a single photon in this state, then it is also 

not possible to contradict the view that there are great numbers of such systems.  

However, it is also possible to find more positive indications regarding this point by 

considering the phenomenon of black-body radiation.  Quantum mechanics originated 

with Planck's discovery5 that the observed intensity distribution in a perfect absorber can 
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be quantitatively described within the framework of Maxwell-Boltzmann statistics, 

provided one assumes that only certain energy values are available for radiation of a given 

frequency.  Specifically, Einstein showed that the mean value of the energy is obtained as 

 

E =  
=0n

nh  exp (-nh/kT)/ 
=0n

exp (-nh/kT),    (II.1) 

 

rather than as a ratio of integrals in which n is treated as a continuous variable with non-

integer values.  The key point of interest in the present context is that the n = 0 term in the 

above sums must be retained to provide for an accurate representation of the observed 

spectral intensity distribution.  This term does not alter the sum in the numerator, but it 

makes a decisive contribution to that in the denominator (partition function). 

According to the theory of statistical mechanics, each term in the above sums 

corresponds to an allowed state for the system, in this case a collection of oscillators or 

photons with energy En = nh.  The zero-energy (n=0) photon is thus an ingredient in 

Planck's long-accepted solution to the black-body problem.  Moreover, as the lowest-energy 

state available to a photon associated with a given frequency , it is also the most frequently 

populated according to the Boltzmann exponential law, and this at any temperature T.  In 

order to obtain the total intensity distribution it is necessary to integrate over all frequencies 

from null upwards.  It is important to note, however, that zero-energy photon states are 

present in the distribution for each value of v.  This situation is illustrated in Fig. 2, in which 

the various frequencies are represented by the spokes of a wheel.  The allowed states for a 

given v can be thought of as being plotted as points along the corresponding spoke at a 

distance from the center of the wheel which is proportional to their energy.  Especially if the 

Boltzmann populations are taken into account, it is found that by far the largest 

concentration of photons is at the center of the wheel, i.e. with exactly zero energy and 

momentum. 
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FIG. 2. Schematic diagram representing the distribution of allowed energy levels in the theory of blackbody radiation.  Each 

spoke of the wheel corresponds to a fundamental frequency  whose energy quantum E = h is always proportional to the 

distance between adjacent points on such a radius.  Each such (equally spaced) point thus corresponds to an allowed energy level, 

one of which is always found at the hub of the wheel for each spoke, i.e. E = 0 is allowed for every value of . The magnitude of 

the energy quantum is shown to decrease monotonically as one proceeds in a clockwise fashion from the twelve o'clock position. 

The partition function used in Einstein's explanation of the black-body radiation phenomenon must include the E = 0 levels 

explicitly for each fundamental frequency in order to obtain results which agree with experiment.  It is thus clear from the 

diagram that the highest concentration of allowed energy levels by far is located at the hub of the wheel, and the form of the 

Boltzmann exponential factors exp (-E/kT) insures that the highest photon population always occurs for this energy value. 

 

Since a blackbody of a given temperature displays the same intensity distribution 
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regardless of its location, it must be assumed that this state of affairs exists everywhere.  The 

relatively high density of zero-energy photons is a theoretical assumption apparently needed 

to explain observed phenomena.  This circumstance does not constitute a proof of the 

hypothesis in the mathematical sense, but at least it can be said that the idea does not lead to 

a contradiction either.  Put the other way around, it would be a very damaging piece of 

evidence to the massless photon concept if states of zero energy had to be excluded from the 

partition function in order to achieve a satisfactory representation of the experimental 

observations.  Quite to the contrary, Einstein made the opposite assumption of a high density 

of zero-energy photons.  Seemingly the most natural interpretation for this theoretical 

approach is to conclude that the populations of all the various photon states are given 

correctly by the Boltzmann exponential factors in eq. (II.1),  not only for those 

corresponding to non-zero quantum numbers. More details on this general subject may be 

found elsewhere.25 

A different, and theoretically superior approach, was introduced by Bose,26 however.  

He concluded that Maxwell-Boltzmann statistics do not apply for photons.  Specifically, the 

population index for photons needs to be changed from exp (-E/kT) to (exp (E/kT)-1)-1.  

This change has the effect of greatly increasing the population of low-energy photons 

relative to the prediction of Maxwell-Boltzmann statistics.  In the present context, the key 

conclusion is that photons of zero energy must be ascribed infinite population.  This result is 

thus the same as is reached using Einstein’s quantization assumption discussed above, but 

the manner in which it is reached, namely on the basis of Bose-Einstein statistics, is 

completely in line with applications for atoms and molecules with non-zero rest mass. 

 

E. SEARCHING FOR A QUANTUM MECHANICAL REPRESENTATION OF THE ZERO-

ENERGY STATE OF THE PHOTON 

It is interesting to shift the discussion from the general topic of radiative emission back 

to the original subject of positronium decay.  By comparison with details of the hydrogen 

atom emission process, it was concluded that the appearance of only photons after 

positronium decay does not rule out the possibility that the internal structure of both the 

initial and final participants in this reaction is exactly the same.  At least the creation-

annihilation hypothesis can be avoided by means of such an alternative assumption.  In other 
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words, it is proposed that the photon may also have an e+e- elemental composition, simply 

existing in a state of lower energy than the 1s species associated with positronium itself. The 

observed frequencies of the decay photons dictate that the energy of such an e+e- state must 

be -2mec
2 or -37557 hartree relative to that of the separated electron and positron, i.e. the 

negative of what one conventionally refers to as the annihilation energy.  By comparison the 

energy of the positronium 1s state is -0.25 hartree (Fig. 1). 

Qualitatively one can imagine an attractive potential which binds the electron and 

positron so tightly together that there is a mass reduction similar to that known to occur in 

nuclear reactions.  The difference in this case is that there is a total loss of mass, and not just 

a few parts in a thousand.  Moreover, such a tightly bound e+e- state can have no counterpart 

in the hydrogen atom spectrum.  It is clear that quantum electrodynamics provides no such 

attractive potential or corresponding internal state, but one also knows that the range of 

validity for this theory is limited to electromagnetic interactions.  Nonetheless, any 

conceivable extension of this theory to include a tight-binding e+e- state of the type required 

must remain consistent with the latter theory in its description of conventional 

electromagnetic phenomena.  Before looking for a more quantitative model to describe such 

a positronium state, however, it is well to remain on the phenomenological level in 

considering the consequences of avoiding the creation-annihilation hypothesis on the 

interpretation of other experimental observations in the field of modern physics. 

III. A SURVEY OF OTHER EXPERIMENTS INVOLVING PHOTONS 

The discussion in the preceding chapter demonstrates first and foremost that there is no 

compelling proof that particles pass to and from existence in the decay of positronium.  It is 

impossible to distinguish between objects which have gone out of existence from those 

which are simply lost from view for a period of time.  The alternative assumption to the 

creation and annihilation of matter is thus that particles can exist in great abundance in a 

massless (zero-energy) state without being directly observable.  Put more descriptively, this 

amounts to saying: "We live in a sea of photons." The question to be explored in the present 

chapter is how these concepts can be used to explain other fundamental observations in 

modern physics. 

A. PROPERTIES OF THE PHOTON 

The interpretation of positronium decay as an emission process involving different 
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states of the same physical system has been seen to suggest that the photon itself is a 

compound of a single electron and positron. It is therefore interesting to compare the 

properties expected for such an e+e- structure with those known experimentally for the 

photon.  To begin with, it can be noted that a system containing two fermions in a highly 

bound state would be expected to obey the Bose-Einstein statistics observed for photons.  

The spin of the combined system must be integral, just as for positronium in any of its  

hydrogenic states.  Whether a system consisting of an even number of fermions behaves as a 

boson or not is known to depend on the strength of the interactions holding the individual 

particles together.27  The 3He isotope, for example, is fermionic and non-superconducting, 

but combining it with another fermion (the neutron) produces 4He, which behaves as a 

boson. 

Otherwise, what we know of photons is that they have zero rest mass and no charge, 

the latter property being clearly consistent with an electron-positron composition.  The fact 

that photons of a given energy are characterized by a definite frequency and wavelength 

does not distinguish them from other particles, as emphasized by the de Broglie relation,20 p 

= h/, and the Bohr frequency law,5 E = h, and demonstrated explicitly for electrons by 

Davisson and Germer.28   For photons there is the additional feature of oscillating electric 

and magnetic fields being involved explicitly in the wave motion.  However, especially for 

optical photons, the frequency of the oscillations is too large to enable a direct measurement 

of the individual electric or magnetic fields.29  The oscillating properties of photons/light are 

actually deduced from theoretical considerations, namely the solution of Maxwell's classical 

equations of electromagnetism.30  In quantum mechanics photons have traditionally been 

treated as oscillators,23 without giving a detailed description of the internal structure which 

is ultimately responsible for such characteristics.  All that can be said in the present context 

is that an e+e- composition for the photon is at least consistent with electromagnetic 

phenomena.  The dipolar nature of such a binary system meshes qualitatively with the 

photon's capacity for interacting with charged particles, especially when the photon is in 

relative motion to the latter.  One would have to have much more detailed information 

concerning the wavefunction of the e+e- system in a given state of translation to make more 

specific comparisons with real photons.  Similarly, since the speed of the photons is a 

consequence of their zero rest mass, this is again a conceivable property for a system with 
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such a dipolar composition, one whose verification would require a more quantitative 

theoretical treatment. 

The polarization of light has been one of its most intriguing properties.  It has been 

interpreted by Wigner31 to result from the fact that the photon possesses non-zero angular 

momentum J.  The “twoness” of the photon's polarization is thereby explained as a 

relativistic requirement according to which a particle moving with the speed of light must 

have J oriented either parallel or anti-parallel to its line of motion.  Quantum mechanically 

this means that only MJ = ±1 is allowed for photons, despite the requirement of symmetry 

that components with MJ = 0 also must exist.  Circularly polarized light corresponds to an 

eigenfunction of Jz, while plane-polarized implies a 50-50 mixture of both allowed MJ values 

and elliptically polarized light is any combination in between, all of which is consistent with 

the existence of an effective two-fold degeneracy.  Careful experiments32,33 have demon-

strated that the magnitude of a circularly polarized photon's spin component is  , 

corresponding to J= 1, which is consistent with the Wigner interpretation31 but also with a 

possible e+e- constitution for the photon itself. 

Altogether it should be recalled that despite intense investigation over centuries, going 

back at least to the work of Newton34 and Huygens,35 there is very little consensus about the 

structure of the photon itself, or indeed whether it has any internal structure at all.  Einstein 

remarked36 in 1951 that, despite his efforts of the preceding half-century, he did not feel that 

he had come any closer to answering the question of what a light quantum is.  He went on to 

say that apparently many people37 did think they understood the matter, but that they were 

only deceiving themselves.  At the very least his comments would seem to allow considerable 

latitude for further research into this question. 

 

B. PRODUCTlON OF PARTICLE-ANTIPARTICLE PAIRS FROM PHOTON COLLISIONS 

The reverse process to positronium decay, in which an electron and positron are 

produced with the aid of high-energy photons, also needs to be considered in the present 

context.  The assumption of an e+e- structure for each photon is obviously consistent with this 

result, but a few details require special attention.  When a photon with energy equal to 2mec
2 

collides with a massless photon, no electrons are produced unless a heavy nucleus is also 

present.  By contrast, if two photons collide head-on, and each has mec
2 energy, electron 
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production is possible in free space. The distinction can be understood from relativity theory. 

A collision between such a massless photon and one with E = 2mec
2 is characterized by 

a total momentum of p =E/c=2mec.  If one of the photons were to dissociate into its elements 

e+ and e-, all the available energy would be used up for this purpose, so that the translational 

energy of the two electrons produced would have to be null. The latter condition makes 

conservation of linear momentum in such a process impossible, however.  By contrast, if 

both photons have E=mec
2 and collide head-on so that the momentum sum pi = 0, it follows 

that the electron and positron can be set free, but must remain at rest in the original inertial 

system (the one in which the photons are observed to have equal energy). The latter process 

is seen to be simply the reverse of the positronium decay process, or more precisely the 

reverse of the interaction of a free electron and positron which are initially at rest in a given 

rest frame. 

More generally, it needs to be recognized that for a given energy E, the momentum of 

the photon (E/c) is always greater than for any particle with rest mass mA > 0, for which 

pA=(E2/c2 - mA
2c2)1/2.  This fact prevents a single photon of any energy from causing a zero-

energy photon to dissociate, because no matter what energy might be transferred, there is a 

disparity in the corresponding photon momentum lost and that which could be theoretical1y 

given to each of the electron products.  The presence of a third body has the potential of 

removing this restriction, as is well known, but the point to emphasize in the present 

discussion is that the same result is found whether free space is thought to be involved, as 

foreseen in the creation-annihilation hypothesis, or if a massless but existing photon of e+e- 

structure is assumed instead. 

To make this point more clearly, it is interesting to consider the effect of relative 

motion of the observer on the outcome of such experiments.  The relativistic Doppler effect23 

tells us that the energy (frequency) of the photons in the above examples is dependent on the 

relative speed of the inertial system from which these quantities are measured.  There is a 

clear exception to this rule, however, namely if the energy of the photon is zero in one inertial 

system, it must remain zero in any other.  Thus it is not possible to make the transition 

between the above two cases simply by changing the relative speed of the observer.  As noted 

in Sect. II.C, a massless photon corresponds to a null vector in Minkowski space,38 and as 

such is unaffected by any Lorentz transformation.  At the same time, a photon with non-zero 
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mass can have its energy changed to any conceivable value other than zero by virtue of such 

a transformation.  The consequences of these relationships are crucial in the present case, 

with electron-positron production in "free space" occurring only if both photons have non-

zero energy, just as is observed experimentally. 

With much higher energies it is also possible to generate proton-antiproton pairs,3 again 

as predicted by the Dirac theory.1  It is clear that this result cannot be entirely explained by 

assuming an e+e- structure for the photon.  Nonetheless, it cannot be said that such 

observations are inconsistent with what has been assumed so far.  Rather, they force an 

additional assumption, namely that other types of massless particle- antiparticle binaries exist 

as well.  There is of course a natural tendency to avoid introducing new types of particles into 

any theoretical framework, however.  At the very least one hopes to keep their number to an 

absolute minimum. 

As long as its rest mass is exactly zero, the mechanical properties already mentioned for 

e+e-, such as =0,  =  and the like, could also apply to p+p- or related entities. One can only 

speculate that a p+p- system of zero rest mass will exhibit different properties under translation 

than do the corresponding e+e- species. Clearly, the dissociation energy of p+p- must be 1836 

times greater than for e+e-, which condition already constitutes a major distinction. By the same 

token, the fact that neutron decay produces neutrinos,39 whose rest mass is already close to or 

equal to zero, implies that there must be    binaries as well, with extremely small to vanishing 

dissociation energies. The real challenge presented by these observations is to construct a 

quantitative theory, requiring as input at most such quantities as the rest mass, charge and 

perhaps magnetic moment of the interacting species, which leads to binding energies of the 

above particle-antiparticle pairs which are equal to 2c2 times the rest mass of each of the 

respective constituents. 

Since the charge-to-mass ratio is much smaller for the proton than the electron, it seems 

clear that a p+p- binary would show much weaker electromagnetic effects than its e+e- 

counterpart. On this basis, it seems plausible that the traditional properties of a photon, i.e. 

oscillating electromagnetic field which is involved even in low-energy emission and absorption 

processes, are exhibited exclusively by the electron-positron massless binary systems. The 

statistical arguments given above, combined with the discussion of black-body radiation 

(Chapter II. D) speak equally well for a high density of other systems of zero rest mass.  At least 
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one knows that protons and antiprotons can be produced together whenever the appropriate 

energy and momentum conditions are fulfilled. 

 

C. QUANTUM CONDITIONS OF PHOTON INTERACTIONS 

The quantum jumps associated with photon interactions provided an important clue 

regarding the particle nature of light. In his explanation of the photoelectric effect,40 Einstein 

reversed a trend away from the Newtonian view34 of light as "corpuscles". He showed that 

surface ionization of metals could be most consistently explained by assuming that a single 

quantum of light gives up all its energy to a single electron. He used the word "heuristic" in 

describing his ideas because the (exclusively) wave theory of electromagnetic radiation was 

widely accepted by the physics community at that time.  While there can be general agreement 

that the photoelectric effect is inconsistent with a totally wave-like nature for light, it still must 

be regarded as extraordinary that any particle would transmit all its translational energy to a 

single electron in given interaction.   Such a property of photons is consistent with the concept of 

annihilation, because it is reasonable to assume that a particle which has gone out of existence 

does so by leaving behind all its energy and momentum.   However, if it is assumed instead that 

the photon retains its existence after photoionization has occurred and simply assumes a massless 

state which defies direct experimental observation, it is necessary to look more closely at the 

dynamics of this process to better understand the nature of the quantization phenomenon.  

To this end it is instructive to apply the laws of energy and momentum conservation to 

the absorption process, as depicted in Fig. 3. If the photon γ were to give off an arbitrary amount 

E of its energy to an atom A with mass MA, its momentum would decrease by p = E/c. If 

the atom were to remain in the same internal state, this amount would appear in the form of 

translational energy, which means that the momentum of the atom would change by pA = 

(2MAE)1/2. Conservation of momentum requires that pA and p be equal. For small E this 

can never be the case, however, in view of the large mass of A. Setting pA equal to p shows 

that E would have to be equal to twice the rest energy of A or 2MAc2, which corresponds to the 

GeV range.41 There is a solution to this dilemma, however, namely to have a part of the photon's 

energy be added to the internal energy of the atom, i.e. that another electronic state of the more 

massive system be reached. If the excited electronic state differs by h in energy from that of the 

initial state, conservation of momentum requires that 
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              p = E/c = pA = 2MA(E - h)1/2                                                             III.1  

which is possible provided h is only slightly smaller than E, again by virtue of the relatively 

large mass of A as well as the magnitude of c. 

It is important to distinguish between two aspects of the absorption process in the 

foregoing discussion. First, the quantized nature of the atomic spectrum is seen to be directly 

connected with the large disparity between the respective masses of the atom and the photon. 

When one considers the translational motion of the atom, it is recognized that the energy levels 

available to it are actually continuous.  It is the requirement of momentum conservation which 

restricts the possible transitions between different states of the same atom and thereby produces 

the quantization phenomenon.  On the other hand, on the basis of these arguments by themselves 

there is no restriction put on the magnitude E of the energy lost by a photon in the absorption 

process, save that it be less than its total energy, E = mc2. Indeed, the analogous excitation 

brought about by electron impact is well known,42. One is thus still left with the conclusion that 

there is something special about a zero-energy, zero-momentum state of the photon, even though 

many aspects of the absorption phenomenon can be understood by just assuming that the photon 

is a particle of relatively small mass compared to the system with which it interacts. 
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FIG. 3. Energy level diagram detailing the role of conservation laws in determining whether a given radiative absorption process 

is allowed or not. At the top of the diagram, the system is to retain the same internal energy Es” in the transition, i.e. the two 

levels shown differ only in translational energy Ts = 
2
sp /2ms (non-relativistic theory), where ms is the mass of the system and 

ps is the corresponding change in the momentum of its center of mass. Such a radiative process is always forbidden by the law 

of conservation of linear momentum, because the rest mass of the photon is so much smaller than that of the system (ps > p). 

The only way for radiative absorption to occur is if the system changes its internal (from Es” to Es’) as well as its translational 

energy, as depicted in the lower part of the diagram. Under these circumstances the momentum conservation law can be satisfied 

for a particular value of ps, namely one that is equal to (Es’ - Es” + 
2
sp /2ms)/c, where c is the speed of light. This condition 

rules out the occurrence of a radiative absorption process in which the system's translational energy does not change at all, also as 

indicated. Thus the "quantized" nature of radiative transitions is seen to be intimately connected with the photon's vanishing rest 

mass. 

 

The fact that the energy transferred in the above process is exactly equal to E = mc2 is 

thus seen to be a separate issue from the photo-ionization phenomenon itself. In other words, 

why doesn't the photon give off only part of its energy in inducing a transition in another system? 

Dirac used time-dependent perturbation theory43 to answer this question, arguing that the 
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incident radiation introduces a frequency-dependent term in the Hamiltonian of the atomic 

system. A resonance condition results according to which the energy of the most probable atomic 

transition, h = Ei - Ef, must be the same as the energy of the incident photon, E = mc2. The 

prospect of a massless photon being formed as a result of this energy exchange (rather than that 

the original photon is annihilated in the process) suggests a somewhat different interpretation for 

this phenomenon, however, one which does not rely on the ad hoc assumption of wavelike 

properties for the incident radiation. If one simply looks upon the process as a collision between 

an atom and a photon moving with speed c, it seems plausible to demand that the observed 

energy exchange take place over a relatively small but finite period of time. As a consequence, 

the temporal requirements of the interaction are more readily fulfilled by an outgoing system 

whose velocity has been considerably reduced below the speed of light in free space. As long as 

the departing photon possesses a non-zero amount of energy, this condition can never be 

fulfilled, but as has been pointed out in Chapter II.C, a massless photon is free of any such 

restriction, and thus can move at any speed less than c, including zero. In this view, the only 

practical means available to a photon to reduce its energy by virtue of an atomic collision is to 

assume a massless state, so that its relative speed compared to the system with which it interacts 

can be made as close to zero as possible. Accordingly, this interaction mode represents the only 

inelastic collision process available to a system of zero rest mass, since it is otherwise forced to 

move with the speed of light as long as it possesses any non-zero amount of translational energy. 

By combining this result with the conservation of energy and momentum arguments first 

discussed, it is seen that the quantum characteristic associated with radiative absorption (and 

emission44) can be deduced exclusively on the basis of the rest mass values of the photon and the 

interacting system, respectively. There is no need to postulate any wave characteristics for the 

field inducing the transition. Rather, one is led to conclude from knowledge of the internal 

energy states of the interacting system and the magnitude of its rest mass exactly which photon 

energy is required to induce maximum transition probability. The magnitude of this transition 

probability itself cannot be determined quantitatively on the basis of the above information 

alone, and thus for this purpose one does have to introduce some additional information about 

the nature of the perturbing Hamiltonian, which itself is ultimately based on other experimental 

observations. This state of affairs does not affect the main conclusion in the present discussion, 

however, namely that the properties expected on the basis of relativity theory for a massless but 
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nonetheless existent system are sufficient in themselves to allow for a suitable explanation of the 

observed tendency of photons to give up all their translational energy upon interacting with other 

particles. 

 These observations are also relevant to the positronium decay process discussed in 

Chapter II.   In order for the de-excitation process to occur from the positronium 1s state to the 

proposed tightly-bound e+e- photon state (as depicted in Fig. 1), it again seems highly desirable 

that there be a minimum of relative motion between its initial and final systems. This condition 

cannot be said to be satisfactorily fulfilled when the product photon carries translational energy, 

because it must then move away from the original point of interaction with the speed of light. 

That would be something akin to a business transaction carried out between two people, one of 

which is riding on a speeding train while the other is standing on the station platform.   In its 

massless state the photon can move with exactly the same velocity as the initial positronium 

system, thereby greatly improving the chances for such a transition.  In this way, momentum can 

be conserved in the process, but the energy lost by the positronium complex still has to be carried 

away.   

       As shown in Fig. 4, the simplest way to accomplish this objective is to have the released 

energy divided up equally between two other photons which are in the neighborhood of the 

interaction locale, which again means they must initially possess zero translational energy. The 

conservation laws can then be satisfied by dividing the emitted energy equally among the two 

departing photons and having them move with exactly opposed momenta.25 There are also 

angular momentum conditions to be satisfied, which is why the number of emitted photons is 

different depending on the multiplicity of the positronium state prior to its decay.  This point will 

be considered more closely in Chapter VI.   

       To summarize, it is possible in this way to look upon the most commonly occurring 

positronium decay process (Fig. 4) as involving three distinct photons, each of which exists in its 

massless state at some point in the interaction. One of them is formed as a result of the de-

excitation of the (singlet) positronium 1s state (Figs. 1 and 4), thus eluding detection by virtue of 

its null frequency. The other two are already present at the start of the reaction and are also 

unobservable as a consequence of their masslessness.  Upon taking up their share of the energy 

released in the decay process they are detected, however, giving rise to the "two-photon" 

classification commonly ascribed to this interaction. 
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FIG. 4. Schematic diagram for the two-photon decay of (singlet) positronium.  By assuming that the photon also has 

an e+e- composition, it is possible to describe this transition without assuming that particles are either created or 

annihilated in the process. In this model three e+e- binaries are involved, two of which are massless photons at the 

start of the process. They share the energy released by the positronium decay, and are observed as γ photons of equal 

energy at its conclusion. The final state of the original positronium system is another massless photon which, as its 

two counterparts at the start of the transition, escapes detection by virtue of its lack of energy. 

 

Another important aspect of this topic arises in the treatment of the black-body radiation 

phenomenon. As discussed in the preceding chapter, Einstein's quantum assumption assigns 

allowed states to a given photon with only integral multiples of its frequency . Since a 

blackbody is a perfect absorber, each frequency is present, at least in principle, and one can think 

of such a system as a collection of atoms of the type just discussed. The success of Planck's 
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assumption5 indicates that each frequency can be treated independently of the other, however.  It 

also is important to recall that an equilibrium is present which is conventionally thought of as 

arising from a series of collisions between the participating systems over a long period of time. 

This suggests that photons of energy h only interact readily with each other or with photons 

possessing a multiple of this energy. The same conclusion can be inferred from the occurrence of 

the coherence phenomenon45 in electromagnetic radiation. 

It seems at least possible that the stability of the photon in its massless state is at the root 

of the observed quantum characteristics of the black-body intensity distribution. The special 

conditions of velocity seen to be permitted in this state, namely 0  v  c , are at least suggestive 

in this regard. The presumed high density of zero-energy photons based on the results of the 

black-body experiment clearly derives from the fact that this energy value is the minimal amount 

available to photons of any given frequency. The key point which distinguishes the black-body 

radiation phenomenon from the other processes discussed previously in this chapter is clearly 

that a large collection of photons is required to describe the effect in a meaningful way. It is not 

surprising as a result that it is quite difficult to analyze this particular experiment in the kind of 

microscopic detail needed to deal with the general question of whether individual massless 

photons can exist or not. 

  

D. COMPTON AND RAMAN EFFECTS AND BREMSSTRAHLUNG 

The Compton effect46 involves collisions between x-ray photons and weakly bound 

electrons and can also be interpreted in a very straightforward manner using conventional energy 

and momentum conservation arguments in conjunction with the Bohr frequency and de Broglie 

relations. In this experiment a photon with a given energy is scattered off an (essentially free) 

electron and another photon is observed after the collision with lower energy and momentum 

than the first. It might be argued that the same (x-ray) photon is involved before and after the 

collision, but in view of experience with the absorption and emission of photons it is generally 

assumed that the first photon gives up all its energy initially and that afterwards this is distributed 

between the electron and a second photon. Again one conventionally speaks of annihilation of 

the first photon and creation of the second in the process, but one can just as well imagine that 

the first photon simply assumes a massless state upon collision, while another massless photon 
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takes up the energy left over from the electron collision and appears as an x-ray photon, gene-

rally moving in a different direction than the first. 

The Raman effect47,48 is closely related to the Compton effect, and involves inelastic 

scattering of visible light off molecular systems.  If the initial frequency is , it is found that 

photons emerge at right angles to the incident radiation with frequencies   ’, where ’ is a 

characteristic infrared frequency which is small compared to . Again there might be a tendency 

to interpret incoming and outgoing photons as one and the same, only with changed energy, but 

the problematics are clearly the same in this regard as for the Compton effect.  In both cases it is 

clear that a particle interpretation for the electromagnetic radiation allows for a quantitative 

description of these phenomena. There is no particular difficulty interpreting these effects in 

terms of massless photons located in the neighborhood of the pertinent collision processes. 

Finally, it is pertinent in this connection to consider the Bremstrahlung phenomenon as 

well.  In this case an x-ray photon is produced with an energy which is essentially equal to the 

decrease in an electron's kinetic energy caused by its collision with a heavy nucleus. The process 

can thus also be thought of as an interaction in which a massless photon picks up energy, 

similarly as in the emission processes discussed earlier. The fact that a third (heavy) body is 

required is again related to the energy-momentum conservation laws, especially the fact that a 

given energy value always corresponds to a greater momentum for a photon than for a 

neighboring electron by virtue of the disparity in their respective rest masses. 

 

IV. PARTICLES RESULTING FROM HIGH-ENERGY INTERACTIONS 

In the preceding chapters, a model for describing processes involving the interaction of 

electromagnetic radiation with matter has been examined whose main ingredient is the 

assumption of an e+e- "molecular" structure of the photon.  Accordingly, the hypothesis of 

disintegrating matter is replaced with the assumption of indestructible particles, including 

electrons and positrons, which in a specific state of binding can lose all their mass, thereby 

defying experimental observation but still retaining their own existence. The latter distinction 

seems subtle enough when formulated in this manner, but there is a potentially critical 

difference. Put simply, if particles can be created from pure energy, there is nothing 

fundamentally excluding the possibility that much larger objects can also be formed by this me-

chanism. It has been argued,49 for example, that whole universes could be created from the 
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"energy equivalent to just a few pounds of matter." Later in the same article it is pointed out that 

the key element in the author's theory "is that quantum physics permits the spontaneous creation 

of something from nothing."  If on the other hand, matter can never be created or destroyed by 

any mechanism, but instead only disappears from view under certain well-defined circumstances, 

the possibilities are much less fantastic. A much more sober view of the universe emerges, and 

consequently it behooves us to find out which of the above two hypotheses corresponds to the 

true facts.  

It is thus important to see that the creation-annihilation concept does have definite 

relevance beyond the subject of the interaction of photons with other particles. In the preceding 

chapter it was noted. for example, that the formation of protons and antiprotons from photon 

collisions demonstrates that e+e- systems cannot be the only massless particle-antiparticle 

binaries which must be assumed if one hopes to do without the latter hypothesis . Once one has 

grasped the possibility that the creation-annihilation assumption may not actually be needed to 

explain relatively low-energy phenomena, there is thus a challenge to follow through on such 

argumentation in the high-energy regime as well. One is reminded that considerable impetus was 

given to the creation-annihilation concept at the time when it first became possible to carry out 

high-energy experiments in the laboratory.  It is therefore to be expected that as the available 

energy from accelerators and related devices increases, the number of phenomena requiring 

similar explanations will tend to multiply, as has indeed been the case.  New particles with non-

zero rest mass have been identified over the past 70 years, and these have provided fertile 

breeding ground for new theories.  In the present chapter the task of surveying such high-energy 

experiments will be taken up, with particular emphasis on the question of how the assumption of 

the creation and destruction of matter plays a role in the theories which are used to describe 

them. 

A. THE NEUTRON 

After the results of Rutherford's scattering experiments were understood,50 one had the 

model of atoms containing a relatively massive nucleus of positive charge being orbited by a 

number of electrons. The simplest atom is hydrogen with a single proton and electron. The 

heavier nuclei have rest masses which are nearly integral multiples of that of the proton, but 

charges which are always a smaller (exact) multiple of the electronic charge.  On this basis it was 

first assumed that the nucleus itself generally contains both protons and electrons. The discovery 
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of the neutron in 1932 by Chadwick14 caused a shift in this position, however. The neutron was 

found to have a slightly larger mass than the proton and to have no electronic charge.  It is meta-

stable with a half-life of 1000 s, decaying into a proton and electron (or "beta ray" in the earlier 

terminology).  Other unstable nuclei were also known to undergo beta decay. 

Several objections to the assumption of a proton-electron constitution for the nucleus 

quickly arose on the basis of these findings. The most important was based on the fact that the 

energy spectrum of the emitted electron is not mono-energetic, as would have to be expected 

from the laws of conservation of energy and momentum when a single particle decomposes into 

two fragments.   One popular interpretation for this observation was supported by Bohr.51  He 

suggested that the usual conservation laws might no longer be valid at high energies (0.8 MeV is 

released upon the neutron's decay).   Pauli took a different view,39 however, which has since 

been generally accepted, namely that the continuous spectrum observed indicates that at least one 

more particle must be involved in beta decay. Accordingly, the energy lost in the process can be 

divided between several emitted particles in a continuous distribution without violating the above 

conservation laws. The name “neutrino” was subsequently coined by Fermi52 for this new 

particle. 

Other evidence was also found for the neutrino hypothesis, however. If a neutron were to 

consist of only a proton and an electron, it should possess integral spin and exhibit boson 

statistics, so that a nucleus such as 14N (containing seven protons and seven neutrons) would 

behave as a fermion with half-integral nuclear spin.  Since the opposite behavior is observed, it 

was suggested by Pauli that the neutrino (if indeed it is a single particle) is also a fermion with 

half-integral spin, and that its presence in the neutron thus explains this aspect of the nuclear 

puzzle as well. This argument eventually carried the day and the third neutron decay product was 

later renamed the anti-neutrino  . 

What needs to be emphasized in the present context is that in the search for a quantitative 

theory of beta decay, confidence in the straightforward idea of the neutron being composed of a 

proton, electron and antineutrino was eventually lost. This development occurred primarily 

because of the realization that the relatively small radius of the neutron implies that an electron 

bound within it would have to possess an enormous amount of kinetic energy. A figure of 100-

500 Me V could be computed for this quantity based on the de Broglie relation, which connects 

the magnitude of this radius (wavelength) with the electron's momentum. Since the known 
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electromagnetic and gravitational forces are far too weak to explain how the electron could enjoy 

a net attraction inside the nucleus under these conditions, it was clear that an impasse had been 

reached. In addition, the fact that the magnetic moment of the neutron was measured53,54 to be 

much smaller than that of the electron seemed to be totally inconsistent with such a composition. 

The problem was ultimately circumvented by Fermi with his suggestion that the electron 

might be annihilated in the presence of a strong nuclear force. It is interesting to consider Fermi's 

original remarks on this point, as given in translated form by Wentzel.55  "The simplest way for 

the construction of a theory which permits a quantitative discussion of the phenomena involving 

nuclear electrons, seems then to examine the hypothesis that the electrons do not exist as such in 

the nucleus before the ß emission occurs, but that they, so to say, acquire their existence at the 

very moment when they are emitted; in the same manner as a quantum of light, emitted by an 

atom in a quantum jump, can in no way be considered as pre-existing in the atom prior to the 

emission process.  In this theory, then, the total number of the electrons and of the neutrinos (like 

the total number of light quanta in the theory of radiation) will not necessarily be constant, since 

there might be processes of creation or destruction of those light particles." 

In at least one sense this was a significant departure from the original hypothesis used to 

interpret positronium decay, because up to that point charged particles were only thought to 

undergo creation or annihilation pair-wise with their respective antiparticles.  If one continues to 

doubt as in the preceding chapters that electrons and positrons are really destroyed in 

positronium decay, however, then it is only consistent to question the very similar hypothesis 

made by Fermi in explaining the beta decay phenomenon.  Yet if one insists on the continuous 

existence of the electron in an alternative theory, one must face up squarely to the need for 

finding a potential which is strong enough to overcome the undeniably high kinetic energy the 

electron would possess in the small volume occupied by a nucleus. The problem is more severe 

than this, however, because in taking this approach one also must provide a suitable explanation 

for the role of the antineutrino itself in beta decay.  Before considering these points further, a few 

additional details of the experimental observations should be carefully considered. 

A whole series of nuclear reactions could be found which are closely related to one 

another. Written in the form of reactions these are: 

 

 decay:     n → p+ + e- +   
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+ decay               p+ → n + e+ +  

 

electron capture:    e- + p+ → n +                     IV. 1  

 

  absorption:                 + p+ → n + e+ 

 

 absorption:                + n → p+ + e- 

 

The notation is schematic, with p+ and n generally denoting constituents of heavier nuc1ei 

actually present.  

      As always is the case, the c1assical chemist's balanced equation becomes a casualty of the 

assumption that matter such as electrons or neutrinos can be created or destroyed. None of the 

above five reactive equations is balanced in the traditional sense. In the first, an electron and 

antineutrino are created, while in the second, both (e-,e+) and (,  ) pairs are created, with 

subsequent annihilation of e- and   in the process of neutron formation.  In the third, a (ν,  ) 

pair is created and then the neutrino plus a captured electron from an associated atom are 

destroyed. Finally, an (e-,e+) pair is created in the fourth reaction, followed by the annihilation of 

e- and   in the neutron formation, while in the last case the neutron decomposition produces the 

same two particles, only to have the antineutrino destroyed along with the neutrino which 

induces the reaction. 

The hypothesis of massless particle-antiparticle binary systems is only partially 

successful in restoring particle balance to these equations, but strict adherence to the original 

definition of elements advocated by Boyle and others before him completes the process. In 

particular, when we surrender the idea that material particles can be created or destroyed in such 

interactions, we are forced to conclude that the neutron is not an element at all.  Rather it is a 

compound of its known decay products, i.e. p+, e- and  , akin to a triatomic molecule in the 

usual chemical notation. The fact that the mass of the neutron is greater than that of its separated 

constituents is perhaps surprising, but according to the Einstein mass-energy equivalence 

principle of SR this is what one must expect from the fact that the dissociation energy of the 

neutron is negative (-0.8 MeV). There is considerable precedent for such a situation, namely in 



37 

 

the description of excimer complexes, which have had a great impact in the field of laser 

research.  Excimers are bound (meta-stable) molecular states for collections of atoms with a 

ground state that is characterized by a repulsive potential curve and is therefore unbound. The 

fact that the neutron undergoes spontaneous decay is perfectly consistent with this analogy.  

Only the energies involved are far greater than those released in excimer lasers.  In the language 

of scattering theory, the neutron is thus a resonance with a relatively long lifetime.  The nature of 

the forces which hold the neutron together in this meta-stable state constitutes a major 

unanswered question in this model, but in this respect the situation is wholly similar to that for 

the e+e- tight-binding state which has been associated with the photon in Chapter II. 

For the sake of clarity the conventional use of the term "elementary particle" for the 

neutron and related systems will continue to be made below.56   Nevertheless, it is well to keep in 

mind that the definitions of atoms and elements that Democritus and Boyle espoused exclude the 

neutron from this classification because of its instability. With these preparatory remarks, we can 

rewrite the five beta decay reactions given in eq. (IV.1) in completely balanced form: 

 

 

i´)  p+e-(n) → p+ + e- +   

 

ii´) e+e- +    + p+ → p+e-  (n) + e+ +  

 

iii´)    + e- + p+ → p+e-  (n) +                                                      IV.1´ 

      

iv´) e+e- +   + p+ → p+e-  (n) + e+ 

 

v’)          + p+e-  (n) → p+ + e- +    

 

In this way the number of distinct particle-antiparticle binaries has been kept to three in number, 

namely e+e- ,    and p+p-. The need for n n  pairs is thereby avoided by virtue of the triatomic 

composition ascribed to a single neutron itself. Thus neutron-antineutron production involves the 

interaction of each of the three elemental binary systems, i.e. 

 p+p- + e+e- +    → (p+ + e- +  ) + (p- + e+ + ) → n + n     IV.2 
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The economy of the assumptions in the above model is especially desirable when one 

attempts to construct a quantitative theory which is capable of generating wavefunctions and 

properties for such massless particle combinations. The elemental balance in the above equations 

also has the advantage of making the additional assumption of charge conservation unnecessary. 

Since charge is an intrinsic property of each particle, never to be altered in the course of physical 

transformations, its conservation is always ensured thereby. In addition, we must continue to 

assume that energy and each of the components of the net linear and angular momentum are 

conserved in such processes, consistent with SR and the mass-energy equivalence principle.  

More generally, it can be said that there is an unwritten rule in the physical sciences according to 

which the number of theoretical assumptions should be held to an absolute minimum. In 

practical terms, an irrefutable contradiction based on experimental evidence should be 

established before adding any new postulate to the theoretical framework in whatever form. In 

this sense we can take a lesson from the conservation laws of classical physics, according to 

which a truly remarkable variety of observations is understandable on the basis of only three 

fundamental principles.6 

 

B. THE NEUTRINO 

The neutrino is associated with many puzzles that are still unresolved over 80 years after 

its discovery. It apparently bears no electric charge and thus is unaffected by electric fields. It 

also seems to be essentially massless, although this conclusion itself has been the subject of 

much controversy. During his lifetime Pauli compained57 that the upper limit for its rest mass 

was set too high based on what was already know then. For a long time it was something of a 

bookkeeping device, merely accounting for energy otherwise missing in the beta decay spectrum. 

In 1956 the first successful experiment involving neutrinos as reactant species was performed by 

Reines and Cowan58 and this achievement allowed considerably more confidence that the 

particle was more than a theoretical construction.  In essence, Reines and Cowan carried out the 

first antineutrino absorption reaction [eq. (iv) ] in the laboratory. Extreme sensitivity was 

required. The actual mode of detection was the appearance of a photon signaling the reaction of 

the positron product with an electron, but the time between positive events was typically 30 

hours. As a result it was clear that antineutrinos are extremely penetrating, with a chance of one 

part in 1012 of being captured while passing through the earth along a diametric ray. The almost 
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complete absence of ionization products observed during the experiment also led to the 

conclusion that the particle has virtually no magnetic moment, but this raised difficult questions 

about what forces actually govern the neutrino's behavior. The lack of either electronic charge or 

a magnetic moment also left uncertain the exact relationship between  and   themselves, since 

previously every other particle could be distinguished from its antiparticle on the basis of these 

properties. 

An answer to this question was provided by Lee and Yang59 when they concluded that 

parity might not be conserved in beta decay. A decisive experiment60 suggested by their work 

was carried out shortly thereafter by Wu et al. on the longitudinal polarization of decay electrons 

emitted by the 60Co nucleus in the presence of a strong magnetic field at low temperature, using a 

method proposed earlier by Rose and Gorter.61  As 60Co decays into 60Ni the nuclear spin 

changes by one unit from I=5 to 4, and is referred to as a Gamov-Teller transition,62 as opposed 

to the other possibility (Fermi transition) with I=0. Because only the lowest-energy nuclear spin 

component is occupied in the presence of a strong magnetic field at low temperature, it was clear 

that the emitted electron must be ejected with its spin parallel to that of the 60Ni nucleus. Under 

these conditions, a preferred direction for the departing electrons could be detected, namely 

opposite to that of the nuclear spin. One can summarize this result by saying that the electron 

behaves predominantly as a left-handed screw in beta decay. In addition, subsequent studies of 

nuclear recoil indicated that the antineutrinos turn exclusively as right-handed screws63 in the 

same experiment. 

Out of these investigations came a new theory of the neutrino proposed independently by 

Lee and Yang,64 Landau65 and Salam,66  according to which the neutrino and antineutrino could 

be distinguished on the basis of their respective left- and right-handedness, or alternatively their 

negative and postive helicities (defined as Iˑp/p). It was referred to as the two-component 

theory of the neutrino because it postulated that certain spin-momentum orientations are 

forbidden to this particle. The idea was not entirely new to theoretical physics as Weyl had 

proposed something very similar67 nearly 30 years earlier from strictly mathematical 

considerations based on SR.  Since the parity P was not conserved in this theory, Pauli initially 

criticized it.68 The observed asymmetry in the 60Co experiments of Wu et a1. ultimately caused 

him to reverse his position,69 however, although he went to some length at the time to express his 

amazement at this development. 
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Charge conjugation is also violated according to the two-component neutrino theory, but 

Yang noted that the product CP should still be conserved,70 i.e. by simultaneously inverting the 

coordinate system and changing all particles into their antiparticles, so that a left-handed v 

becomes an (observable) right-handed  . A key assumption in this theory was that the neutrinos 

have zero rest masses, a possibility, which as already mentioned, has thus far not been refuted by 

experiment. The puzzle was later further complicated, however, by new experiments,71 also 

involving neutrinos, which provided strong evidence that even CP is violated in beta decay. 

Since a theorem by Schwinger,72 Luders73 and Pauli74 proved that the product of CP and the time 

reversal operation T should be conserved under the most general of circumstances, this 

observation seemed to indicate that neither T itself nor any two of these operators together are 

conserved in such processes. 

The interpretation of the polarization phenomena discussed above has received support 

from a wide variety of other experimental observations, including studies on free neutron decay75 

and on muons.76,77  In the first instance, it was found that the proton is predominantly left-

handed, which ultimately led to the convention of referring to the particle emitted in neutron 

decay as the antineutrino   rather than the neutrino, as originally suggested by Fermi. In this 

way all antiparticles present in nuclei (and anti-nuclei) are right-handed, while their counterparts 

in charge conjugation are left-handed. Another important distinction between  and   was 

demonstrated by the fact that antineutrinos do not undergo the capture reaction of eq.(IV.1.v) 

upon interaction with neutrons.78 Attempts to observe a double beta decay in which no 

antineutrinos are emitted79 have also never been successful. In the present context it should be 

noted that this result is also consistent with the belief in a definite composition for the neutron 

needed to achieve particle balance in the five beta decay reactions listed in the preceding section. 

Another puzzle connected with neutrinos was discovered in 1964 by Bacahl and Davis80 

as a result of their investigation of nuclear fusion processes on the sun. The fusion reaction is 

closely related to eq. (iii), with neutrinos being set free in the process. Detailed knowledge of the 

solar reaction profile enables a relatively precise calculation of the magnitude of the associated 

neutrino flux reaching the earth, but the above experiments have invariably indicated a large 

discrepancy in the computed value.  Less than half the expected neutrinos are ever observed (see 

the discussion in ref. 81). In addition there is evidence that the neutrinos involved in the beta 

decay of muons are not the same82 as those associated with neutrons and heavy nuclei. One 
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distinguishes then between electron (e) and muon (µ) neutrinos, and there is also theoretical 

evidence83 that a third type (or flavor) also exists, namely the tau neutrino (). 

Yet the greatest puzzle of all in this connection seems to be why such charge-less, 

extremely penetrating particles are involved in almost every high-energy reaction ever observed. 

Given this situation, the question of whether neutrinos can be created or annihilated seems a 

secondary issue, but one that nonetheless permeates any relevant theoretical discussion of the 

nature of these particles, beginning with the theory of beta decay put forward by Fermi.  

 

C. NUCLEAR STRUCTURE AND THE STRONG INTERACTION 

The theory of nuclear structure relies firmly on the assumed elemental nature of the 

neutron.84 Any nucleus can be described as containing a definite number of protons and neutrons, 

thereby providing a means of discussing nuclear reactions with balanced equations along the 

lines foreseen by Boyle in his general theory of chemical transformations.  The fact that the 

neutron undergoes spontaneous emission complicates this simple picture, however, suggesting an 

alternative interpretation according to which the real elements are the electron and neutrino, in 

addition to the proton. The proton itself has been theorized85 to decay as well, but careful 

experiments86 have never found any positive evidence for this expectation. By any reckoning the 

proton is an extremely stable substance, with a lifetime far longer than that of the neutron. 

The question of the nature of the forces which hold nuclei together is still largely open. 

One refers to them collectively as the strong interaction, a term which above all takes cognizance 

of the fact that the forces in question have properties which are far different from either the 

electromagnetic or gravitational type.  In the time of Rutherford three nuclear decay modes were 

well known, involving -, ß- and -rays respectively. In the meantime one can add at least two 

more decay products to this list, namely neutrons and the small nuclei which result from fission 

of their heavy counterparts. It is interesting to note that the creation-annihilation hypothesis is 

only invoked to explain two of these five possibilities, the beta decay discussed in the preceding 

two sections, as well as the gamma or photon emission process.  In the other three cases the 

decay products have much larger rest masses, and thus are thought to be present in the original 

nuclei prior to decomposition as well as subsequent to it. 

As noted previously, the justification for this distinction in the case of electron (beta) 

emission is the belief that no potential could be sufficiently attractive to outweigh the large 
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kinetic energy such a light particle would have in the confines of the nuclear volume. Yet the fact 

that the forces binding nuclei together are a matter of some uncertainty themselves lends a 

degree of tentativeness to this conclusion. On the other hand, if we assume that neither the 

electron nor anything else can be annihilated under any circumstances, we are left with no choice 

but to look for a potential that is capable of binding an electron so strongly.  In Chapter II a 

similar line of reasoning has led to the conclusion that the electron and positron form a much 

more tightly bound system than anything inferred from a solution of the electrostatic Schrödinger 

equation, one which corresponds to a binding energy of 1.02 MeV.  For comparison purposes, it 

is interesting to note that nuclei are bound together on the average by roughly 8 MeV/nucleon, a 

number which is somewhat larger but of the same order of magnitude as that required in the 

present interpretation of a tightly bound electron-positron system. Moreover, it is over 200 times 

smaller than the p+p- binding energy which must be assumed on the same basis, namely 1.85 

GeV. 

The possibility may thus exist that in searching for a potential which binds particles with 

their antiparticles together with such force as to cause a total loss of mass relative to the reactant 

species, one is approaching the same goal as has long been sought in the context of nuclear 

interactions. Merely saying that the energies given off in the particle-antiparticle interactions can 

be computed on the basis of SR and the mass-energy equivalence relation does not after all 

conform to the standards physicists have adhered to in dealing with other types of elemental 

processes.  In almost every other conceivable situation, a detailed description of the forces 

involved in causing systems to be either attracted or repelled by one another has become an 

important goal of subsequent research, and this line of approach has been rewarded with genuine 

scientific progress on numerous occasions in the past. 

With this motivation, it is instructive to review what is known about the strong 

interaction from experimental studies of nuclear processes and what progress has been made in 

interpreting these observations theoretically.  To begin with, one has a good idea from scattering 

experiments what the associated potential must look like.  One distinguishes three types of 

fundamental processes, namely pp, nn and pn scattering. Especially when Coulomb repulsion 

effects are subtracted for proton pairs, it is found that the potential that causes nuclear binding is 

essentially the same in all three cases. On this basis the nuclear force is assumed to be charge-

independent and, by inference, quite distinct from the electromagnetic force.  Some evidence of 
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at least a secondary role for electromagnetism is suggested by the existence of nuclear magnetic 

and quadrupole moments, not to mention the positive electronic charge of all nuclei, but it is felt 

that such effects can be dealt with separately. One also might say that the discovery of the 

neutrino's involvement in nuclear reactions supports the charge-independence assumption in 

view of this particle's lack of either charge or magnetic moment. 

Probably the most influential conclusion based on the above experimental findings was 

drawn by Heisenberg87 in 1932. He postulated that the neutron and proton were simply two 

different states of the same system (nucleon) which would be perfectly degenerate in the 

(hypothetical) absence of the electromagnetic interaction.  Out of this hypothesis ultimately 

evolved the theory of isospin,88,89 which has had a very great impact in both nuclear physics and 

the corresponding study of elementary particles. 

Some of the first attempts to describe the nuclear force employed a non-relativistic 

Schrödinger equation90 and an empirical potential of the type indicated by the scattering data. 

The most famous of these treatments employs the Yukawa exponential potential91,92 V(r)=-

Vo(/r) e-r/, where r is the distance between nuleons (protons or neutrons), V0 characterizes the 

depth of the potential and , its range.  The non-relativistic kinetic energy p2/2M is deemed 

appropriate for this purpose in view of the relatively large rest masses of the nucleons.  By 

varying the two parameters V0 and , it is possible to fit a certain number of experimental results 

on the basis of the corresponding solutions of the Schrödinger equation, but the Yukawa 

procedure has never evolved into a truly quantitative theory of nuclear binding. Nonetheless the 

simplicity of the model on which it is based has led to much valuable insight into the subject.  In 

particular, it emphasizes the extremely short range of the effect through the exponential form of 

the corresponding potential.  For r», the potential is effectively damped to zero, whereas for 

r it varies predominantly as r-1.  In the latter respect it is similar to the Coulomb potential, but 

the large magnitude of V0 gives it a much stronger weight in the short internuclear distance 

region where the binding between nucleons is at its greatest. True to the creation-annihilation 

concept, no recognition is given to the possibility that either electrons or antineutrinos are 

involved directly in the nuclear binding process. 

Another approach to the nuclear problem is modeled after quantum electrodynamics, 

focusing on the idea that the Coulomb force involves the exchange of photons between the 

interacting charged species.  Using arguments based on the Heisenberg uncertainty principle, 
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Yukawa postulated92 that the particle regulating the: nuclear force must have a correspondingly 

short range, which in turn keeps it from being directly observable under normal circumstances.  

By assuming a velocity close to the speed of light, Yukawa was led to predict a rest mass for the 

new particle which was intermediate between that of an electron and a proton (200 me was first 

proposed).  The Coulomb force's range is thereby thought to be infinite, consistent with the null 

rest mass of the photon.  The theory received support from experiment a decade later when the pi 

mesons (+ and - , with a rest mass of 273.13 me each) were discovered93 and shown to interact 

with nuclei.  Attempts to construct a quantitative theory analogous to quantum electrodynamics 

were not generally successful,94 however. The use of low-order perturbation theory to compute 

the mesonic interactions was concluded to be inadequate,95 despite the fact that a similar 

approach in quantum electrodynamics is found to be quite accurate.  The anomalous spin 

magnetic moment of the electron amounts to a deviation of only one part per thousand96 from the 

uncorrected value of Dirac theory, and can be predicted to an accuracy of six to seven significant 

figures with the perturbative inclusion of quantum electrodynamical effects. By contrast, the 

proton magnetic moment was measured by Stern and coworkers53,97 to be 2.5 times the 

theoretical value deduced on the basis of the respective masses of the proton and electron.  

Nonetheless, the pi meson theory accounts for the known observations at least qualitatively, and 

the concept of a cloud of such (virtual) particles surrounding the proton has received broad 

acceptance, especially after it was found to be quite consistent with the results98 of elastic 

scattering of high-energy electrons by nucleons. 

Another theory which has had a great impact in this field is the nuclear shell model 

proposed by Goeppert Mayer99 and Jensen.100 This work concentrates on certain regularities in 

the properties of nuclei as a function of the numbers of their constituent protons and neutrons, 

particularly the values of the nuclear spin and of the electric quadruple and magnetic dipole 

moments. It is possible to predict trends in these data by assuming that protons and neutrons are 

added in shells according to an Aufbau principle similar to that used in atomic structure theory to 

explain observed trends in the periodic table of the elements.  The shell model traces its origins 

to the independent-particle or Hartree model101 and also to the Wigner coupling scheme,102 

which was successful in classifying nuclear states with the aid of a spin-independent zero-order 

Hamiltonian.  Each shell can be identified with definite angular momentum quantum numbers l 

and j, with their familiar degeneracy factors determining degrees of maximum occupancy in 
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accordance with the Pauli principle.  Isomorphic pairs of shells are reserved for the individual 

protons and neutrons, whereby the stability of the proton shells always appears to be somewhat 

lower, reflecting the effects of their participation in the repulsive Coulomb interaction.  On the 

basis of these considerations it was possible to explain the occurrence of certain "magic 

numbers" which had been noted empirically for the atomic and mass numbers of nuclei in 

surveying the aforementioned properties.84,99,100 

For the present discussion the most interesting aspect of the shell model is the conclusion 

that forces are at work which are akin to the spin-orbit coupling interaction familiar in the 

classification of fine-structure effects observed in atomic spectra.  Terms of this nature arise 

from a perturbative reduction of the Dirac equation,l,103 as shown by Breiti,104 Paulil05 and 

others.l06  The origin of the spin-orbit interaction can be traced to the v x E term which appears 

as an adjunct to the magnetic field107 upon application of a Lorentz transformation to the 

classical Maxwell equations.108  The form of the spin-orbit interaction involved in nuclear 

binding is quite distinct109 from the latter, however, because the magnitude of the effect is found 

to be much larger than one would expect on the basis of the small magnetic moments of 

nucleons. 

The fact that the quantum numbers employed in such models are typical for a central 

potential has sometimes been remarked110 to be inconsistent (or at least not obviously consistent) 

with the picture of the nucleus as a collection of protons and neutrons, i.e. without a fixed center 

comparable to that known for atoms. The success with which the experimental data can be 

ordered on this basis belies such criticism, but the ad hoc nature of its central potential 

assumption combined with its inability to obtain truly quantitative agreement with measured 

results have tended to prevent the nuclear shell model from being a complete triumph.111  

Nonetheless, the ability of such methods to account in an extremely detailed manner for the 

observed regularities in the properties of complex nuclei is a fact which must be reckoned with in 

trying to construct a more quantitative theory of nuclear structure in the future. 

It is impossible to do justice to the progress made in theoretical nuclear physics with such 

a brief survey, but at least one more series of developments needs to be considered in the present 

context.  The liquid drop model proposed by Bohrl12 in 1936 points out similarities between 

nuclear matter and the liquid state.  This model is based first and foremost on experimental 

measurements of radii and binding energies of a large series of nuclei, and as such is reminiscent 
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of the theory of the chemical bond introduced into molecular physics and chemistry by 

Pauling.l13  Probably the most important result of an experimental nature is the finding that the 

magnitudes of nuclear radii are approximately proportional to the third root of the atomic mass 

number,114 or alternatively, that the nuclear volume increases proportionately to the number of 

constituent nucleons. This is a very simple result which gives the impression that, even more 

than in molecular systems, for which a similar model is already very successful, the components 

of nuclei are not at all compressible. If one knows the volume of one nucleon (or better, the 

volume of two nucleons that are tightly bound together), it is possible to extrapolate this result to 

obtain the size of the entire nucleus. This close-packing condition is another important 

characteristic that must be derivable from the nuclear potential. To this can be added that the 

interactions between nucleons in the same shell are found to be much stronger than between 

those in different shells.115 

What do the theories of nuclear structure tell us about the forces involved in positronium 

decay?  If the pervasive view that nuclear forces occur primarily between elemental protons and 

neutrons is correct, the answer must be that there is little or no relation.  On the other hand, if the 

neutron is looked upon as a compound of its decay elements, the electron, proton and 

antineutrino, a more significant relationship can be anticipated.  For one thing, it then becomes 

essential to account for interactions between electrons and protons inside the nucleus, in which 

case it is not difficult to imagine that there might be similarities between these forces and those 

which might conceivably cause the electron and positron to be bound together much more tightly 

than in positronium.  Moreover, once this path is taken, it is only consistent to assume that the 

antineutrino also interacts strongly with either the electron or proton or both.  

The above possibilities will be explored in subsequent chapters, but for now it is 

worthwhile to consider how such a neutron hypothesis would affect the simple bookkeeping 

procedures used to describe nuclei in terms of the number of constituent protons (Z) and 

neutrons (N).  In the first place, the number N becomes identical with the number of electrons in 

the nucleus, as well as the number of anti-neutrinos. The number of protons is no longer Z, but Z 

+ N, while the total number of constituent particles is not Z + N, but Z + 3N. The latter 

difference is 2N and thus is always even. This fact means there is no alteration in nuclear 

statistics as a result of such an assumption, a point used by Pauli39 in postulating the existence of 

the neutrino in the first place.  Otherwise, particle balance in nuclear equations is ensured in this 
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approach (even in cases for which beta decay occurs in one form or another) if one inserts the 

appropriate particle-antiparticle binary systems as needed. When photons are involved, this 

means adding massless e+e- species as well. Conservation of energy can be handled in the usual 

way, in accordance with SR. 

The resulting elemental balance in the description of such processes would be perfectly in 

line with the atomistic theories originated thousands of years before, as well as the more precise 

formulations proposed by Boyle and Dalton much later.  What is clearly missing in the 

discussion to this point is a quantitative specification of the possible forces involved, one that 

would allow an accurate prediction of the differences in the masses of products and reactants in 

such processes.  In its simplest form, this would mean the ab initio computation of the binding 

energy of the deuteron relative to its constituent proton and neutron separated to infinity, or even 

more fundamentally, with respect to two protons, an electron and an antineutrino at rest in their 

respective elemental states. 

 

D. METASTABLE PARTICLES 

The hypothesis that the neutron is a triatomic compound composed of each of its decay 

elements has far-reaching consequences beyond the realm of nuclear physics. There are many 

other metastable systems which are listed among the elementary particles, the smallest of which 

are the two muons and the three pions. They differ from the neutron mainly in that their lifetimes 

are much shorter (10-10 - 10-16s) and that their decomposition energies are far greater (over 100 

MeV in the case of the muons). In addition their decay products do not include a proton, 

although electrons and neutrinos are emitted. Beyond this there are a large number of other 

metastable particles known, referred to as mesons and baryons on the basis of their rest masses. 

In 1964 Gell-Mann116 and Zweig117 suggested that all of them could be interpreted as being 

composed of hypothetical fermions called quarks (or aces117) and their antiparticles. Probably the 

most novel aspect regarding this suggestion is the assumption that the new particles should 

possess non-integral electric charges, either 
3

1
 e or 

3

2
 e. In the meantime the number of 

quarks and antiquarks has grown to twelve118 and the idea has achieved wide acceptance. Fermi 

and Yang27 and Sakata119 tried to identify a common denominator of elements in terms of the 

proton, neutron and lambda from which to construct all other known particles had only been 
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partially successful, primarily because certain combinations which appear reasonable in this 

theory have never been observed. The quark concept is clearly consistent with the view that all 

matter consists of elements, but there is still some question as to whether particles of non-integral 

electric charge actually exist. One reads in the literature, to be sure, that individual quarks have 

been discovered experimentally, but the evidence is always indirect, referring to a successful 

prediction derived from the theoretical model. 

The idea that all observed meta-stable particles might be composed of their decay products, 

either as elements or as other combinations thereof, is not necessarily in conflict with the quark 

model, although it is also not obviously consistent with it either. Just because a proton might 

have a quark composition, in other words, in no way precludes the possibility that a quantitative 

theory which employs protons as elements might not exist. The crucial test is whether the 

properties of the various meta-stable particles can be successfully computed with the help of any 

such theory. In the present context this would mean computing the rest masses of the muons and 

pions, for example, just as for the neutron, deuteron and other heavier nuclei, in a similar manner 

as one calculates binding energies and ionization potentials of atoms and molecules with the help 

of quantum electrodynamics. 

There is a new aspect introduced by the study of the other meta-stable particles, however, 

namely that they exhibit multiple decay channels. Whereas the neutron is always observed to 

produce a proton, electron and antineutrino upon decomposition, several sets of decay products 

are known for most other meta-stable systems. Does this not speak against the concept of a 

unique composition for them in terms of certain elements? Not necessarily, because if massless 

particle-antiparticle binaries exist, other possibilities must be taken into account. One only has to 

look at a typical beta decay process discussed earlier in this chapter to see how the addition of 

e+e-, p+p- or    species can lead to a particle balance in reactions which are conventionally 

interpreted in terms of the creation-annihilation hypothesis.   

The situation can be compared to that faced by the early chemists several centuries ago 

when a new substance was to be analyzed. A major distinction between the two cases exists, 

however, namely that when very large decay energies are involved, the masses of the 

participating systems cannot be used unambiguously to confirm a given structure. In other 

words, the concept of molecular weight is much less useful in elementary particle physics than it 

is in chemical investigations. All one knows with certainty is that if the rest mass of the 
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combined system is less than that of its components it is a bound system, otherwise it must be 

meta-stable. The experimental fact that all the particles which decay into protons, electrons or 

neutrinos have rest masses which are larger than the total for their respective fragments again 

speaks clearly for the analogy with molecular excimers mentioned earlier. It remains to be seen 

whether a system of forces can be found which is capable of temporarily binding electrons and 

neutrinos together in muons and pions and the like, even though the total energy (mass) in the 

relevant states is much higher than that for the corresponding decay particles at rest. 

 

V. VARIATIONAL THEORY FOR THE DECAY OF POSITRONIUM 

In the preceding chapters it has been suggested that there is merit in considering the decay 

of positronium as an interaction in which an electron and positron are so strongly attracted to one 

another that the resulting binding energy is exactly equal to the sum of their rest masses, i.e. 

2mec
2 or 1.02 MeV. A survey of the key experiments in modern physics has shown how such a 

development would fit into the theory of elementary particles and the energetics of their 

reactions. In the present chapter we will focus on the goal of finding a suitable potential which is 

capable of producing such a relatively large binding energy, while at the same time giving 

consideration to the possibility that the solution to this problem may have relevance for other 

types of interactions, particularly those involved in the study of nuclear physics. 

 

A. SHORT-RANGE POTENTIAL 

       The natural point at which to begin this investigation is with the nature of the potential 

which might be capable of bringing about such a strong attraction between an electron and a 

positron, although careful consideration must later be given to the manner in which the kinetic 

energy is treated as well. It is clear from the outset that this must be a distinctly relativistic 

problem, because the rest mass of the combined e+e- system is assumed to be much lower than 

the sum of those of the separated particles. Both the Schrödinger non-relativistic90 and Dirac 

relativistic103 treatments of positronium tell us that the lowest possible state for this system is 

analogous to the 1s state of the hydrogen atom. In this case the primary interaction is Coulombic, 

exclusively so in the non-relativistic treatment and almost exclusively in the relativistic. 

A two-component reduction of the Dirac equation leads to the characterization of a number 

of perturbative terms which are basically magnetic in nature. The most commonly employed 

such approximation is that of Breit-Pauli theoryl04-l06, including the Breit interaction. The 
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perturbations are on the order of 2/2  10-5 hartree ( = e2/  c = 137.036 -1, the fine structure 

constant), and include the spin-orbit (same- and other-orbit), spin-spin, orbit-orbit and Darwin 

terms, as well as the mass-velocity correction to the non-relativistic kinetic energy.l06 These 

terms increase as Z3 or Z4 (spin-same-orbit) for atoms with nuclear charge Z. For positronium as 

well as the hydrogen atom they remain quite small, however, and their effects are observed only 

as fine structure in spectroscopic studies. The potential terms all vary as r-3 and thus have 

relatively short ranges compared to the Coulomb interaction. This point bears further 

consideration, however, since binding energies of 1.0 MeV and higher are otherwise known only 

for nuclei, in which case there is clear evidence that short-range forces are involved to a high 

degree. 

We can represent the presumed interaction schematically by plotting the total energy as a 

function of the average distance r between an electron and positron (Fig. 5). The 1s state of 

positronium can be thought of as corresponding to a minimum in total energy occurring at r = 2.0 

bohr = 1.016 Å, i.e. roughly double the corresponding value for the H atom by virtue of the 

smaller reduced mass of the e+e- system. Toward larger separations the energy gradually 

increases to zero, i.e. the energy of the separated particles. The attractive Coulomb potential 

varies as r-l, while the kinetic energy varies as p2  r-2, from which it follows that the total energy 

itself at first decreases as the particles approach one another from a large distance. At the 

location of the energy minimum the shorter range of the kinetic energy term becomes the 

dominant factor, which explains why the total energy thereafter increases rapidly toward still 

shorter distances. It can be seen that these arguments are very close to those used by Bohr17 in 

arriving at his theory of hydrogenic atoms in 1913. 

The binding energy at the latter e+e- minimum is only 6.8 eV, which is quite small 

compared to the 1.02 MeV given off when positronium decays from the corresponding (1s) state. 

The possibility we wish to explore in this work is whether a second energy minimum does not 

occur at a much smaller electron-positron separation. It can be imagined, for example, that at 

some point the total energy stops increasing toward shorter distances because an attractive short-

range potential term begins to overcome the effects of the increasing kinetic energy in this 

region. Such a potential term would have to vary at a higher inverse power of r than either of the 

other two terms in the non-relativistic electrostatic Hamiltonian, and would have to be relatively 

unimportant in the region of the first hydrogenic energy minimum. At the same time, it is evident 
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that some effect with an even shorter range eventually must take over and cause the energy to 

increase (Fig. 5) once more toward even smaller distances after the assumed 1.02 MeV absolute 

minimum value is attained. It is also clear that such a second energy minimum must be totally 

absent in the corresponding hydrogen atom treatment. Finally, it is only consistent to assume 

that an analogous double-minimum curve exists for the proton-antiproton system, but with a 

binding energy which is 1836 times larger, i.e. 1.85 GeV for its short-range minimum. At least 

one knows that this much energy is given off when the proton and antiproton interact, whereas 

no comparable loss of energy is observed for the combination of a proton and an electron. 
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FIG. 5. Schematic diagram showing the variation of the internal energy of the e+e- system as a function of the reciprocal of the 

distance between the two constituent particles.  

 

Concentrating on the comparison of e+e- with p+e-, the obvious question is how can the 

differences in the properties of the proton and positron lead to such an enormous distinction in 

their respective attractions to the electron. The traditional view embodied in the Schrödinger90 

and Dirac103 equations for one-electron atoms holds that the large difference in mass of the two 

positively charged particles only plays a minor role in this connection, simply affecting the 

reduced mass of the electron. The magnetic moments (which have the charge-to-mass ratios as a 

factor) of e+ and p+ differ by a far greater amount because of the difference in rest masses, but 

this distinction is found to be of only minor importance in the Dirac equation treatment, in which 

effects such as the spin-orbit and spin-spin interactions depending on this quantity are accounted 

for explicitly. 

Yet one knows from the outset that if there is indeed a much lower-lying state of the e+e- 

system than the familiar 1s species, it cannot be found among the solutions of the hydrogen atom 

Dirac or Schrödinger equations. To progress further in this regard it is necessary to do something 

differently. Especially since the effect that might cause such a novel tight-binding e+e- state 

seems almost certainly short-range in nature (Fig. 5), there is reason to give closer consideration 

to the above magnetic-type interactions. As noted previously, there are numerous Breit-Pauli 

terms which fall in this category, varying as the inverse cube of the distance between interacting 

particles. They are all of order 2/2  10-5 hartree for typical atomic electron-nucleus separations, 

so this characteristic fulfills another requirement from Fig. 5, namely that such a short-range 

effect be relatively insignificant at these distances. 

Most importantly, however, all these Breit-Pauli termsl06 depend on the product of the 

magnetic moments (or charge-to-mass ratios) of the interacting particles. For the spin-other-

orbit, spin-spin and orbit-orbit terms each of these quantities appears once in the corresponding 

product. Thus these terms are weighted by a factor of 1836 (the ratio of the rest masses of proton 

and positron) larger for e+e- than for p+e-. For the spin-same-orbit and Darwin terms the 

distinction is less important because in these cases the square of the mass of one of the 

constituent particles is involved rather than the product of both. As a result, there is an extra 

factor of two for these interactions for e+e- than for the hydrogen atom, by virtue of the fact that 

the square of the charge-to-mass ratio of the proton is negligible compared to that of the positron. 
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At atomic distances these distinctions are still relatively unimportant because in this range the 

Coulomb interaction dominates, but it is not difficult to imagine the situation could be far 

different at shorter range. 

Before considering this possibility further, however, it is well to note that the Breit-Pauli 

Hamiltonian terms as such also have some undesirable properties which make them unsuitable 

for a variational calculation, that is, one in which the charge distributions of the particles 

involved are allowed to assume optimal forms so as to minimize the total energy. Since these 

terms vary as r-3, there is nothing to keep the total energy from decreasing beyond any limit. 

They do not therefore provide a possibility of a second energy minimum of the type indicated in 

Fig. 5, rather only the attractive branch to the long-distance side of it. This fact has long deterred 

giving serious consideration to the Breit-Pauli terms as having any truly dominant role to play in 

quantum mechanical calculations. There are other higher-order terms in a power-series 

expansion of the Dirac equation which need to be considered to properly understand their role in 

determining atomic fine structure. Specifically, the next terms in such expansions are of the order 

of 4r-4, and these higher-order effects prevent variational collapse in Dirac-equation solutions 

that would otherwise occur if only the 2r-3 terms were included. 

A similar situation exists for the Lorentz force in classical electromagnetic theory. There 

one has a term of the form |p + e A/c|2, where A is the vector potential. The cross term involving 

p A is typically120,121 also of the form 2 r-3 (c = -1 in atomic units) for the interaction of a 

charged particle with an electromagnetic field, but it is damped at short range by the |A|2 term, 

which varies as 4r-4.  An interesting possibility is nonetheless opened up by the fact that such 

repulsive terms are of even shorter range and higher order in 2 than their Breit-Pauli 

counterparts. Including such terms might not keep the total energy in Fig. 5 from turning 

downward at short distances because of the attractive 2r-3 interactions, but they would insure 

that this trend not continue indefinitely toward still smaller interparticle separations, with the 

result that the proposed non-hydrogenic second minimum of energy could be formed. If one 

simply assumes a potential which is the difference of these two short-range terms, -2r-3 + 4r-4, 

it is easily shown that it possesses a minimum near r  2. Such a distance corresponds to 

roughly 10-5 bohr, which is a typical separation for bound nucleons (r = 2/2 is normally given 

for the range of the nuclear force, for example). The possible connection between an e+e- tight-

binding state and the nuclear force is thus reinforced by these considerations as well. 
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There are basically three arguments for pursuing this line of reasoning further. First, the 

theory of quantum electrodynamics has a very precisely defined range of applicability. Despite 

its ability to make extremely accurate predictions for interactions involving electrons and 

photons in an atomic environment, it is generally accepted that the theory in its established form 

is not capable122 of describing high-energy interactions such as those involved in nuclear 

bonding. Any indication as to how the framework of quantum electrodynamics could be adapted 

so as to become relevant to the description of short-range forces therefore merits serious 

consideration. Secondly, the analysis of the positronium decay process has provided a basis for 

associating the assumed e+e- tight-binding state with the photon itself. Given the prominent role 

of the photon in quantum electrodynamics, it seems likely that its internal structure would also 

have an important relationship to the electromagnetic force. Finally, examination of the multiplet 

structures and other properties exhibited by nuclei has already led to the conclusion99,100 in the 

nuclear-shell model that spin-orbit or related terms123 are almost certainly involved in this type of 

high-energy interaction . Taken together these observations suggest that a solution to the 

proposed problem may lie in an adaptation of the Dirac equation which does not detract from the 

reliability of the original theory's predictions for quantum-electrodynamics phenomena, but 

which at the same time enables an accurate treatment of interactions of much shorter range and 

higher binding energy. This eventuality would amount to an extension of the Bohr 

correspondence principle,124 which proved so effective in making the transition from classical to 

quantum mechanics at the beginning of this century. 

 

B. KINETIC ENERGY CONSIDERATIONS 

As remarked above, it is not satisfactory to use a non-relativistic form for the kinetic 

energy of the positron and electron if a large binding energy is assumed. In this respect the 

problem is significantly different than in the conventional treatment of nuclear binding, because 

there the kinetic energies of the nucleons are still relatively small compared to the energy 

equivalent of their rest masses. As Einstein showed4 on the basis of the special relativity theory, 

the non-relativistic p2/2me term is actually just an element in the power series of the square-root 

quantity (p2c2 + me
2c4)1/2 – mec

2. The Breit-Pauli approximation includes106 a term of order p4 to 

account for relativistic kinetic energy contributions, but just as for the corresponding potential 

terms, it is known that this correction leads to variational collapse when the electronic charge 
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distribution is allowed to vary freely so as to minimize the energy. It is possible to circumvent 

this difficulty,125 however, by employing the Einstein square-root expression directly in the 

Hamiltonian instead of relying on a truncated power-series expansion for it. The inconvenience 

of employing a square-root operator can be dealt with for general atomic and molecular systems 

by means of a standard matrix procedure.125 Each particle has its own kinetic energy and thus the 

square-root terms are treated as one-electron operators, exactly as their non-relativistic pi
2/2mi 

counterparts in conventional quantum mechanical treatments. 

This procedure brings with it another difficulty, however, namely how to separate the total 

kinetic energy into its internal and translational (center-of-mass) components. In the non-

relativistic case it is well known that the p1
2/2m1 + p2

2/2m2 term can be replaced exactly126 by 

p2/2µ + P2/2M by a linear coordinate transformation (p is the internal and P, the center-of-mass, 

momentum respectively, µ is the reduced mass and M= ml+m2 is the sum of the individual 

particle masses). The new coordinates are defined as x = x1 - x2 and X = (m1x1 + m2x2)/M, where 

xl and x2 are Cartesian coordinates of the two particles, with analogous expressions for the y and 

z directions. Since the Coulomb potential only depends on the internal coordinates, it is thus 

possible to effect a separation of coordinates which leads to the familiar situation that the 

solutions of the corresponding Schrödinger equation can always be formed as simple products of 

the type  (r)  (R), i.e. as a product of a function of the internal coordinates with one involving 

only those of the center of mass. 

This procedure can be generalized for any number of particles, but there is an important 

assumption to be noted. The derivation generally used127 comes from classical mechanics and 

relies on the fact that cross-terms involving p P cancel out as a result of the coordinate 

transformation. The cancellation is perfect for the non-relativistic kinetic energy, but use of the 

relativistic one-particle form, in which p1
2 and p2

2 appear in separate square-root expressions, 

does not lend itself to the same simplification. If one of the particle's masses is much larger than 

the other, it is not difficult to find approximations from which the desired coordinate separation 

effectively results even in the relativistic case. Since the nuclear masses are so much larger than 

the electron's, it is therefore easy to justify this approach for atomic calculations, either for the 

Dirac equation itself or in the Breit-Pauli approximation. The difficulty is not so easily 

circumvented when both masses are equal, however, as is the case for the e+e- interaction. It 

might be argued that it is intuitively obvious that the center-of-mass motion can always be 
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separated out, but for quantitative work one would like to have a more solid basis for making this 

simplifying assumption. In general this question seems to have received relatively little attention 

in the literature, and it will be given more careful consideration later in this work in Chapter X. 

The most straightforward method which presents itself under the circumstances is to 

simply work with the original Cartesian coordinates of each particle. The quantum-

electrodynamics treatment of the positron uses a similar approach16,128 in evaluating higher-order 

effects, including transition probabilities for the decay into photons out of various positronium 

electronic states, except that it imposes an additional condition of P =pi = 0. In such a two-

particle application this means that p1 = -p2 = p. No comparable transformation is employed for 

the spin coordinates of both particles in this approach, however. Radiative corrections to the 

Dirac-equation results can also be computed by employing the same condition for the center-of-

mass momentum.16,128  

When more than two particles are involved complications arise in attempting to generalize 

this procedure, however, particularly in the relativistic treatment of the kinetic energy. In the 

transformed coordinate system, one of the particles is effectively singled out as a reference for 

the internal coordinates, so that xi’ = xi - xl is now employed instead of xi, for example (with xl 

itself being retained in the new basis). As a result, the expression for the conjugate momentum of 

xl is p1 = - 
1i

'
ip' , i.e. a sum of internal momentum values rather than a single such quantity as in 

the two-particle case. 

In order to develop a computational scheme which can be conveniently applied to systems 

containing more than two particles, it therefore seemed advisable to avoid making any type of 

transformation to internal coordinates, and hence to simply employ the original Cartesian 

coordinates of each constituent particle directly in constructing the corresponding quantum 

mechanical Hamiltonian operator governing the interactions of a given system. Use of such a 

coordinate system at all stages of the theoretical treatment carries with it the complicating feature 

that internal and translational characteristics are mixed together in the resulting wavefunctions, 

but in view of the precautionary remarks given above and the exploratory nature of the proposed 

calculations, this disadvantage seemed to be of acceptable proportions.  

In this connection it is worth recalling that pi commutes with each pi and rij (particle 

separation) quantity, so that the translational energy operator itself must have a common 
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(complete) set of eigenfunctions129 with any Hamiltonian containing exclusively these kinds of 

variables. Hence, any exact solution of a corresponding Schrödinger equation must always be 

characterized by a definite value of the translational energy. This observation underscores 

another assumption in the usual separation-of-variables argument for internal and center-of-mass 

coordinates, however. The Breit-Pauli terms mentioned in the last section contain momentum 

factors as well as internal distances. Consequently, even when the non-relativistic kinetic energy 

is employed, the desired separation is not complete for a Hamiltonian containing these types of 

interactions.  Again this presents no real problem for calculations of one-electron atoms, in 

which the masses of the constituent particles differ greatly, but for a system consisting of only e+ 

and e-, there is need for more careful consideration. 

Finally, it should be mentioned that there is a covariant two-electron equation130 which 

does employ a separation of internal and translational coordinates just as for the Dirac equation. 

It is characterized by two separate time coordinates, whereas in what has been described above it 

is always assumed that there is only one such variable, and that it can be separated from its 

spatial counterparts in the usual way by virtue of the time-independent nature of the 

corresponding Hamiltonian operator. Since the stated modus operandi in the present study is to 

depart from the purely quantum-electrodynamics treatment of the e+e- system, and especially 

since no other heavy system is present, it is preferable to work with a relatively simple 

Schrödinger-equation formulation of this problem, one which does not make any assumptions 

regarding the way in which the internal motion is separated from that of the center of mass. 

 

C. SUGGESTED DAMPED FORM FOR THE BREIT-PAULI TERMS 

A prerequisite for constructing a Schrödinger equation to investigate high-energy processes 

is the use of a potential which is suitably bounded. The assumed tight-binding e+e- state most 

likely is the result of a short-range interaction which is strongly attractive over a given region of 

inter-particle separation but even more strongly repulsive at still smaller distances (see Chapter 

V. A). The Breit-Pauli approximation employs attractive terms fitting this description but lacks 

corresponding shorter-range effects which would produce the desired second minimum in the 

e+e- total energy curve sketched in Fig. 5. We have seen how the Breit-Pauli kinetic energy term 

(including the mass-velocity correction) can be replaced by the Einstein free-particle square-root 

expression to avoid variational collapse without giving up the advantages of having a reliable 
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approximation to the Dirac equation results for hydrogenic atoms. It remains to find a similar 

means of dealing with the Breit-Pauli potential terms. 

If we look upon the spin-orbit and related interactions as terms in a power series it seems 

reasonable to look for a closed expression which approaches this result in the low-energy 

relativistic regime encountered in calculations of atoms with moderately heavy nuclei, something 

analogous to the Einstein relativistic kinetic energy, in other words. At least one knows from the 

form of the Lorentz electromagnetic force that the next higher-order terms after those of 2r-3 

spin-orbit type vary as 4r-4. Simply adding such terms to the Hamiltonian has several 

disadvantages, however. It falls short of the goal of replacing the Breit-Pauli interactions with 

closed expressions which themselves correspond to infinite-order power series. In addition, it is 

difficult to carry out computations with an operator varying as r-4 because not all integrals which 

would be required in a variational treatment are finite, in particular not those involving only s-

type basis functions. 

The form of the desired potential (Fig. 5) is reminiscent of that observed in nuclear 

scattering, as mentioned earlier, and this suggests the following alternative. The r-3 and r-4 terms 

already discussed can be grouped together as 2r-3 (1 - 2 r-1 + .....). The terms in parentheses are 

the beginning of a power series expansion of the exponential function exp(-2 r-1), which in turn 

is quite similar to that appearing in the Yukawa potential,91,92 thus making explicit the 

connection with the nuclear force description. By multiplying the Breit-Pauli 2 terms with such 

an exponential function, we have a potential which is capable of producing the second minimum 

for e+e- in Fig. 5, while at the same time retaining the correct behavior needed at relatively large 

inter-particle separations to properly describe the conventional positronium (hydogenic atom) 

states.120  

Since the damping effects produced by the exponential factor are relativistic in nature, it 

seems somewhat more likely that the corresponding argument is a function of the momentum of 

the particles rather than the distance between them, i.e. of the form exp (1 - 2p), with r-1 ~ p = 

|p|. This choice has computational advantages as well, because it means working with individual 

quantum mechanical operators which depend on the coordinates of a single particle rather than 

two. From the Lorentz classical Hamiltonian, we can also anticipate that a given particle's 

momentum p is multiplied by its charge-to-mass ratio q/m. Finally, to obtain the desired binding 
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energy for a given particle-anti-particle system, it is convenient to introduce a free parameter A 

as an additional factor in the exponential argument. 

The negative of the resulting potential is plotted in Fig. 6 (atomic units are employed 

throughout) as a function of the reciprocal inter-particle distance. For this purpose we use the 

approximate representation V(r) = -2r-3exp(-2r-1). For high particle velocities it can be assumed 

that the kinetic energy varies as pc in the range of interest, which can therefore be represented in 

an analogous manner as r-1-1 in atomic units, i.e. as a straight line. This diagram is useful in 

analyzing how binding can be achieved with such an exponentially damped potential over a very 

narrow range, consistent with the total energy curve shown in Fig. 5. For small momenta typical 

of electrons in atoms, the kinetic energy far outweighs the short-range potential because of the 

factor of 2 in the latter expression. Coulomb effects are omitted from consideration for the time 

being. 
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FIG. 6. Schematic diagram exploring the nature of a short-range potential required to produce the type of e+e- total energy curve 

depicted in Fig. 5. At relatively small inter-particle distances (r  2) the relativistic kinetic energy varies nearly linearly with 

momentum p  r-1. In order to obtain strong binding within a very narrow range of the e+-e- distance, the negative of the attractive 

potential term must reach a maximum shortly after it crosses the kinetic energy line from the long-distance side of the diagram, 

and then drop off again very sharply. Such an extreme cancellation effect requires a potential which fulfills at least three 

conditions: a) a small coupling constant (order 2), b) a shorter range (~r-3) than the kinetic energy and c) a momentum-

dependent damping which is exponential in nature. 

 

     The absolute value of the potential increases as the cube of the momentum (or inverse 

distance) while the kinetic energy changes in a nearly linear manner, so it can be imagined that 

the two quantities eventually become equal at some point and binding becomes possible. The 

exponential damping becomes noticeable in the same region, however, and thus the above term 
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does not increase as quickly as before and finally reaches a maximum. At the same time, the 

kinetic energy continues to increase linearly with p and eventually a second crossing with the 

negative of the potential occurs in Fig. 6. The area in which the negative of the potential exceeds 

the kinetic energy corresponds to a very small range of r, but the amount of binding with which it 

is associated can still be quite large. For example, at r = 2 the undamped Breit-Pauli potential is 

of the order -4 hartree, compared to the kinetic energy's order of -3 hartree. Since the assumed 

binding energy for the e+e- system is 1.02 MeV or 2-2 hartree, it is clear that an enormous 

cancellation must occur because of the damping of the potential to obtain physically acceptable 

results. 

This state of affairs is probably the strongest argument for employing an exponential 

damping to produce such a large degree of binding over a narrow range of interpartic1e 

separation. The fact that the Coulomb energy is also of order -2 hartree for r = 2 suggests that it 

is not possible to ignore this effect either, however, despite its relatively long-range character. 

Nonetheless, the predominant feature in the tight-binding scenario given above is c1early the 

delicate cancellation at small interpartic1e separations between the exponentially damped Breit-

Pauli terms and the relativistic kinetic energy. 

 

D. SCALING PROPERTIES OF THE BREIT-PAULI HAMILTONIAN 

One of the key requirements for the Schrödinger equation under discussion is that it leads 

to maximum binding energies for particle-antiparticle systems of 2Mc2, consistent with the 

Einstein mass-energy equivalence relation. One postulates that a Hamiltonian exists which has 

the required energy as its minimal eigenvalue instead of assuming that annihilation occurs and 

the total mass of the particles simply appears as the equivalent amount of energy.  It is well 

known that the Schrödinger and Dirac equations for purely electrostatic potentials both have the 

property that their binding energies are proportional to the reduced mass of the electron in 

hydrogenic atoms, and this result is easily generalized for systems containing other charged 

particles such as muons and antiprotons. More interesting in the present context is the fact that 

the proportionality between energy and mass also holds when the various Breit-Pauli relativistic 

corrections are added to the Hamiltonian. 

To show this, let us assume that a solution to the Schrödinger equation is known for a 

particle-antiparticle pair with charge q and rest mass m0. Furthermore, its lowest energy 
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eigenvalue is taken to be -2moc
2  -2mo

-2 (in atomic units), corresponding to the eigenfunction 

(r). The Hamiltonian itself consists of a series of kinetic and potential energy operators of the 

type discussed earlier, including exponential damping factors F(p, q, mo): 

H(p, r, q, mo) = (p2 -2 + mo
2 -4)1/2 – mo

-2      V.1  

 -q2r-1 - q2 mo
-2 2 r-3 F(p, q, mo) 

If the coordinates are scaled so that 

p´ = Mo mo
-1 p and r´ = Mo

-1 mo r       V.2 

the original Hamiltonian becomes: 

H(p, r, q, mo) = Mo
-1mo {(p´2-2 + Mo

2 –4)1/2 – Mo 
-2 

           -q2 r´-1 – q2Mo
-2 2r´-3 F (p´, q, Mo)}    V.3 

         = Mo
-1 mo H(p´, r´, q, Mo), 

provided F(p, q, mo) = F(p´, q, Mo). The corresponding Schrödinger equation in the scaled 

coordinate system thus becomes: 

H(p´, r´, q, Mo) (r) = -2 Mo
-2 (r)                                                V.4                             

i.e. by multiplying both sides of the Schrödinger equation for the original Hamiltonian by  

Momo
-1. As a result it is seen that (r), or the function ´(r´) obtained by making the 

corresponding coordinate substitution for it, is an eigenfunction of the analogous Hamiltonian for 

a particle-antiparticle system of the same charge q as before, but with rest mass Mo instead of mo. 

Its energy eigenvalue is -2Mo
-2, exactly as required by the mass-energy equivalence relation. 

Moreover, this result is quite general, since it is easily seen that the above scaling 

procedure has the effect of producing an entire spectrum of Schrödinger equation eigenvalues 

which differ by a factor of Momo
-1 from those obtained for the original particle-antiparticle 

system. Furthermore, by choosing the argument of F(p, q, mo) to contain the ratio p/mo, as 

suggested by the form of the Lorentz electromagnetic force Hamiltonian discussed in Chapter 

V.A, the requirement that this damping factor be unaffected by such a coordinate scaling is 

fulfilled. The Breit-Pauli interactions also contain angular orbital momentum terms not included 

explicitly in the above Hamiltonian, but these are clearly unaffected by the above scaling 

procedure because they either involve only products of r and p, or in the case of the spin 

interactions, are completely independent of spatial coordinates. It is thus shown that the desired 

proportionality between binding energy and rest mass of the constituents of a particle-antiparticle 

binary system holds for the Breit-Pauli interaction as long as the charge q of the individual 
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particles remains the same. This is clearly the case in comparing the e+e- system to p+p-, so the 

original objective sought at the beginning of this section is guaranteed by the use of such a 

Hamiltonian. 

This result also tells us that the proportionality constant A in the exponential damping 

factor F(p,q,mo) = exp [-A2(q/mo)p] must be the same for proton-antiproton interactions as 

between electron and positron. Alternatively, one might have assumed a different constant for 

the electron than for the proton, in which case one would have had to adjust the inverse mass 

dependence of the present exponential argument in order to obtain the desired scaling property. 

From the point of view of economy of assumptions and relation to established theoretical 

models, the former arrangement is clearly superior.  

The units for the constant A remain to be discussed are left somewhat open by the choice 

of working in the atomic unit system. The exponential argument as a whole must be 

dimensionless.  Examination of the damping factor F shows thar A must have units of the 

product of inverse charge and velocity (p/m) in order to insure that the argument as a whole is 

dimensionless.  The units of A are hidden when one uses atomic units directly in the 

corresponding calculations, as has been done in the preceding discussion.  If mks units are used 

instead, A must have a unit of (ecα)-1 s/Coul m = 2.8530x1012 s/Coul m. The actual quantity in 

the exponential is Aα2, however, which has a value of 1.51926x108 s/Coul m. 

 

E. MAGNETIC PHENOMENA: NEUTRINO INTERACTIONS 

The charge-to-mass ratios appearing in the Breit-Pauli relativistic corrections are closely 

related to the magnetic moments of the corresponding particles. The Bohr magneton ß of a 

system is defined as  /2 times the charge-to-mass ratio and the magnetic moment is usually 

measured in terms of this quantity. Strictly speaking, the magnetic moment is a vector 

proportional to the angular momentum of the particle, and in classical theory the Bohr magneton 

would simply be the corresponding proportionality constant. Magnetic measurements on 

electrons in atoms have shown that such a straightforward relationship is oversimplified, and 

have led to the introduction of a supplemental factor, the gyromagnetic ratio g. The discovery of 

spin angular momentum131 brought with it the equally surprising result of g = 2 for the electron's 

spin magnetic moment.l07,132 Later on, it was found that the correct value is actually slightly 
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greater than this result,96,133,134 however. Moreover, the corresponding value for the proton53,97 

was measured to be several times larger than that of the electron. 

The question that arises in the present context is whether the observed g values should be 

included explicitly in the Hamiltonian used to describe the particle-antiparticle states which have 

been suggested above. Since the scaling results discussed in the last section no longer hold if one 

multiplies the q/m values in the Breit-Pauli terms with a different factor for each type of particle, 

however, it seems clear that the measured g values should not appear in such a Hamiltonian. 

Moreover, this choice is also consistent with the accepted explanation134 for the observed non-

integral g values for spin magnetic moments, namely that they arise because the corresponding 

particle is affected by external factors (virtual photons or virtual mesons) which prevent the 

measurement of its properties in a pure (bare) state. 

Having made this decision, it can be noted that the only experimental constants appearing 

in the damped Breit-Pauli Hamiltonian are the electric charges and rest masses of the interacting 

particles. It is therefore clear how to define a specific Hamiltonian for a system involving given 

numbers of electrons and protons and their respective antiparticles, particularly the e+e- and p+p- 

combinations of primary interest.  

There remains an important question, however, namely how to deal with neutrino 

interactions. The obvious approach is to simply substitute the corresponding values for the 

charge and rest mass of such particles and to solve the corresponding Schrödinger equation, but 

the observed electrical neutrality of the neutrino seems to preclude any chance of success for 

such a procedure. There is one possibility worth considering, however, provided the rest mass of 

the neutrino is also exactly zero, as seems possible based on experimental observations. In that 

case, the charge-to-mass ratio cannot simply be computed by dividing the above two quantities 

because the quotient of zero with itself is undefined. From a purely theoretical standpoint this 

eventuality would seem to invalidate the conclusion that the Breit-Pauli terms necessarily vanish 

for the chargeless neutrino, i.e. because q/mo itself might still be different from zero. Such a 

possibility seems to clash with the experimental observations bearing on the magnetic moment of 

the neutrino, however, which indicate that it is also of vanishingly small magnitude,58 thereby 

implying that the corresponding charge-to-mass ratio is still effectively zero. 

The idea that the neutrino might possess a non-zero magnetic moment which could help to 

explain its observed activity in nuclear reactions is not new, and was in fact proposed by Pauli135 
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as a general property of massless neutral particles based on the Dirac theory.136 He later stated39 

that such a hypothesis “doesn't seem to me at all well founded." The history of the relationship 

between the magnetic moment and the charge-to-mass ratio of a given particle has not been 

without its surprises, however. As already noted, the gyromagnetic ratio, for example, is an 

experimental quantity invented for the expressed purpose of accounting for discrepancies 

between observations and overly simplistic theoretical models. It is therefore wise to exercise 

some care in making conclusions about a particle's charge-to-mass ratio based on magnetic 

measurements alone. 

In order for q/mo to be non-zero for the neutrino, its rest mass must be exactly zero and (for 

E  0; see Chapter II.C) it must move with the velocity of light (v=c). It might be anticipated that 

a truly definitive answer to the question of whether a massless neutrino can possess a non-zero 

charge-to-mass ratio qν/moν without exhibiting a magnetic moment in the usual sense can only be 

obtained on the basis of a quantum mechanical formulation of this problem. 

The possibility of a non-zero charge-to-mass ratio of the neutrino is interesting in several 

other contexts as well, however. It provides a ready explanation for the existence of both a 

neutrino and an antineutrino, for example. If q/mo is non-zero, then different signs are possible 

for it, just as for charged species and their antiparticles. This characteristic might then be closely 

related to the helicity property of neutrinos measured in longitudinal polarization 

experiments.60,75-77 It might also explain why there are apparently different types of neutrinos 

observed in neutron and pion-muon beta decays.82 Neutrinos with distinct |q/mo| ratios would be 

expected to exhibit different behavior, despite their mutual lack of charge and rest mass.  

In the present discussion, the point of immediate interest is whether the assumption of a 

non-zero q/mo value for the neutrino leads to a solution of the corresponding Schrödinger 

equation (with the exponentially damped Breit-Pauli interactions mentioned above) for a νν  

complex which has zero binding energy relative to its separated particles. i.e. - 2 mo c
2 in analogy 

to that of the e+e- and p+p- systems. Zero binding energy does not necessarily mean that a 

potential well does not exist, as Fig. 5 shows. There could be a large barrier separating the two 

minima in this case as well as for e+ e-, and thus the νν system might also be characterized by a 

relatively small optimal inter-particle separation.137 Calculations investigating this point will be 

discussed in the following chapter. 
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F. TRANSLATIONAL ENERGY AND SHORT-RANGE INTERACTIONS 

In Chapter V.B it was noted that the usual separation of internal and center-of-mass motion 

is not possible for a Hamiltonian containing the Einstein relativistic kinetic energy operator and 

the various Breit-Pauli terms. This observation deserves closer examination before moving on to 

the task of carrying out explicit calculations based on the corresponding Schrödinger equation. 

The condition of zero translational energy requires that the expectation value of pi vanish, 

which for a binary system such as positronium or the hydrogen atom implies that the momenta of 

each particle are equal and opposite to one another at all times and spatial positions. 

Since p = mv, this means that particles of equal mass must always move with equal speeds 

in opposite directions relative to their midpoint to fulfill the condition of zero translation. The 

Breit-Pauli interactions are not only short-range but also momentum-dependent, and so the only 

way to obtain a large attraction on the basis of such terms is for the expectation values of pi and 

rij
-3 to both be large for a given probability distribution. From the above argument, however, it is 

clear that a positron and an electron, with their equal rest masses, can stay in close proximity to 

one another while still moving at high velocity, without having net translation for the system as a 

whole. Hence a high degree of binding can result from this type of short-range interaction under 

these circumstances. 

By contrast, if the masses of the two particles are quite different, as is the case for the 

proton and electron in the hydrogen atom, they must move with widely different speeds to avoid 

net translation. Particles whose speeds differ by a factor of 1836 can only stay close to one 

another while fulfilling this condition if neither is moving very fast, from which it can be seen 

that the possibilities for obtaining a tightly bound state under these circumstances are much less 

pronounced. On this basis, it is easy to imagine how the e+e- system might benefit much more 

strongly from inclusion of the Breit-Pauli interactions in the Hamiltonian than does the hydrogen 

atom. In particular, e+e- might possess a state of much lower energy than the familiar 1s species 

which results primarily because of the long-range Coulomb effect, whereas no comparably tight-

binding state could be expected to be available to the hydrogen atom. 

At the same time the scaling property discussed in Chapter V.D tells us that the range of 

the p+p- interaction must be shorter than for e+e- by a factor equal to the ratio of the respective 

rest masses of the proton and electron. The v1 = -v2 condition for motion without net translation 

also applies to the p+p- system and so one can explain the even larger binding energy of p+p- on 
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the same basis. Their larger mass allows the proton and antiproton to approach each other far 

more closely on the average than the electron and positron while avoiding net translation of 

either system. The exponential damping factor F (p, q, mo) would also play a crucial role in this 

distinction, particularly the inverse mass dependence of its argument, since it begins to 

effectively negate the influence of the Breit-Pauli terms at much larger separations for the 

electron and positron than for their heavier counterparts. These qualitative observations also 

suggest that it might be important not to assume that the internal motion can be totally separated 

from the translational when it comes to short-range interactions at relativistic speeds. This topic 

will be treated in more detail in Chapter X, but for the present we will simply represent the 

proposed interactions directly in terms of the Cartesian coordinates for the constituent particles 

of a given system, i.e. not employ the usual transformation to center-of-mass and internal 

coordinates. 

 

G. EXPLICIT REPRESENTATION OF THE EXPONENTIALLY DAMPED HAMILTONIAN 

The explicit form of the Hamiltonian discussed above is given in Table I. For simplicity we 

will refer to it subsequently as the XBPS Hamiltonian, the abbreviation standing for 

"Exponentially-damped Breit-Pauli Schrödinger equation." As usual, there is a one-particle 

interaction for each constituent in the system, and a set of two-particle operators for each pair of 

such species. The Hamiltonian of Table I is given explicitly for only two (representative) 

particles with respective charges and rest masses qi (qj) and moi (moj), but in view of the above 

discussion it is easily generalized for the description of any number and combination of different 

particle types. The only one-particle term in the Hamiltonian is the relativistic kinetic energy. 

Other common one-electron interactions such as the Coulomb nuclear attraction for an electron 

are to be found among the two-particle interactions. The rest energy moic
2= moi

-2 (atomic units 

are used throughout) is subtracted from the Einstein square-root operator in the usual way to 

represent the kinetic energy. This procedure effectively defines the zero of energy as that of the 

(infinitely) separated particles at rest. 

The first two-particle interaction listed in Table I is the Coulomb term and it is the only one 

which is unchanged relative to the standard Breit-Pauli treatment.106 The remaining terms are all 

exponentially damped, but fall into distinct categories, depending on whether they are multiplied 

with q1q2/mo1mo2 or q1
2/mo1

2 (or q2
2/mo2

2). In the first group are the spin-other-orbit, orbit-orbit 
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and spin-spin terms, the latter including a -function component. The spin-same-orbit and 

Darwin interactions comprise the second category. Since all particles are to be treated 

equivalently, it is essential that each two-particle interaction be symmetric with respect to 

interchange of the corresponding indices, as provided for in the original Breit-Pauli Hamiltonian. 

The Coulomb term obviously satisfies this condition, since r12 is a scalar quantity denoting the 

magnitude of the distance separating the two particles. 

The most significant change in the operators of Table I compared to those in the 

conventional Breit-Pauli Hamiltonian is their multiplication with exponential damping factors.  

For the terms of orbit-orbit type, it is assumed that two such factors are needed:  

exp(-Aα2|(qi/moi)pi|), for i= 1 and 2.  To insure that the Hamiltonian be hermitian, it is necessary 

that the same pair of factors appear on both sides of the original Breit-Pauli terms, since pi and rij 

do not commute with one another.  The arguments of all the exponential terms are defined to be 

negative-definite, hence the absolute value sign in these expressions.  The damping factors for 

the spin-same-orbit and Darwin terms have a somewhat more complicated form, however.  Since 

the q/mo factors appear squared for these terms in the original Breit-Pauli Hamiltonian,106 it 

seems consistent to also use squares of the corresponding damping factors for the same particle 

in this instance instead of products of two different kinds as before.  

The sign of the interaction in the latter class of operators requires additional comment as 

well. Since the pre-multiplying factor is either q1
2/mo1

2 or q2
2/mo2

2, it is not possible on this basis 

alone to specify whether the interaction is attractive or repulsive. This information is contained 

in the product of the charges of the two particles, which appears explicitly in the orbit-orbit-type 

terms but not for the Darwin or spin-same-orbit operators. It is thus necessary to define a sign 

convention based on the product (q1/mo1) (q2/mo2)  G(1,2) according to which a positive result 

corresponds to a negative sign for both terms, while the opposite choice is made if the result is 

negative. Similarly as in the other case, the exp (-2A2|(qi/moi) pi|) factor must appear on both 

sides of the corresponding Breit-Pauli terms in order to preserve the required hermitian character. 

The absolute value sign guarantees that the argument of the exponential is negative, i.e. the 

factor always reduces the absolute magnitude of the original Breit-Pauli interaction for the same 

charge distributions. 
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Table I. Definition of quantum mechanical operators present in the exponentially damped Breit-Pauli Hamiltonian employed 

throughout the present study (α is the fine-structure constant; atomic units employed throughout).120 

 

Designation  Operator 

Relativistic Kinetic Energy 

(one-particle only 
KE ( )

1
2 2 2 4 22
i 0i 0ip m m− − − +  −   

Coulomb C 
1

i j ijq q r
−

 

Spin-same-orbit (exponentially 

damped) 
SsO 

( )
2

G i, j
2


−  

( )
2

2 3i i
i ij i i ij

0i 0i

q q
exp 2A r

m m

−
   

 −      
   

p r p s  

( )
2

j j2 3

j ji j j ij

0 j 0 j

q q
exp 2A r

m m

−
  

+ −         
   

p r p s , 

where ( )

i j

0i 0 j

i j

0i 0 j

q q
1, if 1

m m
G i, j

q q
1, if 1

m m





= 
− 



 

Spin-other-orbit (exponentially 

damped) 
SoO 

j2 i

0i 0 j

qq

m m

  
−     

   

 

j2 2i
i j

0i 0 j

qq
exp A exp A

m m

  
 −  −   

 
   

p p  

( ) 3

ji j i ij i i ijr−   +  r p s r p s  

Darwin Term 

(exponentially damped) 
D 

( ) ( )
2

ijG i, j r
2


−   

2

2i i
i

0i 0i

q q
exp 2A

m m

   
 −   

   

p  

2

j j2

j

0 j 0 j

q q
exp 2A

m m

   
+ −       

   

p , 

Orbit-orbit 

(exponentially damped) 
OO 

2
ji

0i 0 j

qq

2 m m

  
−     

   

 

j2 2i
i j

0i 0 j

qq
exp A exp A

m m

  
 −  −   

 
   

p p  

( ) ( )( )1 3

i j ij ij ij i j ijr r
− −   +  

 
p p r r p p  
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Spin-spin 

(exponentially damped) 
SS 

j2 i

0i 0 j

qq

m m

  
−     

   

 

j2 2i
i j

0i 0 j

qq
exp A exp A

m m

  
 −  −   

 
   

p p  

( ) ( )( )3 5

i j ij ij i ij j ijr 3 r
− −   +  

 
s s r s r s  

Spin-spin δ 

(exponentially damped) 
SSδ 

2
ji

0i 0 j

q8 q

3 m m

  
−     

   

 

j2 2i
i j

0i 0 j

qq
exp A exp A

m m

  
 −  −   

 
   

p p  

( )i j ij  s s r  

 

The indices i and j are used generically to represent two interacting particles; the quantities qi (qj) and moi (moj) are the electric 

charges and rest masses of the ith (jth) particle, A is the exponential damping constant , and pi (pj), si (sj) and rij are the standard 

vectorial symbols for the linear and spin angular momenta of a single particle and the distance between the ith and jth particles, 

respectively. Throughout the present study (α is the fine-structure constant; atomic units employed throughout). The indices i and 

j are used generically to represent two interacting particles; the quantities qi (qj) and moi (moj) are the electric charges and rest 

masses of the ith (jth) particle, A is the exponential damping constant, and pi (pj), si (sj) and rij are the standard vectorial symbols 

for the linear and spin angular momenta of a single particle and the distance between the ith and jth particles, respectively. 

Note that there is an error in the original version of this table,120 namely the exponential factors appear more often than above. 

 

It might be argued that the above sign convention for the Darwin and spin-same-orbit 

terms can be satisfied more simply by replacing q1
2/mo1

2 by q1q2/mo1
2. The result would clearly 

be the same as before only if |q1| = |q2|, however. This is the case for interactions between 

protons and electrons and their antiparticles, but in a more general formulation capable of 

dealing with other types of particles as well, it seems preferable to employ the former definitions. 

In this way the charge of a given particle only appears divided by its own rest mass in the 

damped Breit-Pauli interactions. This prescription at least formally allows for the treatment of 

chargeless, massless neutrinos with such a Hamiltonian, without introducing the types of 

singularities which otherwise would arise when coupling constants involving ratios of the charge 

of one particle and the rest mass of another are employed. 

Returning to the immediate focus of attention, the e+e- system, it can be seen that the XBPS 

Hamiltonian of Table I exhibits a special symmetry in this case, namely it commutes with the 

charge conjugation operation C. This means that the corresponding eigenfunctions must be either 

symmetric or anti-symmetric with respect to interchanging the electron and positron coordinates. 
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The same result clearly holds for any particle-antiparticle binary system. This is a different 

situation than one normally encounters in conjunction with the Pauli principle,138 in which 

permutation symmetry results because of the indistinguishability of the component particles. As 

a result it is not necessary to assume that the only physically meaningful solutions are of one 

symmetry-type, for example, anti-symmetric in the case of fermions. The symmetry in question 

arises not because the particles are indistinguishable, but rather because their (different) 

properties can be exchanged without affecting the form of their mutual interaction. This 

characteristic applies to all states of positronium, including those of hydrogenic type. In view of 

its special nature, however, there seems little point in incorporating this symmetry into the basis 

functions employed in explicit e+e- calculations with the XBPS Hamiltonian. In general, it will 

be assumed that the many-particle basis consists of products of Slater determinants139 for each 

particle type, i.e. anti-symmetry is assumed only for indistinguishable fermions. Bosons arise 

naturally as even products of fermions27 and therefore require no additional symmetrization 

procedure. 

 

VI. COMPUTATIONS FOR MASSLESSS PARTICLE-ANTIPARTICLE BINARIES 

The central hypothesis explored in the previous chapters is that elemental matter can 

neither be created nor destroyed. Rather it is argued there exist strong attractive forces between 

elementary particles and their antiparticles which lead to massless binary systems whose non-

observability is understandable in terms of the Bohr frequency relation (E = m = 0 implies  = 0 

and  = ). The XBPS Hamiltonian given in Table I has been deduced in accordance with such 

expectations and calculations employing it will be considered below, starting with the electron-

positron system. 

 

A. DETAILS OF THE COMPUTATIONAL METHOD 

       The computational methods employed are modeled after those of electronic structure 

calculations for atoms and molecules. In essence a matrix representation of the XBPS 

Hamiltonian is formed with the aid of products of one-particle functions. The first step is to 

compute integrals for each of the original Breit-Pauli operators106 (except for the mass velocity 

terms) over a set of basis functions. Because of the decision to treat all particles in an equivalent 

manner, with no assumptions about fixed probability distributions for any of them, it can be 
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noted that the Hamiltonian is symmetric with respect to all operations of the full rotation group 

plus inversion. Accordingly, it is reasonable to localize all basis functions at a single center, 

simply the origin of the coordinate system. As mentioned in the last chapter, the only one-

particle operator under the circumstances is that of the (relativistic) kinetic energy. All the other 

Breit-Pauli terms in the Hamiltonian, including the Coulomb interaction. are treated exclusively 

as two-particle operators.106. 

To construct the most general possible digital computer program it was decided to employ 

the same set of basis functions to describe each type of constituent particle. This approach seems 

reasonable because in a system with no net translation, the momenta of the particles should be 

similar, which implies basis functions of roughly the same extension for each of them. In the last 

analysis it is always possible to employ individually optimized basis functions for each particle 

type by simply combining all such sets and making them available to describe the probability 

distributions of all the particles involved. 

In this approach it is only necessary to compute the various one- and two-particle 

interaction integrals for electrons in the initial stage of the calculation. These results can then be 

conveniently adapted for treatment of particles other than electrons at a later stage. It was 

decided to use real Cartesian Gaussian functions to construct the one-particle basis, although it 

would also be convenient to use Slater-type exponential functions as more commonly employed 

in atomic calculations. Since no exact solutions for the Schrödinger equations of primary interest 

are known, the primary consideration was to choose a basis capable of describing general 

continuous functions which vanish at infinite distance from the origin. 

An option for use of one-center potentials is available in the program which enables 

conventional atomic calculations to be carried out as well, in which case only two-particle 

interactions for electrons are assumed, although this restriction could also easily be removed. In 

such applications the charge of the nuclear center is required as input for the initial integral 

computations. Otherwise no input is needed other than the exponents and coefficients of the 

contracted Cartesian Gaussian basis functions. Formulae for the calculation of Cartesian 

Gaussian integrals for all the Breit-Pauli operators may be found elsewhere.140 The computer 

program for evaluation of these integrals for the present study has been written by Chandra and 

implemented by Phillips, Liebermann and the author.141 
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Because of the presence of spin variables in the one-particle functions it is desirable to 

carry out the overall treatment by employing a basis of eigenfunctions of the total angular 

momentum operators j2 and jz. The corresponding spin-orbitals are formed with the help of the 

ladder operator technique142 and conform to the standard Condon-Shortley conventions.143 The 

transformation of the Breit-Pauli integrals from a basis of spatial functions to the desired spin-

orbitals is effected in two steps: the complex spatial eigenfunctions of l2 and lz are employed in 

the first transformation, followed by a second change of basis to the j2, jz eigenfunctions. In the 

process, the number of basis functions is doubled in the usual way because of the duality of the 

spin representation for fermions. The final two-particle integrals are classified according to 

quartets of the four quantum numbers, n, l, j and mj, whereby n simply numbers the different 

spatial basis functions from unity upwards. Because of the spherical symmetry of the Breit-Pauli 

terms it is only necessary to specify three mj values explicitly, since the only non-zero two-

particle integrals are characterized by  =
i

i
j 0m . 

Two other indices are required, referred to as  and µ. The index µ simply refers to the 

different operators employed, while r is an ordering index with only two values. A standard order 

of indices is defined, whereby the integral <φa(1) φb(2) φµ(1,2) φc(1) φd(2) > is characterized by 

 = 1(2) if the standard order can be reached by an even (odd) number of permutations of the 

orbitals of the same particle. As is common practice,144 the spin-same-orbit term is treated as two 

separate operators, one for 11 s1 and one for 12 s2. All other Breit-Pauli terms are symmetric with 

respect to particle exchange prior to multiplication by the various q/mo coupling constants and 

can therefore be treated as symmetric sums at this stage of the computations, i.e. before the 

charges and rest masses of the actual constituent particles are introduced.  

 

B. TRANSFORMATION TO THE MANY-PARTICLE-TYPE BASIS 

       In Chapter V it was argued that the original Breit-Pauli operators need to be adapted so that 

a Schrödinger equation employing them can lead to a massless state of a particle-antiparticle 

binary system, i.e. one whose binding energy is exactly equal to the sum of the rest masses of its 

constituents. The suggested changes have always involved functions of the momentum operator, 

specifically a square-root and several exponentials. These operators lead to integrals needed for 

their matrix representation which are relatively complicated to evaluate in a direct manner. This 
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is particularly true for the two-particle exponentially-damped Breit-Pauli terms (Table I). Closed 

expressions for the relativistic kinetic energy do exist,145 but in order to deal with all the required 

operators in a consistent manner, an approximate integral evaluation technique must be 

employed. It was thus decided to apply the matrix procedure referred to above125 for the 

treatment of both the square-root and exponential function operators. This involves use of the 

resolution of the identity formalism146 and thus results employing it approach their exact values 

only as the basis set employed to obtain the matrix representation of the Hamiltonian nears 

completeness. Numerical tests147,148 comparing the exact and matrix representation values for 

relativistic kinetic energy integrals indicate that this level of approximation is suitable for the 

purpose at hand. The situation is more complicated for the damped Breit-Pauli terms of a two-

particle nature, because it becomes impractical to saturate the basis to a similar extent as in the 

square-root operator tests. Nonetheless, it is always possible to judge the numerical stability of 

the final results of the calculations by comparing with analogous findings obtained with basis 

sets of different size. Since all the operators which are primarily responsible for these difficulties 

are functions of the momentum operator, it is possible to proceed in a very similar fashion for all 

of them. 

Briefly, one first needs to form the non-relativistic kinetic energy matrix for electrons in 

the assumed gaussian basis and then to diagonalize it. If the basis functions were momentum 

eigenfunctions, the desired relativistic square-root integrals could be obtained exactly by simply 

replacing the p2/2 eigenvalues by the corresponding results for the operator in question. A related 

diagonal matrix can be formed even if momentum eigenfuctions are not used, but then it is 

necessary to subsequently carry out a reverse transformation to the original basis. The resulting 

non-diagonal matrix is then used for all subsequent computations. In the case of the damped 

Breit-Pauli terms it is necessary to carry out an additional matrix multiplication147 involving four 

one-electron exponential matrices and the original two-particle Breit-Pauli counterpart discussed 

in Chapter VI.A. The use of this matrix technique has the disadvantage of rendering the overall 

treatment non-variational, but again use of a suitably flexible basis set minimizes this effect. 

It is at this stage of the computations that the charges and rest masses of the various 

constituent particle types are first needed. Each of the one-particle matrices for the relativistic 

kinetic energy and the exponential damping factors requires such input values explicitly. The 

corresponding matrices are generated for each particle type from the p2/2 non-relativistic 
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counterpart. It should be clearly distinguished between "particle types" and "particles" in this 

connection. At this stage it is only necessary to know what kinds of particles are contained in the 

system at hand, and not how many of each. Once these one-particle matrices are generated it is 

necessary to carry out a series of four-index transformations for each Breit-Pauli operator µ and 

pair of particle types p. Because of the nature of the total XBPS Hamiltonian it is necessary to 

distinguish between  = (1, 2) and  = (2,1), i.e. the order of particle-types is significant. This 

becomes obvious at the next step in the procedure, in which each transformed matrix is 

multiplied with an appropriate set of coupling constants formed from the charges and rest masses 

of the constituent particles (see Table I). 

These results are then added together to form the final one- and two-particle Hamiltonian 

matrices, which are stored for further use in the many-particle phase of the theoretical treatment. 

The four-index (two-particle) integrals are ordered by means of quartets of indices for each basis 

function, as distinguished by their respective values for the quantum numbers n, 1, j and mj 

discussed above. In addition, there are separate values for each of the two  permutations, as 

well as for each pair of particle-types . The operator index µ has thus effectively been replaced 

by the particle-pair index  at this stage of the treatment as a result of the additions and scalar 

multiplications of the individual operator matrices to form the Hamiltonian two-particle matrix. 

The kinetic energy matrix elements are only ordered with respect to n and l because they do not 

vary with j and mj. In addition, only diagonal  values are needed because of the one-particle 

nature of this operator. 

 

C. COMPUTATION OF ENERGIES AND WAVEFUNCTIONS: VARIATIONAL CI APPROACH 

       The method employed to obtain approximation solutions for the Schrödinger equation 

discussed above is primarily the configuration interaction approach. A self-consistent field 

calculation is first carried out to generate an orthonormal basis of one-particle functions which 

allows an optimal description in terms of a single configuration.149-151 A coupling scheme is 

employed which amounts to using J - ½K (J, Coulomb and K, exchange operators, in the 

.conventional notation149,150) for interactions of the same particle-type and only J for all others. 

For this purpose appropriate averages over multiplet interactions are assumed. The exact form of 

the (self-consistent field SCF) procedure is of little consequence in the present applications, 

however, because a full CI calculation is ultimately carried out, in which case the final 
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eigenvectors and eigenvalues of the many-particle XBPS Hamiltonian are independent of the 

choice of one-electron basis. In essence the SCF procedure is used primarily to obtain an 

orthornormal basis whose use simplifies the evaluation of CI matrix elements (Slater-Condon 

rules).151 

The next step in the theoretical treatment is then the four-index transformation of the 

XBPS Hamiltonian matrix to the SCF one-particle basis. Advantage is taken of the high degree 

of symmetry blocking produced by the use of one-particle eigenfunctions of j2 and jz. The 

resulting matrix elements are reordered into groups with the same l, j,  and  values for the 

orbital quartets, i.e. all n and mj components are stored contiguously. Because of the 

transformations to SCF orbitals, it is now necessary to distinguish in general between kinetic 

energy matrix elements involving the same l but different j. 

Subsequently all configurations of orbital products which are possible in a given basis are 

formed based on the occupation numbers of the various particles. The latter information must be 

provided by the user at this point. The desired total J angular momentum quantum number and 

the corresponding parity P are also given as input, and only configurations which lead to 

multiplets of the desired symmetry are retained. Linear combinations of the many-particle 

product functions (anti-symmetrized within each particle-type, as discussed at the end of the last 

chapter) which are eigenfunctions of J2 with MJ = J are constructed and Hamiltonian matrix 

elements are computed with respect to this basis. For this purpose, the Bunge-Davidson 

projected determinant technique152 ensures that only the minimal number of determinantal matrix 

elements be computed. In general the Slater-Condon rules are employed with a procedure closely 

related to the Table CI technique153 used in computations for molecular systems. It should be 

noted that imposing the condition of zero net translation for the combined system, as discussed in 

Chapter V.B, makes the Slater determinant form for the associated wavefunctions considerably 

less advantageous than in the present treatment. This is because the coordinate transformation 

required for the above purpose inevitably singles out a particular particle in order to define a set 

of relative spatial coordinates,127 In a relativistic treatment for which the reference particle's spin-

functions need to be considered explicitly, this circumstance represents a considerable obstacle 

to the design of a generally applicable many-particle computational procedure. 

The resulting XBPS Hamiltonian matrix is then diagonalized by conventional methods,154 

provided the dimension of the full CI is not very large. Tests have been carried out in such cases 
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to demonstrate that the full CI eigenvalues are the same for different choices of one-electron 

(SCF) orbitals deriving from the same Gaussian basis. For applications involving larger systems, 

for which the full CI method becomes impractical, a subset of the corresponding space is 

employed which is generated by taking all single and double substitutions relative to a series of 

key reference configurations (MRD-CI approximation155). In this case the Davidson 

diagonalization procedure156 is employed to obtain the desired roots, whereby accurate starting 

vectors are highly desirable for this purpose. In the present chapter dealing with particle-

antiparticle binary systems, only full CI computations are considered so that the only 

approximation employed in obtaining the XBPS solutions is the use of a finite basis in the 

corresponding Hamiltonian matrix representation.  

As mentioned in Chapter V.B, the square-root form of the relativistic kinetic energy as 

well as the presence of the various momentum factors in the Breit-Pauli potential terms 

eliminates the possibility of introducing the usual separation of internal and center-of-mass 

motion in the present theoretical treatment. As a result, the total energy resulting from the above 

CI calculations generally contains a contribution corresponding to net translation of the system. 

It is therefore desirable to also compute the expectation value of the translational energy  

T= [(
i

ip )2 -2 + Mo
2 -4]1/2 - Mo

-2, for which purpose the rest mass Mo of the combined 

system must be provided as input. The procedure employed again involves the matrix 

representation technique described in the last section. 

It is first necessary to calculate the (
i

ip )2 matrix in the same basis used throughout, which 

is accomplished conveniently by dividing the operator into its one- and two-particle 

contributions: 
i

2
ip  and 

 ji
ji pp2 . For this purpose one-particle matrix elements for the pi 

operator are required. There is an important selection rule in this case. namely L´ = L  1, i.e. 

only pairs of functions satisfying this relation give non-vanishing results. A basis set consisting 

of only s functions, for example, can only lead to vanishing (
i

ip )2 expectation values for a 

given many-particle wavefunction if the diagonal 
i

2
ip  term itself vanishes, which as a sum of 

positive-definite one-particle quantities is impossible. The two-particle terms can lead to a 

substantial reduction in <(
i

ip )2> relative to what is obtained with only one-particle terms, 
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however, if more than one l value is present in the basis set employed, but even in this case, it is 

very difficult to obtain an even approximately vanishing result for <(
i

ip )2> for the XBPS 

wavefunctions in the present theoretical treatment. 

In principle, knowledge of the total energy <E> and <(
i

ip )2> values allows the direct 

computation of the rest mass of the combined system, but this possibility is of little practical use 

when less than exact results are available. Hence the reliance on a separate input value for this 

quantity is preferred, as noted above. There are several procedures for obtaining the internal 

energy Eo at this level of approximation. The first involves the variational calculation of the total 

energy's expectation value <E>. The corresponding wavefunction is then used with the help of 

the Mo input value and the expectation value of (
i

ip )2 to evaluate <T>, which is then subtracted 

from <E>. A second possibility is to treat the operator H - T in a variational calculation directly. 

This requires a matrix representation of T in the many-particle basis, which is only practical for 

relatively small one-particle basis sets. The resulting wavefunctions are infinitely degenerate in 

principle, since any degree of translation leads to the same E0 value for a given internal state. In 

practice it is generally preferable to seek solutions with minimal translational energy, and this 

goal is best accomplished by dealing with H alone at the variational stage, as discussed first. The 

expectation value for the translational energy can also be computed in the perturbational 

approach by employing the above matrix representation of T, as opposed to first computing  

<(
i

ip )2>. 

D. CALCULATION OF NON-HYDROGENIC STATES OF THE e+e- SYSTEM 

The basic strategy for obtaining an e+e- state with a binding energy of 2mec
2 is to vary the 

constant A in the XBPS Hamiltonian (Table I) until the lowest energy possible for a given 

number and type of basis function corresponds to the desired value. Without the exponential 

damping (A = 0), this goal can never be reached because the Hamiltonian is not bounded from 

below in this case. The first basis chosen contains two s- and two p-type primitive Gaussians 

with initial exponents of 1.0x107 and 1.0x108 ao
-2 for both types. The exponents were multiplied 

by a scale factor η and a full CI calculation was carried out for symmetries spanned by this basis. 

The computations show that the lowest energy results for a state of 0- symmetry (J=0 and 

negative parity). By varying both  and the damping constant A, it is found that a minimum in 
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energy of the desired value (-2-2 =-37557.7 hartree) occurs for the lowest 0- state for  = 0.11 

and A= 1.054 e-l. As expected, the value of the minimal energy increases with the magnitude of 

A for all  and advantage is taken of this relationship in subsequent optimizations. These 

calculations thus demonstrate that the XBPS Hamiltonian can be subjected to standard 

optimization techniques and the energies of the corresponding full CI secular equations can be 

suitably adjusted with a single free parameter. 

The next step was to define a larger basis set consisting of five s- and five p-type primitive 

Gaussians. The exponents were initially assumed to form a geometrical progression: ßN = ß1Ξ
N-l. 

The value of Ξ was taken to be 2.0 after some initial experimentation. As before, the energy 

optimizations are carried out with respect to a single scaling parameter  which multiplies all the 

ßi values. The exponents are taken to be the same for the s and p sets (ß1 = 0.25 x 108 ao
-2). This 

is already a reasonably large s,p basis, consisting of 80 spin-orbitals or 40 for each particle, 

considering that a full CI optimization is to be carried out. It is nonetheless considerably smaller 

than those commonly used to study hydrogenic systems on a definitive basis147,148, but it will 

serve the present purpose adequately, namely to examine the description of the proposed tight-

binding states in the XBPS model. 

Again, it is found that the most stable state of the e+e- system has 0- symmetry. The 

corresponding wavefunction consists of products of s1/2 and pl/2 ( denotes positron or electron 

function respectively) one-particle functions. Four products of spin orbitals are required for any 

pair of exponents: 

 

       0- = +
2/1p (mj = ½) −

2/1s (mj = -½) - +
2/1p (mj = -½) −

2/1s (mj = ½) 

 + −
2/1p (mj = ½) +

2/1s (mj = -½) - −
2/1p (mj = -½) +

2/1s (mj = ½).  VI.1 

 

This function is seen to not only possess singlet spin but also to be symmetric with respect to the 

charge conjugation operation (see Chapter V.G for a discussion of the latter symmetry property 

for particle-antiparticle pairs). The optimal value for the scale factor  is 0.095 and the correct 

binding energy of 2-2 is obtained for A= 1.078 a.u. One should expect that the value of the 

damping constant increases with improvement in the one-particle basis and this behavior is 

observed. The change in A relative to its 2s,2p value is 2.3%, which indicates that we are already 
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relatively close to the limit attainable with s and p basis functions. It is thus of interest to look at 

the results of the 5s,5p calculations in more detail below. 
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TABLE II. Total full CI energy (in hartree) of the lowest states of various symmetries of the e+e- system obtained employing the 

5s,5p basis with scale factor  = 0.095 and exponential damping constant A = 1.0775 a.u.  for the XBPS Hamiltonian of Table I. 

 

Symmetry First Root Second Root 

0+ 372025.142 561471.371 

0- -37656.717 483278.726 

1+ 596788.279 646488.246 

1- 592821.494 639727.142 

2+ 785793.989 806032.930 

2- 691742.083 763807.974 

3+ 853632.944 164188.023 

 

 
TABLE III. Energy contributions (in hartree) of various operators (see Table I for definitions) for the 0s

- ground state of the e+e- 

system obtained employing the 5s,5p basis with scale factor η = 0.095 and exponential damping constant A = 1.0775 a.u. for the 

XBPS Hamiltonian. 

 

Operator Expectation Value 

Kinetic energy 1992262.978 

Coulomb -3233.894 

Spin-same-orbit -378340.098 

Spin-other-orbit -830993.650 

Darwin Term 8889.119 

Orbit-orbit -407592.397 

Spin-spin -418648.776 

Spin-spin  0.000 

  

Total energy -37656.717 

 

The energies of the most stable e+e- states of each symmetry obtained in this treatment are 

given in Table II, from which it is seen that the lowest-lying 0- species is favored by a large 

margin over the other states, being the only one which is bound with respect to the separated 

particles at this level of treatment. The 0- total energy is broken down into contributions from 

each of the terms in the XBPS Hamiltonian in Table III. The total kinetic energy is 1.99 x 106 
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hartree or 54.2 MeV, so it is clear that the two particles are tightly bound. The main attractive 

contributions come as expected from the damped Breit-Pauli interactions.  The spin-same-orbit, 

orbit-orbit and spin-spin terms are each in the order of -4 x 105 hartree, while the spin-other-orbit 

interaction is double this amount.  The relative order of these contributions is easily 

understandable in terms of the constants multiplying each operator in the Breit-Pauli interactions 

themselves106 (see Table I). The cancellation between these attractive potential terms and the two 

repulsive quantities is very delicate, as seen by the fact that the binding energy is only 1.88 % of 

the total kinetic energy. By way of comparison, it should be recalled that the binding energy is 

exactly equal to the kinetic energy in non-relativistic treatments of atomic systems (by virtue of 

the virial theorem). 

It is important to note that a state composed of only s orbitals must give zero contribution 

by symmetry for each of the above Breit-Pauli potential terms, so it is not difficult to understand 

that substantial p1/2 character is present in the optimal 0- wavefunction. It is well known that the 

p1/2 orbital is stabilized by spin-orbit coupling in atomic calculations, so this observation is also 

not surprising from that point of view. The binding is considerably enhanced for the e+e- system 

relative to the hydrogen atom because of the much larger magnetic moment of the positron 

compared to that of the proton, as demonstrated in Table III. In this sense the large binding of the 

0- state can be thought of as resulting from a tremendously large increase in the p1/2 - p3/2 

multiplet splitting in the spectrum of hydrogenic systems. It might be thought that a p1/2 p1/2 

configuration would be even more stable on this basis, but the added kinetic energy of p1/2 vis-a-

vis s1/2 is decisive in avoiding this result. If the calculations are carried out under the condition of 

vanishing translational energy (P = 0; see Chapter VI.B), it follows that the corresponding 

function of the electron-positron separation would be a p orbital (more specifically a p1/2 species 

coupled with the spin of the reference particle to produce a 0- solution). 

The 0- state's composition is noteworthy in another way, namely that it possesses an 

exactly vanishing expectation value for the Darwin δ-function term appearing in the original 

Breit-Pauli Hamiltonian, as can be verified using the above sample wavefunction. This means 

that the electron and positron never occupy the same spatial position when their spins are 

identical. The expectation value of the Darwin term in the XBPS Hamiltonian itself (Table I) is 

non-zero in value (Table III), but this result stems from the form of the exponential damping 

factors employed in this case (same as for the spin-same-orbit term). The -function term in the 
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spin-spin operator also has a vanishing expectation value for the 0- wavefunction, with and 

without the XBPS adaptations (Table III). This result shows that the avoidance property for 

electron and positron is not restricted to species of the same spin component since the s1•s2 scalar 

product allows  and ß spins to have a non-zero interaction in general. In view of the opposite 

charges of the electron and positron, it might be thought that these particles would prefer to be in 

the same region of space much more than these results would indicate, but one should not forget 

that the Darwin term itself is repulsive in this case, and thus its influence should tend to be 

minimized in a variational treatment. This consideration does not completely explain the 

observed behavior, however, as it must be assumed that such a relationship between the two 

charge distributions also maximizes the effects of the attractive terms in the XBPS Hamiltonian, 

such as the spin-spin, spin-orbit and orbit-orbit interactions. Since the vanishing magnitude for 

the various δ-function terms is so clearly tied up with the 0- composition for the e+e- 

wavefunction, there is good reason to expect that similar results will be found regardless of the 

size of the one-particle basis set employed. In the P = 0 limit for this state discussed above, even 

the expectation value of the exponentially damped Darwin term must vanish exactly since it is 

forbidden by symmetry from having an admixture of s spatial character. Such a function must 

also be symmetric with respect to the charge conjugation operation, in agreement with what has 

been found in the calculations above for the 0- wavefunction with non-vanishing translational 

energy. 

The exceptional nature of the 0- e+e- state also gives added support to the hypothesis 

formulated in Chapter II to the effect that such a massless state of positronium is identical with 

that of the photon at rest. Although this result might be thought to be inconsistent with such an 

assumption because the photon is normally assigned 1- symmetry, it should be recalled that the 

photon state given the latter designation does not correspond to a massless system. The 

experiments which demonstrate that the photon has one unit of angular momentum,32,33 for 

example, are based on a radiative emission process. Since the dominant mechanism in such 

transitions is electric-dipole in character, it follows that a change in angular momentum of one 

unit must have occurred in the process, for both the atomic system and the photon itself (see Fig. 

3). In the creation-annihilation hypothesis, attention is centered on the change in the atom's 

angular momentum, but the premise in the XBPS model is that a massless photon is present prior 

to the transition and thus that its angular momentum is also altered upon emission. On this basis 
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one can conclude from the rule for the vector addition of angular momenta that the original 

massless photon must have possessed one of three possible J values: 0, 1 or 2. Since it .is 

difficult to imagine how a system with zero momentum, as must be assumed for a photon with E 

= 0, can have other than zero angular momentum, the finding that J = 0 is greatly preferred in the 

present calculations for the proposed e+e- tight-binding state is actually easily reconcilable with 

the results of the photon angular momentum measurements. 

Since the electric dipole moment has negative parity, one is also led to conclude that the 

photon state after emission has a different parity than the initial massless state. This deduction 

would appear to contradict the presently calculated finding that the symmetry of the latter is 0-, 

but closer consideration shows that the assignment of negative parity to the state of the emitted 

photon is perfectly arbitrary. Parity designations of particles are always based on assigning one 

of two possible values to some standard system, and as such it is not possible to speak of 

absolute parity determinations157 on the basis of experimental evidence alone. If one believes that 

the photon is created from nothing, it is perhaps natural to assign even parity to the initial photon 

state, and consequently odd parity to a photon generated as a result of an electric-dipole 

transition. The present calculations suggest a definite structure for the massless photon state, 

with 0- symmetry, so that in this view one is led to conclude that the state of a photon observed 

after an electric-dipole transition is actually 1+, i.e. the opposite parity as conventionally 

assumed. 

At the same time, one can point to more general discussions158 of the dynamics of 

relatively light particles such as electrons or neutrinos when confined to small (nuclear-like) 

volumes which clearly suggest that it is highly unlikely that they exist in other than the lowest 

possible angular momentum state under these circumstances, which again in the case of a photon 

would be J = 0. Higher values of J are easily conceivable in conjunction with the translation of a 

tightly-bound system, however, which corresponds to the natural condition of a photon with non-

zero energy. With regard to the positronium decay process, it is interesting to note that the 

present assignment for the photon's massless state implies that the most common process 

involving a singlet initial state corresponds to a 0+ → 0- transition (see Fig. 4). Such a process is 

well known to be forbidden by any radiative mechanism involving only a single photon, 

consistent with what is observed (Chapter II.A). A possible two-photon transition would proceed 

with the aid of a 1 virtual photon state, in which case the two decay photons would possess 
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respectively 1+ and 1- symmetry, i.e. of opposite parity to one another but of the same total J 

value. Since there is no net change of total angular momentum in the overall process, it follows 

that the two photons must have complementary polarizations, again as observed. On the other 

hand, there appears to be no definitive means of establishing their relative parity experimentally. 

All in all, it can be concluded that the calculations appear to be perfectly consistent with both 

experimental observations and fundamental theoretical considerations with regard to the 

symmetry properties expected for particles of light. 

The variation of the energy of the 0- state with the scaling parameter  and the exponential 

damping constant A is shown in Fig. 7. The minimal energy always becomes higher as A is 

increased, as already noted. The E vs.  curve is closely related to the schematic total energy 

diagram given in Fig. 5, whereby  plays much the same role as the reciprocal of the square root 

of the inter-particle distance r by virtue of the scaling properties of Gaussian functions. For 

example, the expectation value <r> approaches zero to the right of Fig. 7 as  increases. The 

damping of the Breit-Pauli terms (Table I) produces a sharp minimum consistent with this 

interpretation, and the depth of the minimum is seen to be very sensitive to the value of the 

constant A. Qualitatively, it is easy to imagine from this diagram that a system trapped in such a 

deep potential well would be extremely stable. At distances to the left of the minimum's location 

the energy increases sharply, passing well beyond the zero value for the separated particles. 

Eventually as the Gaussian exponents are decreased to their hydrogenic values (  10-8 - 10-9), 

the total energy peaks and then the positronium ls minimum is reached on the basis of the same 

Hamiltonian. A change of state occurs along the way, however, so that the s1/2 s1/2 configuration 

becomes most stable. At this point the mean values of the exponential damping factors are very 

nearly unity, but they have the advantage of allowing a variational treatment of the hydrogenic 

states while still retaining a form of the Breit-Pauli interactions in the Hamiltonian. At distances 

smaller than that of the location of the deep potential minimum in Fig. 5, the energy is seen to 

increase very sharply as a result of the steep decrease in the magnitudes of' the exponential 

damping factors in this region combined with the corresponding increase in the magnitude of the 

kinetic energy (see Fig. 6). Altogether, a consistent picture emerges of a tightly bound e+e- state 

with a binding energy of exactly 2moec
2, resulting primarily from an exponentially damped 

attractive potential of relatively short range. 
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FIG. 7. Variation of the computed total energy (in khartree) of the e+e- system as a function of the 5s,5p basis set scaling factor  

in the XBPS treatment for various values of the damping constant A. The horizontal line at the center of the diagram corresponds 

to the negative of the rest energy (2moec2) of the system.  A value of A is sought which leads to this energy result for the optimum 

choice of .  Results for several other A values are also shown for comparison. 
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E. CONSIDERATION OF TRANSLATIONAL EFFECTS IN THE XBPS CALCULATIONS 

The calculations discussed thus far have yet to consider the magnitude of the translational 

component of the total energy. As discussed in Chapter VI .C, this can be done in several ways, 

the simplest of which in the present context involving the computation of the expectation value 

of (pi)2 for the wavefunction already obtained. On this basis it is found that the translational 

energy is 1.3483 x 106 hartree, a very considerable amount. This result needs to be kept in 

perspective, however, when comparing with conventional calculations in which the center-of-

mass motion is factored out. We have therefore carried out the analogous treatment for the 

hydrogen atom (employing a slightly larger 10s,5p basis), i.e. by also treating the translational 

and internal motion together explicitly. A total energy of -0.4660 hartree results, which is 0.0340 

hartree higher than the non-relativistic Schrödinger equation value. The expectation value of the 

translational energy <T> obtained with this wavefunction is 0.015 hartree, which corresponds to 

a mean center-of-mass momentum of 7.42 a.u. Assuming that momentum increases 

proportionally with r-l and comparing the value of the 0- e+e- expectation value Table III 

(Coulomb term, -3233.89 hartree) to the unit value known for the H atom ground state leads to 

an estimate of the translational momentum of 2.400 x 104 a.u., which upon multiplication with c 

= -1 corresponds to a translational energy for a massless system of 3.29 x 106 hartree, roughly 

two-and-one-half times larger than the above computed value.  

The p1/2s1/2 form for this state helps to minimize the expectation value of T because it leads 

to a <p1 p2> cross term which is necessarily negative (it is proportional to -|< p1/2 p sl/2>|2).  In 

other words, it is also possible to look upon the relatively high stability of the 0- state as resulting 

from its ability to minimize the translational energy with this type of wavefunction. 

         Since the goal of the present exercise is to obtain a state with Eo=-2mec
2, i.e. with no 

translational energy, it is clear that the previous optimization procedure based on <H> alone has 

an element of inconsistency connected with it. An alternative procedure is to minimize <Eo > = 

<H> - <T > in the scaling procedure, choosing the damping constant A so that the lowest 

internal energy is -2moec
2. This can be done in two ways, as discussed in Chapter V.B. In the 

first method, the variational calculations are done relative to the XBPS Hamiltonian as before, 

but the decision as to which  and A values to employ is based on the criterion of producing a 

minimum value for <Eo> of the desired magnitude rather than for <H>. This procedure leads to 

an increase in the optimum scaling factor to  = 0.27 (three times larger than before). Moreover, 
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the A damping constant must be increased to 1.622 a.u. (roughly 50% higher than in the <H> 

optimization) in order to have the < E0> minimum vs.  to have the desired value. The value of 

<T> is decreased in the process to 8.0857 x 105 hartree. Numerically this result can be seen to 

arise from a competition between the effect of increasing A (which cuts down the influence of 

the short-range potential terms) and that of increasing  at the same time. The tendency for  to 

increase is consistent with the effect discussed qualitatively in Chapter V.B, namely that in a 

state which makes heavy use of short-range interactions, there is a definite advantage to having 

the center-of-mass motion kept as small as possible. This allows the velocities of the two equally 

massive particles to maintain roughly the same speed and thus draw more closely together on the 

average. 

There is a difficulty of another kind with the latter method of optimization, however, 

namely that its charge distributions are determined from CI secular equations involving the total 

Hamiltonian, whereas the criterion used for determining  and A values involves something 

other than the corresponding energy eigenvalue. The alternative procedure of using <H - T> 

directly in the variational procedure is even less satisfactory, however, because as mentioned 

above, there are an infinite number of translational states with the same eigenvalue E0, and so 

there is no guarantee that the lowest-energy state obtained in this type of optimization will have a 

low value of <T>. 

It needs to be emphasized that the primary goal of the present calculations is to obtain a 

wave function for a massless e+e- state, which means <T>=0 and <H>= <E0> = -2moec
2. If the 

one-particle basis set is complete, both of the first two optimization procedures discussed must 

lead to identical results for the lowest-energy eigenvalue and corresponding wavefunction, 

whereas for the variational procedure based on <H-T>, this result is only one of an infinite 

number of possibilities and thus seemingly unlikely. Nonetheless, the <H-T> optimization does 

lead to one important result, namely it yields a better lower limit for the value of the exponential 

damping constant A needed to obtain the desired lowest eigenvalue in an exact solution of the 

damped Breit-Pauli Schrödinger equation. The energies obtained for <H-T>=<Eo> must be lower 

than those deriving from the perturbative approach using eigenfunctions of H alone to evaluate 

them because of the variational nature of the former procedure. This point is verified in actual 

calculations, and leads to an A value of 1.772 a.u. needed to produce the desired minimal <E0> 
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value of -2moec
2, some 10% larger than that obtained with the perturbation theory approach first 

discussed. 

It should be noted that further improvements in the one-particle basis while maintaining a 

fixed A value will cause not only a decrease in the minimum total energy <H> obtained for the 

e+e- system, but also in the corresponding translational energy <T>. The qualitative arguments 

mentioned above show how this occurs in practice, namely as <T> decreases, the absolute 

magnitudes of the attractive short-range potential terms increase as a consequence, leading to a 

lowering of the total energy as well. For exact wave functions, the decrease in <H> and <T> 

must be exactly equal in going from higher to lower levels of translation, and this result can be 

obtained even when the internal and center-of-mass motion are not completely separated from 

one another. 

A more thorough discussion of this topic will be given in Chapter X, but for the moment it 

is important to recall the arguments of the preceding chapter which indicate that the presence of a 

square-root form for the relativistic kinetic energy as well as the momentum dependence of the 

various short-range potential terms in the XBPS Hamiltonian precludes the possibility of 

completely uncoupling the translational motion from the internal. In particular, a transformation 

to the usual center-of-mass coordinate system leads to cross terms in the Hamiltonian involving 

both relative and translational momenta. Such terms are totally absent in the non-relativistic 

treatment, and as a result a perfect separation of the two types of coordinates is possible in this 

case. For relativistic momenta, the situation is more complicated, however. The cross terms 

couple translational functions of different (angular) l quantum number but the same (total 

momentum) |k|, so that the value of the translational energy is conserved in the process, as it 

must be because of the commutation of H and T (Chapter V.B). At the same time, however, 

internal functions of different angular momentum quantum number also become mixed, which 

means that the simple product wavefunction form for the two kinds of factors is lost for large k 

values in such a relativistic approach. One of the main consequences of this coupling of the two 

types of motion is that it can cause particles of the same rest mass to remain farther away from 

one another on the average as a result of the increased translational energy of the combined 

system. This characteristic is expected to be most noticeable for states in which short-range r-3-

type interactions dominate. 
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The coupling of different l values for states of high translational energy indicated in the 

above discussion suggests that one-electron functions of high angular momentum may be 

important in describing the desired e+e- tight-binding state when employing basis sets whose 

functions depend on the coordinates of only a single particle. To test this possibility an additional 

series of calculations has been carried out employing a basis set consisting of 2s, 2p and 2d 

primitive Cartesian Gaussian functions. As before with the 5s,5p test calculations in Chapter 

VI.D, the same two exponents are used for each pair of functions of the same l value. A constant 

ratio of 2.0 is taken between these two exponent values, and it is found that optimum results are 

obtained when the larger of these two quantities has a value of 0.14 x 108 a0
-2. The influence of 

the d functions is quite substantial, as indicated by the fact that the damping constant A must be 

increased to a value of 1.2534 a.u. relative to the 2s,2p result of 1.0540 a.u. mentioned earlier in 

order to obtain the desired binding energy of 2moec
2. The 0- state continues to have the lowest 

energy in the full CI treatment, as can be seen from Table IV. The d basis functions occur in 

d3/2p3/2 0
- products and such configurations make up 29.074% of the total CI wavefunction based 

on the sum of the coefficient squares computed (Table V). 

The expectation value of the translational energy in this basis is 0.8896 x 106 hartree, a 

37% reduction compared to the corresponding 2s,2p result. When the optimization is carried out 

with respect to variational <H-T> results for the 0- e+e- state, one obtains a higher value for the 

damping constant A of 1.7300 a.u., as compared to 1.6995 a.u. in the corresponding 2s,2p 

treatment. Thus the gap between these results for the two types of optimization methods is 

reduced to 0.4766 a.u. with the addition of the 2d orbitals relative to the corresponding 2s,2p 

result of 0.6455 a,u. The <Eo> = <H-T> eigenvalues for the lowest-lying states of each 

symmetry in the 2s,2p,2d basis are given in Table VI, and they show that although 0- remains the 

most stable species, there is now a second state with negative energy, namely 1+. Since one 

expects the order of pure translational states (when employing relatively small basis sets) to be 0+ 

< 1- < 2+..., this result is consistent with the formation of a translational continuum based on a 0- 

internal state, i.e. 0- = 0- x 0+ as lowest eigenvalue, 0- x 1- = 1+ as second lowest.  
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TABLE IV. Total full CI energy (in hartree) of the lowest states of various symmetries of the e+e- system  

obtained employing the 2s,2p,2d basis with scale factor  = 0.07 and exponential damping constant  

A = 1.2534 a,u. for the XBPS Hamiltonian of Table I. 

 

Symmetry Lowest Root 

0+ 475145.036  

0- -37475.722 

1+ 594854.649 

1- 811619.239 

2+ 1181673.209 

2- 1242603.690 

3+ 1409590.063 

3- 1464134.359 

4+ 1793907.516 

4- 1619616.897 

5+ 1965090.791 

 

A breakdown of the various energy contributions in the 0- wavefunction in the 2s,2p,2d 

basis is given in Table VII for the case in which <H> is minimized to give the desired e+e- 

binding energy. Comparison with Table III for the 5s,5p basis shows that most expectation 

values have decreased in absolute magnitude as a result of the addition of the d functions. The 

lone exception is the orbit-orbit term, which is 28% larger in absolute magnitude than before 

with the 5s,5p basis. The translational energy decreases far more than the total kinetic energy as 

a result of the addition of the d functions, so it is clear that something more delicate than a 

general increase in the diffuseness of the overall 0- wavefunction has occurred. 
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TABLE V. Self-consistent field (same for e+ and e-) (a) and CI (b) coefficients for the XBPS calculation of the Os
- ground state of 

the e+ e- system obtained employing a 2s,2p,2d basis (exponents 1 and 2) with scale factor  = 0.07 and exponential damping 

constant A = 1.2534 a.u.. 

 

a)                 Orbital SCF Coefficients (e+, e-) 

 1 = 0.14 x 108 a0
-2 2 = 0.70 x 107 a0

-2 

1s1/2 -0.96575 1.80548 

2s1/2 2.28957 -1.70735 

1p1/2 -0.52009 1.41377 

2p1/2 1.91052 -1.38629 

1p3/2 -0.65233 1.50719 

2p3/2 1.86950 -1.28411 

1d3/2 -0.42116 1.31229 

2d3/2 1.66813 -1.11262 

1d5/2 -0.49857 1.36280 

2d5/2 1.64665 -1.05015 

 

 b) Configuration CI 

  (orbital occupations) Coefficient 

  e+ e-  

 1) 1s1/2 1p1/2 0.427541 

 2) 1p1/2 1s1/2 0.427541 

 3) 2s1/2 1p1/2 -0.272544 

 4) 1p1/2 2s1/2 -0.272544 

 5) 1s1/2 2p1/2 0.136486 

 6) 2pl/2 1s1/2 0.136486 

 7) 2s1/2 2p1/2 -0.280952 

 8) 2p1/2 2s1/2 -0.280952 

 9) 1p3/2 1d3/2 0.263695 

 10) 1d3/2 1p3/2 0.263695 

 11) 1p3/2 2d3/2 0.093143 

 12) 2d3/2 1p3/2 0.093143 
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 13) 2p3/2 1d3/2 0.167764 

 14) 1d3/2 2p3/2 0.167764 

 15) 2p3/2 2d3/2 0.197512 

 16) 2d3/2 2p3/2 0.197512 
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TABLE VI. Total internal full CI energy (in hartree) of the lowest states of various symmetries of the e+e- system obtained 

employing the 2s,2p,2d basis with scale factor  = 0.04 and exponential damping, constant A = 1.730 a.u. for the XBPS 

Hamiltonian of Table I. 

 

Symmetry Lowest Root <H – T > 

0+ 133281.417 

0- -37748.278 

1+ -5469.698 

1- 137451.214 

2+ 144787.077 

2- 127712.122 

3+ 227313.394 

3- 272696.240 

4+ 373004.635 

4- 322805.296 

5+ 440007.121 

 

 

TABLE VII. Energy contributions (in hartree) of various operators (see Table I for definitions) for the 0s
- ground state of the e+e- 

system obtained employing the 2s,2p,2d basis with scale factor  = 0.07 and exponential damping constant A = 1.2354 a.u. for 

the XBPS Hamiltonian. 

 

Operator Expectation Value 

Kinetic energy 1832136.978 

Coulomb -3049.568 

Spin-same-orbit -322271.655 

Spin-other-orbit -683215.569 

Darwin Term 4439.576 

Orbit-orbit -523387.686 

Spin-spin -342127.801 

Spin-spin  0.000 

Total Energy -37475.725 
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      On the basis of these results it seems safe to conclude that further extensions in the one-

particle basis sets will simply lead to a gradual increase in the value of the damping constant A 

needed to have the total energy expectation value for the e+e- system equal -2moec
2. It seems 

plausible that in the limit of basis set optimizations, the expectation value of the translational 

energy of the lowest-energy wavefunction will approach vanishing magnitude. Similarly there is 

a good indication that the symmetry of the lowest e+e- state will be 0- when this limit is reached. 

Rather than going further with basis set optimizations for this system, however, attention will be 

turned to how a similar type of approach performs when applied to other two-particle systems. 

This study will include the other particle-antiparticle binaries mentioned above, as well as the 

hydrogen atom, whose theoretical treatment is normally found to be wholly similar to that of the 

electron-positron system treated first. 

 

F. CALCULATIONS WITH ELIMINATION OF TRANSLATIONAL EFFECTS 

  It is possible to carry out the calculations in a different way using the Hamiltonian of Table 1 

in order to eliminate the effects of translation on the wave functions. As discussed in Chapter 

V.B, this can be done by simply applying the condition that the momentum difference of the two 

particles always be equal to zero, that is by requiring that p1=-p2. There remains only one spatial 

co-ordinate as a result, the r12 inter-particle vector. In effect the calculations correspond to those 

carried out for atoms with a single center. It is merely necessary to replace the two kinetic energy 

terms in the original calculations with a single square-root operator in which the reduced mass (μ 

= 0.5) of the electron-positron pair is used.  As a result, it is possible to employ a much larger 

Gaussian basis set in this series of calculations than in those already discussed in Chapter III. B. 

It contains 70 functions for each l value (s,p,d…) whose exponents range in a geometric series 

from 0.00158 to 1.00000x1010.  In contrast to the first set of calculations, this basis set is large 

enough to describe the lowest-lying Rydberg states of positronium in the same treatment as for 

those with much smaller average radial distances. The energy results obtained for the lowest 

states of 0+ and 0- symmetry are given in Table VIII. The corresponding results for J=1 and 2 

have also been obtained and they produce no low-energy states other than the Rydberg species 

shown for the 0+ and 0- symmetries. It would be possible to obtain accurate energies for many 

more Rydberg states by simply adding more small-exponent Gaussian basis functions to the 
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theoretical treatment, e.g. by expanding the above progression by several orders of magnitude 

downward to 1.0x10-7. 

  The point which needs to be emphasized, however, is that the present calculations 

demonstrate explicitly that it is possible to construct a Hamiltonian operator whose eigenvalues 

not only include those of all the positronium Rydberg states, but in addition a single value with 

energy equal to 2m0ec
2, i.e. the 0- value that corresponds to complete elimination of rest mass 

from the e+e- system.  This result comes out most clearly in the above calculations in which the 

energy of the center-of-mass of the system has been completely removed, i.e. no translation.  To 

do this quantitatively, it is necessary to increase the value of A in the XBPS Hamiltonian from 

1.0775 a.u. in Table II to 1.54666 a.u. to obtain the results of Table VIII.  This change 

demonstrates that the amount of exponential damping must be significantly increased in order to 

make up for removing the effects of translational motion in the lowest 0- state. 

Table VIII. Total full CI energy (in hartree) of the lowest states of 0+ and 0- symmetry of the e+e- system obtained in the 

calculations with the condition of p1=-p2 using the XBPS Hamiltonian of Table 1. 

 

Root No. 0+ 0- 

1 -0.250041  (n=1) -37561.376228 (2mec
2) 

2 -0.062507  (n=2) -0.062502 (n=2) 

3 -0.027779  (n=3) -0.027778 (n=3) 

4 -0.015626  (n=4) -0.015625 (n=4) 

5 -0.010000  (n=5) -0.010000 (n=5) 

6 -0.006943   (n=6) -0.006944 (n=6) 

7 -0.004686   (n=7) -0.004903 (n=7) 

In the 0+ case 70 s-type functions are employed, while the same number of p-type functions are employed in the corresponding 

0- treatment. The value of the exponential damping constant A in the XBPS Hamiltonian has been varied so as to obtain a 

minimal energy for the 0- states of 2m0ec2= 1.02 Mev.  The value of A = 1.54666 a.u. is found to fulfill this condition to a 

satisfactory degree.  The principal quantum number n of each Rydberg state is indicated in parentheses next to the corresponding 

energy value. 

   An analysis of the energy contributions to the lowest-energy state is given in Table IX. These 

results can be compared with the corresponding values given in Table III for the calculations in 

which translational effects are not excluded. For example, the Coulomb energy is increased by 

571.798 hartree, showing that the distance between the electron and positron is greater in the 

present treatment excluding translational effects. Because of the definition of the Coulomb 

operator in Table 1, it is possible to obtain an average value for this separation simply by taking 

the reciprocal of the corresponding energy value. The inter-particle distance is therefore 
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estimated to be 3.756x10-4 bohr in the present treatment, as opposed to the corresponding value 

of 3.09228x10-4 bohr when translational effects are included. The corresponding value for the 

positronium 0+ ground state is 2.00 bohr, which is 5324.8 times larger. This value in turn is 

equal to 7.05 α2 bohr. It is still more than an order of magnitude larger than a typical separation 

between nuclear particles (α2/2 bohr). The smaller distances in the latter case are reasonable in 

view of the much smaller kinetic energies expected for proton and neutron constituents of nuclei 

as opposed to that of the electron and positron in the present XBPS treatment.  

Table IX. Energy contributions (in hartree) of various operators (see Table I for definitions) for the 0g
- ground state of the e+e- 

system obtained with exponential damping constant A = 1.54666 a.u. for the XBPS Hamiltonian under the p1=-p2 (zero 

translational energy) condition. 

 

Operator Expectation Value 

Kinetic energy 1262707.2926853 

Coulomb -2662.0961756246 

Spin-same-orbit -230447.7644808 

Spin-other-orbit -460895.52896168 

Darwin Term 0.000000 

Orbit-orbit -375815.5148147 

Spin-spin -230447.7644808 

Spin-spin  0.000000 

Total energy -37561.396228 

 

  The average value of the momentum p in the lowest root can be estimated by dividing the 

kinetic energy in Table IX by α-1, the speed of light in a.u.  The result is 9214.42 a.u., which is 

18428.8 times the corresponding value in the 0+ positronium ground state.  The product of this 

value and the above distance is 3.46, which may be compared to the corresponding product in the 

positronium ground state of 1.0, which is the same ratio as found in the hydrogen atom 

calculations.  Thus, it is found that the momentum of the lowest-energy state in Table IX 

increases notably faster than the corresponding inter-particle distance decreases. This 

relationship is expected on the basis of Figure 2, which shows that the kinetic energy, which is 

proportional to the momentum in this region, is increasing linearly toward shorter distances 

while the mean distance is increasing at a slower rate because of the effects of exponential 

damping. 

  The Breit-Pauli terms have an interesting relationship to one another, namely exactly the 

same value is obtained for the spin-same-orbit and spin-spin operators, which in turn is exactly 
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one-half of that found for the spin-other-orbit term. The value of the orbit-orbit term lies between 

these two values. The values shown in Table IX for the calculations which do exclude 

translational effects on the energy eigenvalues are much more irregular. Finally, the value of the 

Darwin term’s energy is exactly zero in Table IX, which is the expected result given the l=1 

value of the (p) basis functions in this case. The non-zero value in Table III shows that 

translational effects tend to allow the wavefunctions to avoid having a node at the origin, 

although they do not change the fact that the spin-spin delta term must be of vanishing 

magnitude for L=1 symmetry, also as found in Table V, i.e. with or without consideration of the 

effects of translation. 

G. THE PROTON-ANTIPROTON BINARY 

As pointed out in Chapter V.D, there is a scaling property for the XBPS Hamiltonian 

(Table I) which requires that for every e+e- wavefunction there exists a corresponding p+p- 

solution with an energy eigenvalue which is exactly mop times greater in magnitude. The desired 

p+p- eigenvector can always be obtained from the relation: e+e-(r) = p+p- (moer/mop).  In other 

words for the p+p- system everything is played out in a coordinate system which is contracted by 

a factor of 1836 relative to that of e+e-. The same property exists for the translational energy 

operator T, so all results obtained above for the electron-positron system can be converted over 

to p+p- . In particular, this result allows one to employ the same value for the exponential 

damping constant as before, thereby giving this quantity more of a general character than might 

otherwise be assumed. 

It might come as a surprise to see that the required binding energy of 2mopc
2 = 1.876 GeV 

comes from short-range effects which are generally associated with magnetic interactions, i.e. 

Breit-Pauli terms, because the magnetic moment of the proton is so small compared to that of the 

electron. Closer examination of the effects involved, however, underscores the fact that the 

relatively large mass of the proton is actually quite beneficial in forming a tight-binding state 

which takes extensive advantage of such short-range interactions. To begin with, there is the 

obvious fact that the kinetic energy associated with a given momentum value is substantially 

smaller for a proton than for an electron. The occurrence of the mass in the denominator of the 

exponential arguments of the XBPS Hamiltonian (Table I) is an even more significant factor, 

however, since it leads to a drastic reduction in the exponent of the damping function for a given 

momentum vis-a-vis that for a lighter particle (Chapter V.D). This means the short-range 
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potential terms are still going down in energy for inter-particle distances much shorter than the r 

 72 value favored by the e+e- system (Fig. 5). As usual, the exponential damping ultimately 

prevents the situation from getting out of hand, but the corresponding p+p- energy minimum 

occurs for r  7.05 2/mp (see the discussion after Table IX) or 2.044 x 10-7 a0 (1.08x10-17 m), 

making this probably one of the shortest-range interactions occurring in nature. 

The small magnetic moment of the proton only means that magnetic-type interactions 

occurring at typical atomic separations (Bohr radius a0) are nearly negligible compared to those 

of electrons. By contrast, at the much smaller inter-particle distances preferred by the p+p- 

system, even the Coulomb attraction is far from negligible. For r = 7.052/mp the expectation 

value for this relatively long-range interaction would be -133 MeV, for example, which would be 

0.071times the total binding energy of the p+p- system (1876 Mev). From this point of view, the 

corresponding Breit-Pauli energy contributions, though considerably larger at such distances, do 

little more than counter the system's enormous kinetic energy, which at r = 7.05 2/mop can be 

estimated at 63.1 GeV (using p  r-1 for each particle) based on the result of Table IX for the e+e- 

kinetic energy value of 34.3 MeV.  

By either of the above measures the cancellation of the kinetic energy due to the Breit-

Pauli terms is seen to be almost total, with a net binding energy which is only 2.97% of the total 

kinetic energy in either system. As is evident from Fig. 6, it is difficult to imagine that anything 

other than an exponentially damped potential could achieve such a delicate balance on a general 

basis.  

The main argument against assuming that electrons are actually present in nuclei (Chapter 

IV.A), on the other hand, has been that no such potential can supposedly be found. The present 

experience strongly suggests that this position should be re-evaluated. The Hamiltonian 

employed in the above investigation allows for an equivalent variational treatment of systems 

with binding energies varying between 1.0 MeV and nearly 2.0 GeV, respectively, as well as a 

reliable description of conventional atomic systems by virtue of its close association with the 

Dirac and Breit-Pauli formulations of quantum electrodynamics interactions. 

 

H. THE INTERACTION OF A PROTON AND AN ELECTRON 

      It remains to be considered whether a strongly bound state also results from an analogous 

treatment of the electron-proton system. This is done by simply inserting a very large mass for 
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the proton so that the reduced mass of the electron is 1.0. The answer is clearly that no such 

second minimum is found which corresponds to an inter-partic1e distance smaller than 1.0 bohr 

(Table X). The corresponding 0+ results for the treatment in which translational effects are 

eliminated are shown in Table XI. 

        Moreover, the reason for this distinction between the e+e- and p+e- systems is easily 

understandable from the earlier calculations with the XBPS Hamiltonian. The results of Table IX 

for the e+e- system are changed dramatically by the substitution of a proton for the positron 

because of the disparity in the masses of these two particles. The magnitudes of the various 

Breit-Pauli terms are substantially reduced upon making this substitution because of the 

importance of the q/mo factors in the corresponding operators (Table I). Only the spin-same-orbit 

and Darwin terms with the electron's (e/moe)
2 prefactor survive for all practical purposes. By 

contrast the kinetic energy is only halved because of the change in particle mass, thereby 

destroying the delicate balance mentioned in the last section between the attractive and repulsive 

components of the total energy for both the e+e- and p+p- binary systems. 
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TABLE X. Total full CI energy E (in hartree) for the lowest state of the p+e- hydrogen atom system obtained employing the 

2s,2p,2d basis for various scale factors  and a fixed value of the exponential damping constant A = 1.2648 a.u. for the XBPS 

Hamiltonian of Table I (* indicates minimum). 

 

 

 E 

0.30 710408.14 

0.20 560400.24 

0.10 374890.12 

0.08 329689.40 

0.07 305334.70 

0.06 279471.535 

0.02 148434.705 

0.005 64715.8077 

5.0 x 10-4 12839.8600 

5.0 x 10-5 1623.358959 

5.0 x 10-6 159.118214 

5.0 x 10-8 0.173309 

3.0 x 10-8 -0.195469 

2.0 x 10-8 -0.339412 

1.0 x 10-8 -0.425769 

9.0 x 10-9 -0.428911 

8.0 x 10-9 (*) -0.430521 

7.0 x 10-9 -0.430349 

6.0 x 10-9 -0.428057 

5.0 x 10-9 -0.423152 

4.0 x 10-9 -0.414828  

3.0 x 10-9 -0.401501 

1.0 x 10-9 -0.333257 

5.0 x 10-10 -0.281758 

1.0 x 10-10 -0.168834 

 

 



102 

 

Table XI. Total full CI energy (in hartree) of the lowest states of 0+ symmetry of the p+e- (H atom) system obtained in the 

calculations with the condition of p1=-p2 using the XBPS Hamiltonian of Table I. 

 

Root No. 0+ 

1 -0.4999727  (n=1) 

2 -0.1249970 (n=2) 

3 -0.0555547  (n=3) 

4 -0.0312496  (n=4) 

5 -0.0199998  (n=5) 

6 -0.0138887  (n=6) 

7 -0.0102039  (n=7) 

 

As in the e+e- calculations in Table VIII, 70 s-type functions are employed. The value of the exponential damping constant A 

in the XBPS Hamiltonian is the same as for the e+e- treatment, although this choice is not critical for the H- atom. The principal 

quantum number n of each Rydberg state is indicated in parentheses next to the corresponding energy value. 

 

The results of Table IX correspond to an e+e- inter-particle distance on the order of r  72, 

but as we have seen, the maximum binding for the p+p- system occurs when the corresponding 

separation is mop/moe times smaller. At this distance all energy values in Table IX can be 

multiplied by a factor of 1836 to obtain the corresponding p+p- results because of the scaling 

property discussed in Chapter V. D. If the mass of the electron is substituted for that of the 

antiproton at such a small distance, the kinetic energy is only slightly reduced according to the 

classical Einstein free-particle expression. On the other hand, the corresponding damping factors 

for the electron are very close to zero for such high momenta, and so only the two Breit-Pauli 

terms with the (e/mop)
2 pre-factor are left (relatively) unaffected.  

As a result the required cancellation of the attractive and repulsive terms no longer takes 

place and an extremely large positive total energy results for the p+e- system in this range of 

inter-particle separation. No choice of basis set succeeds in binding the electron and proton more 

strongly together than is the case for the hydrogenic 1s state. For example, the use of electronic 

functions which are optimal for the strongly bound e+e- system along with proton functions 

which are 1836 times more compact (corresponding to their optimal p+p- counterparts) also 

produces only negative binding energies. 

These results can again be understood on a qualitative basis by considering the p+e- system 

in its own center-of-mass coordinate system. The condition of equal and opposite momenta (see 

Chapter V.F) now requires that the electron move at a speed which is 1836 times greater than 
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that of the proton. This requirement forces the particles to avoid each other by wide margins if 

high speeds are to be maintained, making the type of short-range momentum-dependent 

interaction represented by the Breit-Pauli interactions very ineffective in producing binding 

under these circumstances. Such distinctions in the relative particle masses for binary systems 

are of only minor importance when the Coulomb interaction dominates, however, which explains 

why we normally regard positronium as just another hydrogenic system. By simply decreasing 

the values of the exponents employed for the Gaussian basis functions, one eventually finds that 

the variational treatment of the XBPS Hamiltonian leads to binding energies in the 0.5 hartree 

range (Table VIII) expected for the ground state of the hydrogen atom. No amount of exponent 

optimization produces a second minimum at shorter inter-particle separations for this system, in 

marked contrast to what is observed when employing the analogous Hamiltonian for the e+e- and 

p+p- systems.  

 

I. EXTENDING THE XBPS MODEL TO NEUTRINO INTERACTIONS 

In Sect. V.E it was remarked that if the rest mass of the neutrino is exactly zero, its charge-

to-rest-mass ratio might be non-vanishing despite its lack of electric charge. By providing the 

XBPS Hamiltonian with such q/mo factors in the various exponentially damped Breit-Pauli 

terms, it is then conceivable at least in theory for the neutrino to undergo attractive interactions 

with other particles. In this section we will test this possibility by means of explicit calculations. 

The first question that arises is what value to use for q/mo. Consideration of the scaling 

arguments discussed in Sect. V.D shows, however, that this choice is not critical for the    

system itself. If we simply assume that the charge-to-mass ratios for the neutrino and 

antineutrino are equal but of opposite sign, we obtain a Hamiltonian (see Table I) with the 

following representative terms: 

 

H (p, r, q, mo) = p-1 - (q/mo)
22r-3 F(p, q, mo).      VI.2 

 

This operator is identical in form to that employed in Sect. V.D, except that all the terms with 

factors of qi or moi which do not appear as ratios of one another are missing because of the 

assumed vanishing magnitudes of the neutrino's charge and rest mass. 
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With this special form of the XBPS Hamiltonian it is possible to scale the coordinates in a 

slightly different manner than before, namely with 

 

p´ = (q/mo)(Q/Mo)
-1 p 

and r´= (q/mo)
-1 (Q/Mo) r,           VI.3 

 

so as to obtain the following result: 

  

 H(p, r, q, mo) = (q/mo)
-1(Q/Mo) 

 x{p´/-1 – (Q2/Mo
2)2 r´-3 F(p’, Q, Mo)}                              VI.4   

 = (q/mo)
-1 (Q/Mo) H (p´, r´, Q, Mo), 

 

where H (p´, r´, Q, Mo) is the corresponding Hamiltonian in the primed coordinate system for 

particles with a different value of |q/mo|. The operations are exactly the same as in the mass 

scaling procedure of Chapter V.D, but the relative charge-to-mass ratios are involved instead of 

relative masses. It must be recalled, however, that the simple relation between the two different 

Hamiltonians in this case only holds for q = mo = 0. Under these conditions the lowest possible 

energy eigenvalue for the    system, i.e. 2moc
2. is exactly zero as well. As a result, a wave 

function (r) satisfying the corresponding Schrödinger equation with this eigenvalue can be 

converted by means of the above coordinate transformation [eq. VI.3] into an eigenfunction (r´) 

of the primed Hamiltonian, which by virtue of the above scaling property also possesses the 

desired vanishing energy. In short, if we can find a Hamiltonian of this type which gives E = 0 as 

the lowest eigenvalue for the    system with a given |q/mo| value, we can easily repeat the 

process for any other charge-to-mass ratio. It can be noted that for this situation to hold, it is 

essential that the argument of the damping exponential operator F also contain a q/mo factor. 

The next point that merits discussion is whether it makes sense to talk of a bound system 

with the same energy as its separated products, in this case E=0 . The answer is clearly yes as 

long as the combined and dissociated systems are separated by a reasonably large energy barrier.  

With reference to Fig. 5 for the e+e- system, it is easy to construct an analogous total energy 

curve for the    system which satisfies this requirement (Fig. 8). Because of the absence of the 
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long-range Coulomb interaction in this case, we must expect that the energy first goes up as the 

neutrino and antineutrino approach each other from a long distance. The kinetic energy itself 

rises more slowly with decreasing separation than for the e+e- system because it varies linearly 

with momentum for systems with no rest mass. As a result, one doesn't expect the atomic-like 

potential minimum of Fig. 5 in this case, but rather that the energy should increase steadily until 

very short inter-particle separations of roughly r  3/2 (for q/mo = 1.0 a.u.). A maximum seems 

likely at that point, similarly as for e+e- , because the Breit-Pauli short-range interactions start to 

change more rapidly than the kinetic energy. After this point it is simply necessary that the 

exponential damping halt the attractive tendency when the total energy has again reached the 

value of zero. The kinetic energy begins to dominate once more at still smaller separations, so 

that a potential well can be formed in which the    system can exist indefinitely in the absence 

of external forces. 
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FIG. 8. Schematic diagram showing the proposed variation of the    system's internal energy as a function of the reciprocal of 

the distance between the two constituent particles. Only one minimum is expected, in contrast to the e+e- case shown in Fig. 5, at 

which point the total energy vanishes exactly, i.e. corresponding to a binding energy of 2mo/c2 for the tightly bound    

(photrino) system. 

 

The present scaling argument tells us that it really does not matter what value is chosen for 

|q/mo| to demonstrate this effect, but to obtain the most straightforward possible comparison 

with the e+e- system, it is reasonable to take it to be unity.  If the former 5s,5p basis is employed 

(see Chapter VI.D) in the corresponding XBPS calculations, it is found that the zero-energy 

minimum occurs for a damping constant A which is only slightly smaller than the corresponding 

e+e- and p+p- value (Fig. 9). This result is easily understood if one uses the optimum scale factor 

and A value derived from the e+e- calculations, for which the lowest-energy eigenvalue is  
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-2moec
2. This means that the damped Breit-Pauli terms (Table I) will have the same magnitudes 

for the    system (with |q/mo|=1.0 a.u.) as for the e+e- system in Table III. The Coulomb 

component is missing, however, as are the moc
2 terms in the kinetic energy. The two electronic 

moec
2 terms appearing with minus signs in the kinetic energy expression for e+e- make up the 

entire difference in the assumed binding energies of the two systems, so we can effectively 

ignore them in the following discussion. This means that there are only two effects remaining 

which can cause a non-zero binding energy for    when employing the same damping constant 

as before for e+e-. One of these favors the latter system (Coulomb attraction), while the other 

favors    [i.e. pc vs. (p2c2 + m2c4)1/2]. Of these, the Coulomb effect is larger in magnitude for 

the inter-particle distance range in question, but the energy difference (2680 hartree) is relatively 

small compared to the e+e- binding energy. Thus to obtain an exactly zero binding energy value 

for the    system in the same basis set, it is only necessary to lower the value of the damping 

constant A by 0.0007 a.u. 

This result ignores translational effects, however, and so it is interesting to carry out the 

optimizations based on the Eo expectation value, <H> - <T>, rather than on that of the total 

energy alone (see Chapter VI.E). As before with e+e-, when this is done the required value of A 

must increase in order to obtain the same binding energy as before. If the same value of A 

(1.7725 a.u.) is employed which gives the correct 2moec
2 binding energy value of -37557.7 

hartree for e+e- using the <Eo> criterion, a total internal energy of 897.2 hartree results for   , 

which is about three times smaller than in the analogous treatment employing the optimal A 

value (1.0775 a.u. ) for e+e- based on the <H> computations. 
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FIG. 9. Variation of the computed total energy (in khartree) of the    system as a function of the 5s,5p basis set scaling factor  

in the XBPS treatment for various values of the damping constant A. The horizontal line at the center of the diagram corresponds 

to the null rest energy (2moc2) of the system. A value of A is sought which leads to this energy result for the optimum choice of 

. Results for several other A values are also shown for comparison. Note that the values of A are 4.0 times larger than those 

given in the original text due to a difference in definition. 
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In view of the fact that the present full CI calculations fall short of providing exact 

solutions of the Schrödinger equations under consideration, it seems justified to conclude that for 

all practical purposes the same damping constant in the XBPS Hamiltonian leads to minimal 

binding energies for the three particle-antiparticle binary systems studied which are each equal to 

-2moc
2, in accordance with the expectations of the mass-energy equivalence formula. This result 

is exact for e+e- and p+p-, but only accurate to a good degree of approximation for the    system 

based on the calculations carried out thus far. Moreover, the second scaling theorem discussed 

above in eq. (VI.4) shows that this situation holds for any choice of the charge-to-mass ratio 

assumed for the neutrino. The latter finding thus offers a means of describing more than one kind 

of neutrino in the present model, consistent with what has been inferred from the results of 

various experiments82 and other theoretical considerations83 (see Sect. IV.B). 

 

J. NON-IONIZING PROPERTY OF NEUTRINOS  

 

The total energy curve of Fig. 8 for a    interaction derives its attractive characteristics 

from the short-range Breit-Pauli terms in the XBPS Hamiltonian by virtue of an assumed non-

zero charge-to-mass ratio for the constituent particles. This assumption needs to be reconciled 

with the observation that neutrinos have essentially no magnetic moment. In at least one sense 

the total energy variation shown in Fig. 8 is consistent with the experimental findings related to 

this issue, however, namely with the lack of ionization exhibited by neutrinos and especially 

their ability to penetrate essentially unhindered through dense matter.58 

For a particle to cause ionization it is necessary that it be attracted to an electron (or other 

charged system) to a close proximity. Because of the lack of a Coulomb interaction the total 

energy for the hypothetical    system should rise as the two constituents come closer together. 

Before the attractive Breit-Pauli terms can reverse this trend, it is necessary that the neutrinos 

approach each other very closely, to at least r=. The possibility of undergoing a long-range 

attractive force thus clearly distinguishes electrons (Fig. 5) from neutrinos (Fig. 8). If we look 

upon ionization as requiring some kind of orbital motion for the colliding (point) particles, this 

distinction can be crucial since it means that the centrifugal force must exceed any opposing 

attractive force in the e-   or    interactions at all but extremely small inter-particle separations.  

In this case, a hyperbolic trajectory would be expected almost universally. There is always a 
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large centrifugal barrier which needs to be overcome, and the particles must come very close to 

one another before this is feasible, even if a fairly large q/mo value is assumed for the neutrino.   

 An automobile with such a total energy profile could race down the highway with reckless 

abandon, certain to be repelled whenever it came very close to any other object. The only danger 

would be that it might approach something so closely at extremely high speed that the short-

range attractive force would finally be able to overcome the repulsive force. Such a picture is 

very reminiscent of the behavior of neutrinos in the Reines-Cowan experiment,58 in which an 

extremely small cross section for neutron formation of ~10-43 cm2 is observed. 

The conclusion that a non-zero q/mo value necessarily implies a non-zero magnetic 

moment would also seem to overlook the possibility that the mass of a neutrino is only zero at 

rest. The ratio of the charge to the relativistic mass is a more relevant quantity in determining the 

results of magnetic interactions, and this is exactly zero whenever the neutrino is in motion 

because no corresponding change in its electronic charge occurs as a result. The dominant 

formula used in describing cyclotron dynamics, p = mv = qBr, leads to the conclusion that a 

chargeless particle cannot achieve orbital motion with a finite radius, for example. The key 

assumption in formulating the XBPS Hamiltonian is that the coupling constants are ratios of 

charge to rest mass, and without this provision the short-range minimum in either Fig. 8 or 9 

would not be possible. In general, it should not be forgotten that virtually everything one knows 

about electromagnetism stems from experiments with individually charged particles (see also 

See Chapter V.E), even if the macroscopic system being observed possesses zero net electric 

charge. 

Support for this view also comes from the classical experimental result that the magnetic 

force is no more short-ranged than its electric counterpart. The force per unit length on an 

electric wire, for example, varies as the product of its current and that of a neighboring wire and 

is inversely proportional to the first power of the distance between them.159 There is little hint of 

a short-range effect in this behavior. The theoretical explanation for this result lies in the (nearly) 

constant velocities of the electrons involved in such experiments, which implies that the quantity 

mvr/r  l/r is constant as well. In quantum mechanical interactions the more typical situation is 

that l (or s) is constant, so that an energy term of order l2r-3 varies as the inverse cube of the inter-

particle distance rather than as r-1. The fact that particles don't always move at constant velocities 

opens up the possibility that related short-range interactions also exist, however, as suggested by 
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the appearance of the Breit-Pauli operators.106 For the present, however, we can conclude that a 

non-zero charge-to-rest-mass ratio for the neutrino does offer a way of rationalizing its extreme 

penetrability through dense matter, while at the same time leaving open the possibility of its 

undergoing a significantly strong interaction at very short inter-particle separations, 

 

K. RESULTS OF CALCULATIONS FOR OTHER BINARY SYSTEMS 

There are 21 distinct binary systems that can be formed from the proton, electron and 

neutrino and their respective antiparticles. Of these three are of the particle-antiparticle type 

already discussed, while the other 18 divide into pairs related to one another by charge 

conjugation. One such example is p+e-, which has the same Hamiltonian as p-e+ by virtue of the 

fact that the charges of the respective constituents appear as products of one another in all 

interactions (or as an absolute value in the exponential damping functions). Three of the 

remaining pairs are diagonal cases involving two identical particles. No binding is expected as a 

result, in accord with the results of explicit calculations. The various Breit-Pauli terms are 

attractive for certain angular momentum states, so this is not such an obvious result. The strength 

of the attraction is never enough to outweigh the kinetic energy contributions, however. Another 

three pairs are easily dispensed with as well, namely p+, p+   and p+e+ and their charge-

conjugated partners. If we assume a negative q/mo value for , the p+ system is seen to be quite 

similar to p+e-, at least as long as the absolute value of the charge-to-mass ratio is close to unity. 

In all cases it is assumed that the damping constant A in a given basis is the same as has been 

found in the e+e- calculations discussed above. 

This leaves two such pairs of binary systems unconsidered, e- and e-   and their charge-

conjugated positron systems. Of these, only the ones with q/mo values of opposite sign for their 

constituents are interesting in view of the experience with the other binary systems. Because of 

the fact that electrons and antineutrinos commonly appear together as decay products of 

neutrons, it is tempting to associate a positive q/mo value with  . The similarity to e+e- is 

expected to be particularly great if this quantity is assumed to be unity, in which case the results 

of Table III again become pertinent. Especially if the translational energy is excluded from 

consideration, it has been found above that e+e- and    are characterized by very nearly the same 

wave function in their respective lowest-energy states. The maximum binding energy of the e-   

system can thus be anticipated to fall midway between the corresponding values for e+e- and   . 
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This expectation is very nearly fulfilled in explicit calculations with the XBPS Hamiltonian in 

which it is assumed that q/mo = +1.0 a.u. for the   species. A binding energy of -15872.194 

hartree is computed when the same 5s,5p basis is employed which was found to be optimal for 

both e+e- and    (see Chapters VI.D and VI.H).   

Since it seems certain that no such bound e-   system actually exists (it would correspond 

to the mutual annihilation of the two particles in the conventional description for particle-

antiparticle pairs), it can be concluded that such a high value for the   charge-to-mass ratio is 

unacceptable. We can eliminate any computed binding with the electron by decreasing the above 

q/mo value, however, and repeating the scaling optimization procedure for the corresponding e-   

system (while again maintaining the damping constant A at its previous value). The resulting 

minimal energies .are plotted in Fig. 10 as a function of the assumed q/mo value. There is a 

simple relationship between this quantity and the optimum scaling parameter η, namely they are 

found to be inversely proportional to one another. This result is consistent with the second 

scaling theorem discussed in Sect. VI.H, which shows that the optimal value of  is inversely 

proportional to the square of the |q/mo| value assumed for the neutrino in a treatment of the 

hypothetical    system. 
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FIG. 10. Variation of the minimum value of the computed total energy (in khartree) of the e-   system (obtained by optimizing 

the scale factor ) in the XBPS treatment employing a 5s,5p basis set, given as a function of the antineutrino charge-to-rest-mass 

ratio  q/m0. The value of the exponential damping constant A assumed throughout (1.0775 a.u.) is taken from the results of the 

analogous e+e- calculations in the same basis. 

 

On the basis of the above considerations it appears likely that the |q/mo| value assumed for 

the neutrino and antineutrino cannot be greater than 0.7 a.u. and still avoid the prediction of a 

bound e-   system in nature. A value exceeding zero by a good margin is still tenable on this 

basis, however, since it would allow for a    system with a zero binding energy which is 
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nonetheless separated by a large barrier from its dissociation products. The above scaling 

arguments show that the inter-particle distances involved must decrease as the value of |q/mo| is 

lowered. It also should be noted that the symmetry of the lowest-energy e-   state is also found to 

be 0-, so that the analogy with the e+e- tight-binding state appears to retain its validity over a wide 

range of |q/mo| values. There is a tendency to emphasize the p1/2 character of the electronic 

function over s1/2 as the antineutrino charge-to-rest-mass ratio decreases, as seems reasonable 

from the nature of the Breit-Pauli terms and the requirement of minimizing the total energy for 

the resultant e-   system (the charge-conjugation symmetry is clearly missing for this binary 

system). 

 

VII. NUCLEAR BINDING IN THE XBPS MODEL 

 

The questioning of the creation-annihilation hypothesis considered in the previous chapters 

has led to an alternative interpretation of particle-antiparticle interactions in terms of a 

Schrödinger equation whose Hamiltonian contains momentum-dependent short-range operators. 

According to this model the electron and positron can be bound so strongly to one another that 

there is a total loss of mass relative to their respective free-particle states. Since nuclear binding 

processes are well known to be accompanied by distinctions in the total masses of products and 

reactants, in accordance with the predictions of Einstein’s mass-energy equivalence relation,4 it 

is natural to speculate that the same types of interactions might be involved in the e-e+ 

interaction. The exponential form of the attractive potentials employed in the XBPS Hamiltonian 

follows at least partially from this line of reasoning. 

There is another similarity connecting these two types of phenomena as well, however, 

which again is tied up with the supposition that matter can be created and destroyed by the gain 

or loss of energy. As discussed in Chapter IV.A, the accepted view of the role of the electron and 

antineutrino in nuclear interactions is that they are created whenever a neutron decays but that 

they are not present in the bound nuclei themselves.55 The alternative interpretation which will 

be pursued in the present chapter is that the neutron is akin to a tri-atomic molecule, i.e. 

composed of a proton, an electron and an antineutrino. It has negative binding energy and is thus 

analogous to an excimer system commonly encountered in molecular physics studies. A key 

element in the ensuing theoretical model is that neutrinos are capable of being strongly attracted 
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by other particles, but only at very short range. The e-   model system treated in the last section 

is the starting point of this investigation. 

 

A. INITIAL CALCULATIONS OF THE p+e-   SYSTEM 

The XBPS Hamiltonian (Table I) has a single free parameter, the exponential damping 

constant A, and it has been fixed by the requirement that the binding energy of each of the three 

particle-antiparticle binary systems be 2moc
2 in a full CI treatment employing a given one-

particle basis set. Otherwise, all that is needed to completely define a system’s Schrödinger 

equation are the electric charges and rest masses of the component particles. In the case of the 

antineutrino   these are assigned to be zero in each instance, but the possibility that their ratio 

has a non-zero value is left open as a means of explaining this particle's role in the nuclear 

binding process. The actual value for the antineutrino’s charge-to-rest-mass ratio has not been 

specified as yet, primarily because it has been found that the requirement of a vanishing binding 

energy for the    binary system can be satisfied for any choice of this quantity’s magnitude. A 

potential solution to this problem is provided by the "tri-atomic hypothesis" for the neutron's 

structure, however. Accordingly, we will simply demand that the magnitude of the antineutrino’s 

q/mo value be such as to lead to the experimental total energy of the neutron when solving the 

XBPS for the p+e-   system to which it is assumed to correspond in the present model. 

Specifically, the binding energy of the latter system should be equal to -28758 hartree (0.7825 

MeV), which corresponds to the difference in the rest masses of the proton-electron combination 

and that of the meta-stable neutron. 

The first series of calculations carried out to investigative this hypothesis employs the 

simple 2s,2p Gaussian basis mentioned in Chapter VI. D (exponents of 2.0 x 108 and 1.0 x 108  

ao
-2 in both cases). A scale factor  is then defined as before to be optimized so as to obtain the 

minimum energy possible for a given choice of q/mo. Strictly speaking, only a local minimum 

is of interest in this case, since the desired energy is greater than that of the separated products, 

but the range of  involved is anticipated to be in the same neighborhood as for the e+e- 

calculations considered earlier. The minimization is carried out in terms of the total energy, 

although the magnitude of the corresponding translational energy will also be determined. 

Accordingly, the value chosen for A is 1.0540 a.u., since it gives the correct binding energy in 

the analogous treatment for the e+e- system (Chapter  VI. D). For all q/mo values assumed for   
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it is found that the lowest energy eigenvalue in the interesting range of η occurs for a state of 1/2- 

symmetry. A minimum with close to the desired total energy (+28900 hartree) occurs for a scale 

factor  of 0.18 and a q/mo value of + 0.5733 a.u. The corresponding variation of energy with  

is shown in Fig. 11, while the dependence of the minimal total energy as a function of the 

assumed q/mo value for  , i.e. as obtained by optimizing  in each case, is given in Fig. 12. 

 
FIG. 11. Variation of the computed total energy (in khartree) of the p+e-   (neutron) system as a function of the 2s,2p basis set 

scaling factor  in the XBPS treatment for various values of the antineutrino charge-to-rest-mass ratio q /mo. The horizontal line 

at the center of the diagram corresponds to the experimental total energy of the neutron at rest. The value of the exponential 
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damping constant A assumed in each case (1.054 a.u.) is taken from the results of the analogous e+e- calculations in the same 

basis. 

 
FIG. 12. Variation of the minimal p+e-   system's computed total energy (taken from Fig. 11, 2s,2p basis) as a function of the 

antineutrino charge-to-rest-mass ratio q/mo. The horizontal line at the center of the diagram corresponds to the experimental total 

energy of the neutron at rest. 

 

Although the above calculations are fairly crude because of the small number of functions 

in the one-particle basis employed, they nonetheless illustrate a number of features of the present 

theoretical model which can be expected to be retained as the level of computational treatment is 
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improved. To begin with, the fact that a minimum in total energy is always found demonstrates 

that the short-range potential employed is capable of binding the above three particles together 

within a relatively small volume. The computed binding energy is relatively sensitive to the 

choice of the   q/mo, and indicates that for values close to +1.0 a.u, the p+e-   system would be 

more stable than the neutron actually observed experimentally. The corresponding optimal  

values are indicated in parentheses in Fig. 12, and are seen to increase rather quickly as q/mo 

decreases. There is thus a tendency for the constituent particles to draw more closely together at 

the same time that the total energy is increasing during the same variation. This is very similar to 

the experience noted for the e-   system discussed in Chapter VI. K (see Fig. 10), which in turn 

can be anticipated based on the coordinate-scaling arguments of Chapter VI. H. It is also clear 

from comparing Figs. 10 and 12 that the rate of increase in total energy caused by lowering 

the antineutrino’s q/mo value is somewhat greater for the e-   binary system than for tri-atomic 

p+e-  . 

The wavefunction corresponding to the experimental neutron binding energy is shown for 

the present basis in Table XII (SCF orbitals and full CI coefficients). It is relatively easy to 

analyze these results because the proton is seen to occupy a single s-type orbital almost 

exclusively in the small basis employed. For each product of three spatial orbitals, there are two 

doublet states possible, constructed from the three spin products (MJ = +1/2): ß, ß and ß 

(spins given in order of p+e-  ,  for mJ = 1/2 and ß for mj = -1/2 for both s1/2 and p1/2 spin-

orbitals). In the calculations the two doublets are represented by the linear combinations: 1 = 

(2/3)1/2 ß -6-1/2 (ß + ß) and 2 = 2-1/2 (ß - ß). In this basis the preferred spin 

combination is (3/4)1/2 l + (1/2) 2, which thus reduces to opt= 2-1/2 (ß - ß). In essence the 

proton therefore almost always has  spin, while the e-   pair forms a singlet (ß - ß) 

combination which is very reminiscent of the 0- state preferred by the e+e- system and the other 

particle-antiparticle binaries studied, as well asby e-   itself. The p1/2 s1/2 configurations are again 

preferred for the e-   complex, just as in the absence of the proton, but the corresponding s1/2 p1/2 

product also makes a substantial contribution in each case. This type of polarization of the 

wavefunction is greater for the p+e-   system, however. Clearly the MJ = -1/2 component of the 

1/2- state can be obtained by inverting all  (and ß spins), which in effect means that the proton 

with ß spin is then bound to the same 0- e-   structure as before. 
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TABLE XII. Self-consistent field (a) and selected CI (b) coefficients for the XBPS calculation (order 176) of the 1/2- ground 

state of the p+e   neutron system employing a 2s,2p basis (1 = 0.36 x 108 a0
-2 and 2 = 0.18 x 108 a0

-2) with scale factor =0.18, 

exponential damping constant A=1.054 a.u. and   q/mo value of 0.5733 a.u. 

 

  a)    SCF Coefficients   

 Orbital p+ e-    

   1 2 l 2 1 2 

 1s1/2  1.62047 -1.88386 -1.23308 2.15739 -0.01823 -2.48485 

 2s1/2  -0.72534 2.37670 1.99702 -1.47876 1.01666 2.26743 

 1p1/2  1.52029 -1.26858 -0.47744 -1.92162 -0.55928 1.89942 

 2p1/2  -0.67147 1.86271 1.38257 1.41742 1.44199 -1.35692 

 1p3/2  1.52029 -1.26858 -0.76754 1.82523 -0.23080 -1.96655 

 2p3/2  -0.67147 1.86271 1.58427 -1.18771 1.19238 1.58076 

         

 b)  Configuration 

(orbital occupations) 

 CI (1/2-) 

Coefficients * 

 

  p+ e-       

  1s1/2 1p1/2 1sl/2  0.572975 0.331858 

  1s1/2 2p1/2 1s1/2  -0.211011 -0.122144 

  2s1/2 1pl/2 1sl/2  0.082410 0.047579 

  1s1/2 1p1/2 2s1/2  -0.242427 -0.140535 

  1s1/2 1s1/2 1pl/2  0.274353 0.158440 

  1s1/2 1s1/2 2p1/2  0.141213 0.081532 

  1s1/2 2s1/2 1pl/2  0.255488 0.147615 

  1s1/2 2s1/2 2p1/2  0.279461 0.161382 

  1s1/2 2p1/2 2s1/2  0.196547 0.113694 

  1p1/2 1p1/2 1pl/2  -0.023543 -0.040888 

  2s1/2 1s1/2 1pl/2  0.058872 0.033968 

  2s1/2 2s1/2 1p1/2  0.061997 0.035741 

  2s1/2 2s1/2 2pl/2  0.055680 0.032099 

  1p3/2 1s1/2 1s1/2  -0.054191   

  1p3/2 2s1/2 1s1/2  -0.057859   

  1p3/2 1pl/2 1p1/2  -0.067169   

  1p3/2 1pl/2 2p1/2  -0.060622   

*Two configuration-state functions are needed to span the spaces corresponding to (1/2) (1/2) (1/2) occupations (as defined in 

text), whereas only one such function is needed for the corresponding (3/2) (1/2) (1/2) species; all configurations with at least one 

CI coefficient whose absolute value exceeds 0.04 are listed. 
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B. THE MECHANISM FOR PROTON BONDING IN THE p+e-   SYSTEM 

A comparison of Figs. 10 and 12 helps to illustrate the origin of the proton binding process 

in the present model. The energy difference results for e-   and p+e-   in the same (2s,2p) basis 

are plotted against the assumed q/mo  value for   in Fig. 13, and show that the proton binding 

energy increases as this charge-to-mass ratio is reduced from its original value of +1.0 a.u. 

Because of the small q/mo value of the proton it is to be expected that only terms in the XBPS 

Hamiltonian (Table I) which do not involve this quantity will be important. An analysis of the 

p+e   total energy for the   q/mo values of 1.0 and 0.5733 a.u. is given in Tables XIII and XIV 

respectively, inc1uding corresponding results for optimal treatments of the e-   system in its 

lowest-energy 0- state. The proton's kinetic energy contribution is relatively small because of its 

large mass, but at the interpartic1e distances involved, this quantity still works effectively against 

net binding . For the   q/mo value of 0.5733 a.u. which leads to the experimental neutron total 

energy for the p+e   system, it is found, for example, that the proton kinetic energy is 36401.887 

hartree, compared with a value of the proton-electron Coulomb attraction contribution of 

 -5189.462 hartree (Table XIV) . The latter result corresponds to a mean electron-proton distance 

of 3.62 2 bohr (10.2 fm). There are two other XBPS terms for the proton which do not involve 

its own q /mo value, however, which play a decisive role in the binding process, namely the spin-

same-orbit and Darwin terms involving only the squares of either the q/mo values for the electron 

or antineutrino (Table I). Consequently, these terms are of the same order of magnitude as their 

counterparts in the e+e- calculation (see Table III). 

The magnitudes of these contributions to the p+e-   energy depend very much on the 

characteristics of the various occupied spin-orbitals, however. A strong contribution toward 

proton binding comes from its spin-same-orbit interaction with the electron when the latter 

occupies a p1/2 orbital while the proton occupies s1/2 (see Table XII). This attractive interaction is 

countered by the corresponding term involving  , however, because the latter also occupies pl/2 

heavily and its q/mo value is assumed to be of opposite sign to that of the electron. The Darwin 

term also is characterized by large contributions to the p+e   total energy in which the proton is 

directly involved, however. In this case it is the antineutrino which provides an attractive force 

for the proton, however, which is countered only partially by the corresponding repulsive p+e- 

Darwin term contribution (Table I). 

 



121 

 

 

 
FIG. 13. Difference of the computed total energies (in khartree) of the e-   and p+ e-   systems (with separately optimized scale 

factors ) as a function of the antineutrino charge-to-rest-mass ratio q/mo (2s,2p basis). 
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TABLE XIII. Energy contributions (in hartree) of various operators (see Table I for definitions) and particle combinations for (a) 

the 1/2- ground state of the p+e-   neutron system and (b) the 0- state of the isolated e-   binary obtained by employing the 2s,2p 

basis with scale factor  = 0.115, exponential damping constant A = 1.054 a,u,and antineutrino q/movalue of 1.0 a.u. for the 

XBPS Hamiltonian. 

 

a) Operator p+e- p+   e-   Total (p+e-  ) 
Kinetic Energy 23276.671 (p+) 1117472.413(e-) 1133826.572 (  ) 2274575.656 

Coulomb -4305.801 0.000 0.000 -4305.801 

Spin-same-orbit -172833.434 48470.883 -395254.117 -519616.667 

Spin-other-orbit -31.731 27.278 -875528.194 -875532.646 

Darwin Term 92782.662 -228814.351 19549.016 -116482.672 

Orbit-orbit -44.084 129.057 -450397.290 -450312.316 

Spin-spin -0.550 -0.132 -447017.344 -447018.026 

Spin-spin  -0.223 -1.938 7381.956 7379.795 

Total Energy    -131312.679 

     

b) Operator    Total (e-  ) 

Kinetic Energy    2247935.736 

Coulomb    0.000 

Spin-same-orbit    -411800.053 

Spin-other-orbit    -916668.797 

Darwin Term    8317.250 

Orbit-orbit    -480109.984 

Spin-spin    -461579.506 

Spin-spin     0.000 

Total Energy    -13905.355 

 

There is thus a fairly complex system of interactions available among the Breit-Pauli 

terms, whose net energy contribution depends on two major factors: a)the character of the 

orbitals occupied respectively by the three particles and b) the assumed value of the 

antineutrino’s charge-to-rest-mass ratio [since the corresponding spin-same-orbit and Darwin 

interactions with the proton depend on the square of this quantity (Table I)]. The easiest means 

of grasping the influence of these various factors in the proton binding energy is to first examine 

the situation for q/mo (  ) = +1.0 a.u. If the orbital occupations of the e- and   particles were 

exactly equivalent, all the proton spin-same-orbit and Darwin interactions would exactly cancel 

one another. That would effectively leave only the proton kinetic energy and proton-electron 

Coulomb terms to determine the binding energy, which would mean that the p+e-   system is 

decidedly unstable relative to e-  . By assuming a wavefunction in which the electron has more 

p1/2 character than  , it is possible to shift the balance toward a more favorab1e binding 

situation, however, by virtue of the fact that the attractive proton-electron spin-same-orbit term 

then outweighs the repulsive p+   contribution of the analogous type. 
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TABLE XIV. Energy contributions (in hartree) of various operators (see Table I for definitions) and particle combinations for (a) 

the 1/2- ground state of the p+e   neutron system and (b) the 0- state of the isolated e-   binary obtained by employing the 2s,2p 

basis with scale factor  = 0.18, exponential damping constant A = 1.054 a.u. and :antineutrino q/mo value of 0.5733 a.u. for the 

XBPS Hamiltonian. 

 

a) Operator p+e- p+   e-   Total (p+e-  ) 

Kinetic Energy 36401.887 (p+) 1346815.079 (e-) 1453755.882 (  ) 2836972.849 

Coulomb -5189.461 0.000 0.000 -5189.461 

Spin-same-orbit         -208544.881 50249.141 -465129.910 -623425.649 

Spin-other-orbit -58.267 54.775 -1007066.189 -1007069.681 

Darwin Term 107014.110 -262604.473 17161.765 -138428.597 

Orbit-orbit 200.486 -58.064 -523108.311 -522965.888 

Spin-spin -1.096 -0.248 -516918.459 -516919.802 

Spin-spin  -0.387 -4.109 5928.285 5923.790 

Total Energy    28897.559 

     

b) Operator    Total (e-  ) 

Kinetic Energy    2789426.035 

Coulomb    0.000 

Spin-same-orbit    -481697.661 

Spin-other-orbit    -1063806.525 

Darwin Term    11500.864 

Orbit-orbit    -558243.900 

Spin-spin    -531802.164 

Spin-spin     1127.425 

Total Energy    166504.076 

 

Examination of Table XIII shows clearly that heavy net attractive contributions actually 

arise for both the spin-same-orbit and Darwin terms as a result of such a polarization. As a result, 

the total binding energy of the proton to the e-   complex is computed to be 117400 hartree. By 

comparison, if only the proton kinetic energy and proton-electron Coulomb contributions were 

counted, a negative proton binding energy would result. There is another key factor in the p+e-   

binding process, however, which is also important in the formation of tri-atomic systems in the 

realm of molecular physics. Some adaptation of the charge distribution of a diatomic component 

of the molecule is almost always crucial to the production of a stable tri-atomic system.l13 

Generally speaking, the more stable the diatomic system, the higher the price to be paid for 

altering its charge distribution to accommodate bonding with a third atom. In the present context, 

it is important to recall that a quite small AO basis has been employed in these exploratory 

calculations, however, and so it can be anticipated that at least some of the e-   system’s affinity 
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to polarize its charge distribution is a consequence of its relatively poor representation at this 

level of theoretical treatment. 

When the q/mo value is decreased from unity for the antineutrino, several additional effects 

emerge. The e-   complex gradually loses its stability in the process, and it thus becomes easier 

for the proton to bind to it as a direct consequence. The cancellation of the Breit-Pauli p+e- and 

p+   interactions is no longer perfect even if both e- and   have equivalent orbital occupations 

because the key (q/mo)
2 weighting factors now favor the electron. In addition, polarization 

effects are less likely to destabilize the e-   complex, so that the types of changes in the isolated 

system’s wavefunction which maximize binding with the proton are accomplished with less 

resistance than before. For the q/mo value of 0.5733 a.u. required to obtain the experimental 

neutron rest mass for the p+e-   calculations employing the 2s,2p basis, it is found that the proton 

binding energy increases to 137600 hartree, over 20000 hartree greater than the value which 

results when a unit value for this quantity is employed.  

The results of Table XIV show further that both the spin-same-orbit and Darwin 

interactions again produce a net attraction for the proton, namely 158296 and 155590 hartree, 

respectively (obtained by adding the corresponding p+e- and p+   results). These results are 

accomplished to a large extent by polarization of the e-   complex, as can be seen from the 

following comparison. For this q/mo value the minimal total energy obtained for the isolated e-   

system is 166504 hartree, whereas the corresponding energy value obtained employing the 

polarized p+e-   wavefunction is 311438 hartree (obtained by adding the e- kinetic energy of 

1346815.079 hartree to the e-   results including the   kinetic energy), an increase of 144934 

hartree. Again, while it is very likely that such polarization effects are greatly exaggerated by the 

use of such a small one-particle basis set in the present calculations, it at least seems conceivable 

that the combination of changes of this nature in the e-   charge distribution along with the use of 

a |q/mo| value for the antineutrino which is smaller than that of the electron could lead to 

sufficient proton binding to produce a meta-stable p+e-   complex with the properties of the 

experimentally observed neutron. The effect of this polarization increases with the   charge-to-

mass ratio, so these considerations make it at least qualitatively understandable why the proton 

binding energy increases as q/mo decreases, as seen clearly from the result of Fig. 13. 

There is another important aspect of the proton binding process yet to be discussed,  
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however, namely the influence of the exponential damping factors in the XBPS Hamiltonian 

(Table I). These factors play a decisive role in obtaining an energy minimum for the e-   binary 

(Figs. 10-11), but they also have a subtle influence on the proton's interactions. As we have 

already seen, the Breit-Pauli terms of greatest importance for the proton are the spin-same-orbit 

and Darwin interactions with e- and   which are multiplied by the (q/mo)
2 factors of the latter 

particles only. In these cases the corresponding damping factors are totally independent of the 

proton's momentum (Table 1). By decreasing the size of the proton’s orbital it is therefore 

possible to increase the magnitude of the un-damped Breit-Pauli expectation values, with their 

net attractive influence, without producing a corresponding decrease in the magnitude of the 

related exponential damping factors. As long as the charge distributions of the electron and 

antineutrino do not change at the same time, such an increase in the proton momentum thus 

generally leads to a net increase in the attractive contribution of the damped Breit- Pauli 

interactions to the proton-bonded system. 

The possibilities are not unlimited for the proton, however, because its kinetic energy also 

increases as its charge distribution is made more compact (see Fig. 14). 
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FIG. 14. Schematic diagram showing the relationship between the size of the proton orbital and the stability of the p+e-   

neutron system. The large mass of the proton vis-a-vis the e-   species allows it to assume a relatively contracted charge 

distribution which helps to maximize the effect of its attractive short-range interactions with the lighter particles without greatly 

increasing. its own kinetic energy, thus leading to the total energy minimum shown. 

 

Because the Breit-Pauli terms vary as r-3 before damping effects are considered, while the 

proton kinetic energy increases only as p2  r-2, it follows that in the interparticle distance range 

of interest (r  2), the total binding energy at first increases with the proton’s momentum. 

Eventually a point of diminishing returns is reached, however, because as the proton orbital 

shrinks in size the values of the Breit-Pauli integrals for fixed e- and   probability distributions 
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begin to change more and more slowly, ultimately approaching the point-charge limit commonly 

employed in atomic calculations using the Breit-Pauli method. The proton kinetic energy 

continues to increase at roughly the same rate, however, and so at some point an optimum proton 

size is reached. Nonetheless, this effect represents a distinct advantage for the proton vis-a-vis 

lighter particles, and will be seen to play an increasingly more important role in the theory of 

nuclear binding which emerges from consideration of the properties of the XBPS Hamiltonian. 

To illustrate the proton's tendency to assume a relatively more compact charge distribution 

than the electron and antineutrino, an additional series of calculations has been carried out in 

which two s-type Gaussian functions have been added to the original 2s,2p one-particle basis 

employed above. Optimization of the new exponents (1 and 2) while holding those of the other 

functions fixed at their optimal values for the e-   wavefunction shows that the proton prefers 

relatively high values for these quantities (2.56 x 108 and 8.0 x 107 a0
-2). These values are 8.0 and 

2.5 times greater than that of the largest exponent in the optimal 2s,2p e-   basis, indicating a 

significant contraction of the proton wavefunction, as expected. The new basis functions succeed 

in lowering the total p+e-   energy by nearly 60000 hartree relative to the 2s,2p result given in 

Table XIV. In order to be consistent with the general calibration procedures adopted earlier, it is 

necessary to readjust the respective value of the exponential damping constant A and the 

antineutrino q/mo value so as to produce minimal energy results for the e+e- and p+e-   systems of 

the desired values. On this basis A is increased only slightly to a value of 1.0568 a.u. while the   

q/mo result is adjusted downward to 0.5375 a.u. A summary of the energy contributions for the 

p+e-   1/2- state found in this basis set are given in Table XV for comparison with the 

corresponding 2s,2p data discussed first (Table XIV). The shrinking of the proton charge 

distribution is most easily recognized from the magnitude of the kinetic energy obtained in the 

two treatments. This quantity increases by 79% as a result of the basis set 

 



128 

 

TABLE XV. Energy contributions (in hartree) of various operators (see Table I for definitions) and particle combinations for (a) 

the 1/2- ground state of the p+ e-   neutron system and (b) the 0- state of the isolated e-   binary obtained by employing the 4s,2p 

basis with scale factor  = 0.16, exponential damping constant A = 1.0568 a.u. and antineutrino q/mo value of 0.5375 a.u. for the 

XBPS Hamiltonian. 

 

 a) Operator p+e- p+   e-   Total (p+e-  ) 

 Kinetic Energy 65280.208 (p+) 1339330.432(e-) 1478062.82 t(\j) 2882673.461 

 Coulomb -5517.636 0.000 0.000 -5517.636 

 Spin-same-orbit -250929.141 70545.115 -463958.811 -644342.837 

 Spin-other-orbit -67.206 61. 902 -984257.224 -984262.528 

 Darwin Term 117676.768 -352977.701 15413.212 -219887.721 

 Orbit-orbit -66.116 228.315 -492670.535 -492508.336 

 Spin-spin -2.195 -0.350 -511881.100 -511883.645 

 Spin-spin  -0.474 -10.788 5302.617 5291.355 

     

Total Energy    29562.111 

     

     

b) Operator    Total (e-  ) 

     

Kinetic Energy    2759022.924 

Coulomb    0.000 

Spin-same-orbit    -475143.463 

Spin-other-orbit    -1042436.569 

Darwin Term    11692.897 

Orbit-orbit    -536596.507 

Spin-spin    -520943.516 

Spin-spin     1286.444 

     

Total Energy    196882.208 
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expansion, as compared to relatively small changes in the corresponding values for the electron 

and antineutrino. The net attractions of the proton spin-same-orbit and Darwin terms are also 

increased to 180384 and 235301 hartree respectively, representing a total of 101799 hartree 

additional binding to help offset the increase in proton kinetic energy. By construction, the total 

energies in both calculations are nearly identical, from which it is clear that the shrinking of the 

proton charge distribution is also paid for at the price of additional destabilization of the e-   

complex. 

Another key point to consider in the present p+e-   calculations is the way in which the 

translational energy is treated. Because of the heavy mass of the proton, it follows that the 

relativistic translational energy for a given p+e-   wavefunction is much smaller than that for an 

equivalent e+e- species. We have seen in Sect. VI. E that the use of <Eo> = <H-T> as criterion for 

the basis set optimizations leads to a. notably higher damping constant A (1.7725 a.u. in the 

5s,5p basis) than when only <H> is used (1.0775 a.u.), If the higher of these A values is used in 

the p+e   calculations (or the corresponding value for the 2s,2p basis), it is impossible to obtain a 

low enough total energy for this system to satisfy the requirement that its rest mass be equal to 

that of the neutron. This situation is an artifact of the small (2s,2p) basis employed, however, 

because the exact solutions of the XBPS must be eigenfunctions of both H and T and the lowest 

total energy eigenvalue must correspond to a vanishing translational energy. Under the latter 

condition there would be no need to distinguish between the two different optimization 

procedures employed above, since they would necessarily lead to identical results (Emin = Eo), At 

this stage of development, however, it is necessary to deal with the fact that the approximate 

wavefunctions generated at the present level of treatment invariably have large expectation 

values of the translational momentum operator for the system at hand, at least when such 

compact charge distributions are involved as are known to characterize the internal structure of 

nuclei. 

Under the circumstances, the decision to focus on the expectation value of the total energy 

in comparing the stabilities of systems containing different numbers of protons must carry with it 

the recognition that this choice favors heavier particles over lighter ones. Another way of seeing 

this is to recall that the value of the exponential damping constant A must be significantly 

smaller than variational arguments indicate it should be in order to obtain total energies for the 

particle-antiparticle binary systems which correspond to binding energies of 2moc
2. As the 
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quality of the basis set improves, the effective value of A must increase to maintain this 

condition until it ultimately assumes the ideal result corresponding to the exact solution of the 

XBPS for the translationless binary systems. To illustrate this tendency calculations have been 

carried out for the e+ e- system employing a 2s,2p,2d basis. They lead to a value for A of 1.2647 

a.u., as compared to that of 1.0775 a.u. obtained with the 5s,5p basis. Since the proton binding 

energy in the p+e-   calculations considered thus far has been shown to arise primarily from 

terms which contain the corresponding damping factors in which the constant A appears, it 

seems highly likely that the degree of binding will be strongly influenced by such developments. 

As usual, the binding energy of the e+e- system is held at -37557.773 hartree in the new 

basis, for example, but the degree to which it or its e-   analog can bind a proton can be expected 

to decrease as the value of the damping factor increases. This is tantamount to concluding that 

the computed proton binding energy for a given system will generally decrease as the level of 

theoretical treatment is improved within the XBPS model. Moreover, this expectation is also 

consistent with the discussion given earlier regarding the relationship between the stability of the 

e-   complex and its susceptibility to polarization by neighboring protons. In other words, as the 

basis set is improved there is a growing tendency for the e-   system to more strongly resist 

having its charge distribution altered relative to its isolated state. 

There is a competing factor which tends to insure that the minimal p+e-   total energy can 

always be adjusted to the value corresponding to the neutron at rest, however, namely the 

dependence of this quantity on the q/mo value assumed for the antineutrino as the quality of the 

one-partic1e basis is improved. In the present case it is found, for example, that it is necessary to 

increase this value to 0.63 a.u. to obtain the desired energy result to a suitable approximation. 

The corresponding energy contributions are given in Table XVI, similarly as for the other basis 

sets discussed earlier. Since the Gaussian exponents for the 2s,2p,2d basis have been optimized 

for the e+e- system, the results of these calculations are most meaningfully compared to those 

employing the 2s,2p basis (Table XIV), i.e. without the benefit of specially optimized proton s 

functions. As expected, the use of a significantly larger damping constant leads to a reduction in 

the net binding associated with the proton spin-same-orbit and Darwin terms (74427 and 70107 

hartree respectively), 46% of the previous total. The proton's kinetic energy is correspondingly 

smaller in the 2s,2p,2d computations as well, 56% of the former value. The proton-electron 
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Coulomb energy is also smaller, reflecting a general tendency to keep these two particles further 

apart on the average as a result of the addition of d functions to the basis set. 

 

TABLE XVI. Energy contributions (in hartree) of various operators (see Table I for definitions) and particle combinations for the 

1/2- ground state of the p+e   neutron system obtained by employing the 2s,2p,2d basis with scale factor  = 0.111, exponential 

damping constant A = 1.2648 a.u. and aritineutrino q/mo value of 0.63 a.u. for the XBPS Hamiltonian. 

 

Operator p+e- p+   e-   Total (p+ e-  ) 

 Kinetic Energy 20354.545(p+) 1068402.098(e-) 1140129.945(  ) 2228886.588 

 Coulomb -3856.027 0.000 0.000 -3856.027 

 Spin-same-orbit -94307.843 19879.681 -363207.789 -437635.951 

 Spin-other-orbit -23.085 19.111 -757175.358 -757179.332 

 Darwin Term 48531. 942 -118639.460 8357.925 -61749.593 

 Orbit-orbit -16.656 145.966 -559254.673 -559125.363 

 Spin-spin -0.370 -0.176 -383654.253 -383654.799 

 Spin-spin  -0.179 -1.489 2345.886 2344.218 

 Total Energy    28029.737 

 

Particularly when one considers the capacity of the proton to assume a more contracted 

charge distribution when extra functions are included in the basis which can be specifically 

optimized for it, it appears feasible to construct a suitably quantitative theory of nuclear binding 

on the basis of the model under discussion. At least these results show that it is far from proven 

that the "nuclear electrons" which Fermi spoke of in introducing his theory of beta decay55 

actually cannot exist within the confines of a bound nucleus. Before discussing further 

computations employing the XBPS Hamiltonian, however, it is well to consider other 

experimental information regarding the neutron which has been claimed to lend support to the 

hypothesis of the disappearing electron. 

 

C. COMPARISON OF THE PROPERTIES OF THE p+e-   SYSTEM WITH THOSE KNOWN FOR 

THE NEUTRON 
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The calculations discussed above have been suggested by the model of a neutron as a 

composite system formed by its known decay elements. The lowest-energy p+e   system is found 

to be a doublet, consistent with what is known for the neutron. As a product of three fermions, it 

is a fermionic system itself, in agreement with Pauli's original interpretation of beta decay 

processes.39 The charge distribution found to be optimal for the p+e-   system corresponds to 

nuclear dimensions, in fulfillment of another obvious requirement, but more extensive 

calculations are highly desirable in order to be more quantitative on this point. A three-way 

partnership is suggested in forming the neutron which is reminiscent of the excimer concept in 

molecular physics. The fact that the system corresponds to a local energy minimum which lies 

above that of its separated particles is clearly consistent with the known meta-stability of the 

neutron. This aspect of nuclear binding (weak interaction) will be taken up in more detail in .the 

following chapter. 

A key to the binding of the three particles together is the assumption of a positive q/mo 

value for the antineutrino, but one with a smaller absolute value than that of the electron. One 

has the picture of an e-   system which is an imperfect copy of the e+e- massless binary first 

discussed. Its relative instability makes it more attractive to the proton than e+e- itself, and in 

effect the proton binding that results can be looked upon as an attempt to compensate for what is 

otherwise missing in the e-   bond vis-a-vis either of its e+e- or    counterparts. The electrical 

neutrality of the antineutrino guarantees that the p+e-   system has no net charge, but this brings 

us to a far more delicate matter. The neutron possesses a magnetic dipole moment which is 

negative and of the order of the nuclear Bohr magneton.39,53 As such it is far smaller in absolute 

magnitude than what one would expect for a system containing an electron. 

To examine this point it is helpful to consider an experiment in which the hypothetical 

p+e-   system is subjected to a magnetic field in order to determine this quantity. If we assume 

that the magnetic moment of the combined system is equal to the algebraic sum of the individual 

moments of its constituents, the measured value must be expected to be nearly equal to that of 

the electron alone. This assumption works quite well in dealing with molecular properties and 

has also been found to be acceptable for nuclei, as for example in the comparison of the 

deuteron’s magnetic moment with those of its constituent proton and neutron.160 If we look more 

closely at the way magnetic moments are measured, however, we note that for this additivity 

principle to hold in the p+e-   case, it is essential that the electron be just as apt to rotate in 
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response to the torque applied by a magnetic field in this tri-atomic system as it is in its free 

state, or alternatively when it is weakly bound to a positive atomic or molecular ion. 

Especially since the present calculations indicate that the binding process requires a 

particular spin orientation between all three particles in the optimum p+e-   resonance state, it 

seems far from obvious that the above condition is fulfilled in the present instance. In order for 

the electron spin to change its orientation, it seems much more likely that the system as a whole 

must rotate, and that would mean that a much larger mass is involved than for a tightly bound 

electron as in an outer shell of an atom. A similar situation is well known in the study of the 

Compton effect,46 for example. The modified wave observed in x-ray radiation from atoms is 

observed only when an essentially free electron is involved in the interaction, in which case the 

change in wavelength  is found to be inversely proportional to the electronic mass. When an 

inner-shell electron does the scattering, however, it is as if the whole atom is involved in the 

interaction and consequently the Compton scattering law indicates the production of an 

essentially unmodified wave, i.e.  ~ 0. The calculations discussed above suggest that the 

electron in the p+e-   resonance system is very tightly bound to both the proton and the 

antineutrino constituents, and thus that the model of an inner-shell electron in the preceding 

analogy is far more appropriate. 

On this basis one is led to expect that the p+e-   system has a magnetic moment of an 

extremely heavy electron, i.e. negative in sign, but of the order of a nuclear bohr magneton, 

which is at least approximately what is observed for the neutron.53,97 The additivity principle 

should not work at all well in this case because the interaction of the particle spins is intimately 

involved in the internal bonding process, unlike the case when predominantly Coulomb 

interactions are involved. In Chapter IX we will come back to this point when we discuss the 

muon magnetic moment, which is almost exactly what one would expect for an electron having 

this particle’s rest mass. The overall situation is complicated for the proton and neutron, 

however, because of the pion cloud known to surround each of them,92,95,98,161 as also considered 

below. The observed neutron magnetic moment is roughly double53,97,98 that which one would 

expect from the above “clamped-electron” model, but such a discrepancy is at least potentially 

understandable in terms of the environment otherwise assumed for the neutron. Moreover, the 

fact that high-energy electron scattering experiments162 have indicated elastic form factors which 
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correspond to a small but not necessarily vanishing neutron charge radius are also seemingly 

consistent with the present model’s assumed tri-atomic composition for this neutral system. 

 

D. THE BINDING ENERGY OF THE DEUTERON IN THE XBPS MODEL 

The simplest nucleus consists of a single neutron and proton which are assumed to be 

bound together by a force generally referred to as the strong or hadronic interaction. By analogy 

to the quantum electrodynamics description of the Coulomb force as involving the exchange of a 

virtual photon, Yukawa92 suggested in 1935 that the exchange of a heavier particle was 

responsible for the force joining any two nucleons together. According to the present model, the 

reaction of a proton and a neutron to form the deuteron product 2H involves four separate 

particles, three of which are found in the neutron itself. The question that will be taken up next is 

whether the forces which have been proposed above to explain how three separate particles can 

be bound together to form a neutron might not also be involved in the nuclear binding process as 

well. Having computed a value for the charge-to-mass ratio of the antineutrino on the basis of the 

results of the p+e-   XBPS treatment in a given one-particle basis, it is thus proposed to examine 

the effects of adding a second proton to this system, while otherwise proceeding in an equivalent 

manner as in the calculations already discussed. 

On the basis of the treatment of the helium atom in the standard quantum mechanical 

theory, one might expect the ground state of this two-proton system to correspond to double 

occupation of the same s orbital found to be optimal for the p+e-   system. Experiment tells us 

that the resulting singlet state is not favored by the deuteron, however, but rather one of triplet 

multiplicity.163 Moreover, no other bound state is known to exist for the deuteron.164 The fact that 

the triplet multiplicity is so favored by the deuteron has given rise to the well-known 

characterization of the nuclear force as being spin-dependent.165 The XBPS calculations for the 

p+e-   system have indicated quite strongly that the e-   complex itself retains the 0- character 

preferred in its isolated state, and thus it is reasonable to expect that such relatively light particles 

themselves do not make a significant contribution to the total angular momentum of this system. 

Especially since the traditional description of this nucleus is in terms of a proton S1/2 and a 

neutron S1/2 orbital,84,87 it seems clear that the only way to obtain a satisfactory explanation for 

the deuteron ground state’s triplet multiplicity in the present model is therefore to assume that 

there is a second s1/2 proton orbital with nearly the same energy as the first, but orthogonal to it. 
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For simplicity, let us refer to these two orbitals as a and b, whereby it can be anticipated that 

one of them will be quite similar to that found to be most strongly occupied in the p+e-   

ca1culations discussed in Chapters VII.A,B. 

In view of the above experimental findings one is led to expect that neither of the closed 

shell a
2 or b

2 configurations leads to a bound deuteron state, i.e. the energies of the related 

singlet states must lie above that of the separated proton and neutron, or some 29000 hartree 

higher than that of the constituent protons, electron and antineutrino separated to infinity. 

According to the convention employed earlier, the deuteron ground state itself has a total energy 

of -52972.813 hartree, corresponding to the measured binding energy of 2.22452 MeV relative to 

the separated proton and neutron. To see how this general picture is reflected in actual 

calculations, we will begin by employing the simplest one-particle basis considered above, with 

2s and 2p functions for each particle type. The same values for the exponential damping constant 

A and the   charge-to-mass ratio are assumed as in the analogous p+e- calculations which 

employ the same AO basis. After optimization of the scaling factor  for this basis, it is found 

that the lowest-energy state of the p2e-   system has 0- symmetry, with both protons occupying 

the a s1/2 orbital with opposite spins. As expected, the electron and antineutrino form a singlet 

unit similar to that favored by the e+e- system, and this part of the wavefunction is responsible for 

the negative parity of the four-particle state as a whole. The total energy obtained for the 0- state 

is -254512.252 hartree. The lowest-lying 1- state with a s1/2 s1/2 ab proton configuration has a 

much higher energy of +21955.705 hartree, but is still bound relative to the p+e-   system plus an 

isolated proton by 6941.856 hartree, or 0.189 MeV (see Table XIV). 

In Sect. VII. B it was found that the proton of the p+e-   system preferred a considerably 

more contracted charge distribution than either the electron or antineutrino. In the next series of 

p2e-   calculations the same 4s,2p basis is employed which demonstrated this effect in the first 

case. The additional two s functions (1 = 2.56 x 108 and 2 = 0.80 x 108 a0
-2) are found to have a 

much greater effect on the total energies of the p2e-   states than before for the corresponding 

one-proton system. For A=1.0567 a.u. and q/mo (  )=0.5375 a.u., the values of these parameters 

which lead to the desired binding energies of the e+e- and p+e-   systems in this basis, results of   

-401335.635 and -86856.876 hartree are obtained for the 0- and 1- p2e-   states, respectively. The 

corresponding computed binding energies are thus 430897.744 hartree (11.72 MeV) and 
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116418.985 hartree (3.17 MeV), respectively, considerably larger in each case than for the 2s,2p 

basis set not containing specially optimized sl/2 functions for the protons. 

 

TABLE XVII. Energy contributions (in hartree) of various operators (see Table I for definitions and abbreviations) and particle 

combinations for the 0- state of the p2e-   deuteron system obtained by employing the 4s,2p basis with scale factor  = 0.16, 

exponential damping constant A = 1.0568 a.u. and antineutrino q/mo value of 0.527 a.u. for the XBPS Hamiltonian. 

 

Op p+p+ p+e- p+   e-   Total 

 KE 286751.843(p+) 1389897.489(e-) 1629685.689(  )  3306335.021 

 C 15221.838 -11234.341 0.000 0.000 3987.496 

 SsO 0.000 -669587.021 105016.667 -447338.511 -1011908.865 

 SoO 0.000 -93.245 94.858 -893545.158 -893543.546 

 D -23.567 160901.391 -1103708.083 28456.498 -914373.757 

 OO 0.662 -122.703 414.328 -394442.299 -394150.012 

 SS 0.000 -0.352 -0.205 -499287.703 -499288.260 

 SS 47.127 -0.357 -4.749 15026.997 15069.018 

     -387872.905 

SI* 392749.721    392749.721 

TE**     4876.816 

*Strong spin-spin S increment for proton-proton interaction (see text). 

**Total energy 

 

The energy contributions for the various one- and two-particle interactions for the above 

two states in the 4s,2p basis are given in Table XVII (0-) and Table XVIII (1-) respectively. 

These results are obtained with a slightly lower q/mo(  ) value (0.527 a.u.) than in the p2e-   

calculations mentioned first, but correspond to very nearly the same binding energies relative to 

the p+e-   system of the same charge-to-mass ratios as those given above (the total energy of the 

latter is 44067.869 hartree, or 14505.760 hartree higher than in the other calculation detailed in 

Table XV). This second series of p2e-   calculations indicates that the e-   complex is capable of 

providing a strong attraction for protons. As usual, by far the largest contributions to net binding 

for the system are the proton-electron and proton-antineutrino spin-same-orbit and Darwin terms. 

For the 0- state the spin-same-orbit proton terms produce a net binding of 564570 hartree, while 

the corresponding Darwin term result is 942807 hartree. The corresponding results for the 1- 
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state are 441275 and 536870 hartree respectively (Tables XVII and XVIII). These values are 2.5 

to 4.0 times greater than found in the corresponding p+e-   calculations in Chapter VII.B (Table 

XV), again indicating that the addition of a second proton is marked by a significant contraction 

of the charge distribution of the system as a whole (i.e. the p2e-   results are more than double 

those for the system with a single proton). 

 

TABLE XVIII. Energy contributions (in hartree) of various operators (see Table I for definitions and abbreviations) and particle 

combinations for the 1- state of the p2e-   deuteron system obtained by employing the 4s,2p basis with scale factor  = 0.16, 

exponential damping constant A = 1.0568 a.u. and antineutrino q/mo value of 0.527 a.u. for the XBPS Hamiltonian. 

 

Op p+p+ p+e- p+   e-   Total 

KE 290643.137(p+)  1341557.196(e-)  1512125.933(  )  3144326.266 

C 7726.523 . -10467.859 0.000 0.000 -2741.336  

SsO 0.000 -530003.791 88729.000 -442961.158 -884235.949  

SoO 0.000 -57.868 39.310 -906688.972 -906707.530  

D 0.000 178980.181 -715853.570 22920.853 -513952.535  

OO 0.277 -84.456 207.748 -428116.693 -427993.124  

SS 0.000 -6.087 -0.388 -491176.127 -491182.602 

SS 0.000 -0.091 -29.955 11380.624 11350.578  

     -71136.232 

SI*     3.123 

TE**     -71133.109 

* Strong spin-spin  increment for proton-proton interaction (see text).  

**Total energy
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The fact that the total binding energies obtained for the p2e-   system are considerably 

larger than observed for the deuteron experimentally, particularly when reference is made to the 

0- state’s results, is a clear deficiency of the present theoretical treatment, but on the basis of the 

p+e-   computations discussed in Chapter VII. B, it can be expected that the addition of d 

functions to the basis employed will probably lead to a decrease in these values. Nonetheless, a 

more obvious deficiency in the present results seems far less likely to be an artifact of the 

computational treatment considered thus far, namely that the ground state of the p2e-   system, 

which is being proposed as having the composition of the deuteron, prefers singlet multiplicity 

by a wide margin. This result seems unavoidable so long as the interactions involving the protons 

are predominantly the spin-same-orbit and Darwin terms involving either the electron or 

antineutrino as second particle. Only the Coulomb repulsion between the two protons provides a 

counter-example for this type of behavior, and although this interaction does favor a triplet spin 

function for a two-open-shell proton configuration, it is not enough to override the decided 

preference of the p2e-   system for a closed-shell structure in which only the most stable proton 

s1/2 orbital is strongly occupied. The situation is thus analogous to that encountered in the 

electronic structure of the helium atom, which also favors a singlet ground state, and as a result 

there seems no question that the XBPS Hamiltonian in the form given in Table I is not capable of 

a suitable description of the forces which bind the proton and neutron together in the 2H or other 

nuclear systems. 

 

E. THE SPIN DEPENDENCE OF THE INTERACTION BETWEEN NUCLEONS 

The failure of the above calculations to account for certain basic aspects of the structure of 

the deuteron is most easily overcome by looking for additional interactions which would not be 

expected to play a role in either the particle-antiparticle binary computations discussed in 

Chapter VI or those for the p+e-   resonance associated with the neutron in Chapters VII A,B. 

This approach is certainly not inconsistent with the accepted theory of nuclear structure, which 

has long emphasized that a non-electromagnetic interaction must be assumed between any two 

nucleons in order to provide a plausible explanation for observed characteristics of the structure 

of nuclei.84,165 Although it is generally believed that such forces involve spin-orbit coupling akin 

to the terms in the Breit-Pauli approximation,106 it has also been shown166 that the coupling 
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constants associated with the interactions between nucleons must be far greater than would be 

expected based on consideration of electromagnetic effects alone. As an example from 

experiment, one may consider the energy splittings between the ground and excited states of the 

11B and 11C nuclei. According to the nuclear shell model,99,100 these quantities should give an 

accurate reflection of the p3/2-p1/2 spin-orbit splittings of a nuc1eon in these systems, but their 

magnitudes (2.14 and 1.85 MeV, respectively) are far larger167 than can be explained on the basis 

of Breit-Pauli interactions.106 Observations of the scattering of polarized nucleons from 4He and 

12C nuclei lead to much the same conclusions.168 

There have been a number of concrete proposals for the form of the nucleonic spin-orbit 

coupling operator,165,169,170 but there is unfortunately no consensus on this point. If one goes 

through the list of Breit-Pauli terms with the goal of finding an interaction which is capable of 

influencing the relative stability of the singlet and triplet deuteron states, one discovers that most 

of them will have no effect on this situation by virtue of the fact that the proton orbitals which 

are strongly occupied in the corresponding wavefunctions are exclusively of s1/2 type. Neither of 

the spin-orbit terms, nor the spin-spin tensor force or the orbit-orbit interaction has any non-

vanishing matrix elements when only such spin-orbitals are involved. Moreover, the Darwin 

term is completely independent of spin106 and is therefore also totally ineffective for this task. A 

clear exception to this pattern still remains, however, namely the spin-spin δ-function term. It is 

both spin-dependent and capable of producing a non-vanishing interaction between particles 

occupying s1/2 orbitals. In order to obtain a suitably large effect from such an operator when 

applied to a pair of protons (nucleons), it is clearly necessary to change the value of the coupling 

constant relative to those of Table I, however, as can be seen from the results of Tables XVII and 

XVIII. 

It is thus proposed to augment the XBPS Hamiltonian with a term of spin-spin δ-function 

type in which the q/mo values for the proton particles are replaced by much larger coupling 

constants of the order of their electronic counterparts; for concreteness, a value of unity will be 

taken for this purpose. Otherwise, the previous description of the XBPS Hamiltonian is retained 

and full CI calculations are carried out as in the last section for both the 0- and 1- p2e-   states, 

employing the same values for the damping constant A (1.0567 a.u.), the q/mo ratio for the 

antineutrino (0.527 a.u.) and exponents for the Gaussian basis functions as in the treatment 

whose results are given in Tables XVII and XVIII. It is found that the 1- state is virtually 
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unaffected by this change, with a total energy of -71133.109 hartree (-1.936 MeV) having been 

obtained.  This result is only 3.123 hartree above the value shown in Table XVIII without 

including the spin-spin δ-function term. On the other hand, the total energy of the p2e-   singlet 

(0-) state is changed dramatically to +4876.816 hartree, an increase of 392749.721 hartree 

relative to the treatment without the new spin-spin -function term for proton-proton 

interactions. As a result, the lowest state of the p2e-   system has triplet multiplicity, with a 

binding energy relative to the proton and p+e-   system of 2.718 MeV = 71133 + 28781 hartree 

(compared to the experimental value of 2.22452 MeV).  

Examination of the above findings shows that the anti-symmetry of the proton 

wavefunction is a crucial factor in obtaining this result. The simplest representation of the triplet 

wavefunction is: 

 

T = 2-1/2 [s1(1)s2(2) – s1(2) s2(1)]       VII.1 

 

The expectation value of the spin-spin -function term for this function has the familiar form of 

the difference of a Coulomb and exchange integral, but since the -function has equal values for 

these two quantities, unlike the case for the electrostatic interaction, the result is of vanishing 

magnitude. On the other hand, the simplest representation of the 0- state whose energy 

contributions are listed in Table XVII is: 

 

S = 2-1/2 [s1(1)s2(2) + s1(2) s2(1)][(1)β(2)-(1)β(2)]           VII.2 

 

The expectation value in this case is: 

 

<S| -
3

8
 2 (1,2) s1.•s2 |S >= (2/3)2 <s1(1) s2(2) (1,2) s1(1) s2(2)>,        VII.3 

 

a large positive energy contribution. Adding this term to the Hamiltonian produces a 

destabilizing effect on the closed-shell configuration of eq. (VII.2). A significantly different 

wave  function is obtained for the lowest 0- root from the corresponding 4s,2p full CI treatment 
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than with the original XBPS Hamiltonian, with much more emphasis on the open-shell 

configuration analogous to that dominating the triplet wavefunction. 

Another encouraging result of the computations with the augmented XBPS Hamiltonian is 

the finding that the next three most stable states after the 1- species are nearly degenerate and 

correspond to the symmetries expected for the translationally excited counterpart of the above 

ground state. Such a translational function would be expected to have 1- symmetry itself and thus 

exchanging it for the 0+ species of lowest energy as a factor multiplying the 1- internal 

wavefunction would lead to new solutions of 0+, 1+ and 2+ symmetry, with these expected to be 

very nearly equal in energy to one another. This expectation is fulfilled, with total energies of  

-31260.220 (0+), -31265.499 (1+) and -31265.715 (2+) hartree being found for the most stable 

states of each of these three symmetries.  

      This example serves as a reminder that the XBPS Hamiltonian of Table I contains 

translational energy contributions as well, as discussed in detail in Chapter V.B.  As a 

consequence the excited states obtained with this method may differ from the corresponding 

ground state in the amounts of either their internal or translational energies or both. This 

introduces an additional complication into the present theoretical treatment which is clearly not 

present when the center-of-mass motion is factored out (or when the P= 0 condition is imposed), 

but the present example shows how symmetry characteristics can be employed to distinguish 

between the two distinct types of excited states. In essence one obtains a discrete representation 

of the translational continuum in the present treatment of nuclear motion, whereby the density of 

states obtained is clearly dependent on the number and type of basis functions employed in 

explicit calculations. 

One can summarize the present results for the ground state of the p2e-   system as follows. 

With the addition of a spin-dependent term for the proton-proton interaction having a coupling 

constant of the order of the electronic Bohr magneton, it is possible to obtain a state of lowest 

energy from the XBPS treatment in the 4s,2p basis which has triplet multiplicity and a binding 

energy relative to the proton-p+e-   dissociation products which is at least on the order of the 

experimental deuteron value. The attractive central potential which is responsible for this result 

is provided by the e-   complex of 0- symmetry which is analogous to the e+e- ground state 

associated with the photon in the present model. The spin-dependent proton-proton adjunct to the 

XBPS Hamiltonian has virtually no influence on the total energy eigenvalue and associated 
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eigenfunction for the triplet ground state itself, but plays a key role in destabilizing the 

corresponding singlet spin combination of the protons, particularly the helium-like closed-shell 

configuration which otherwise is so favored when this term is absent. 

These results are obtained with relatively small basis sets and thus it is difficult to make a 

more quantitative assessment of the accuracy of the present model on this basis alone, but there 

at least seems justification for pursuing this approach further, both at higher levels of 

computational accuracy and also for the description of other nuclear systems. There is another 

comparison with experimental data which is also encouraging, namely for the mean radius of the 

two nucleons in the deuteron system, estimated171 to be 4.226 fm or 1.5 2 bohr on the basis of 

scattering observations. The value of the Coulomb proton-proton repulsion of 7726.523 hartree 

(Table XVIII) allows a straightforward estimate of this radius for the 1- state, namely 2.43 2 

bohr. While the agreement between these two results can hardly be described as quantitative, it at 

least shows that the range of the forces described by the XBPS Harniltonian is physically 

reasonable. Especially since the calculations are carried out without the ad hoc introduction of 

parametric inter-nucleon potentials, it can be argued that their results speak in favor of the major 

assumptions underlying the present model, especially the insistence upon treating the electron 

and antineutrino as being physically present in the deuteron nucleus. Again the results of Table 

XVIII appear reasonable on this point, showing kinetic energies for the electron and antineutrino 

of 36.49 and 41.14 MeV. Under the assumption of a deuteron radius of 1.5 2 bohr, an estimate 

based on the approximation p  r-1 can be made of 46.68 MeV (pc =1.5-1-2c = 1.5-1-3 hartree)  

for each of these quantities. 

It also should be noted that the addition of d functions to the basis set employed in the 

XBPS calculations should also favor the triplet state of the deuteron over that of the singlet. This 

is because a ds proton configuration can have a J = 1 multiplet but not one with J = 0. It has long 

been thoughtl65 that the deuteron ground state contains a small d-function component because of 

the observation that its magnetic moment deviates by a significant amount (2.6%) from the sum 

of the proton and neutron moment values. The small but non-zero value of the deuteron’s electric 

quadrupole moment is also consistent with this conclusion. The extent of the present 4s,2p 

calculations for the p2e-   system precludes the addition of d functions to the basis set at the 

present time, so it has not been possible to verify this effect explicitly, but the above arguments 

at least make it seem plausible that such a result would occur. 
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Before concluding this section it is well to return to a key point which has wide-ranging 

consequences regarding the qualitative interpretation of nuclear interactions in terms of neutrons 

and protons. To obtain a sound basis on which to discuss heavier nuclei it seems inescapable that 

proton orbitals appear in pairs of nearly equal energy, one set to be associated with neutrons in 

the conventional model, the other with the corresponding protons themselves. Such a 

development seems unlikely when reference is made to the electronic structure of atoms and 

molecules, according to which the lowest two s orbitals are of greatly different energy, for 

example. The form of the potential employed in the XBPS Hamiltonian suggests that the 

situation may well be different in the present case, however. Unlike the Coulomb potential, 

whose r-dependence is monotonic in character, the damped Breit-Pauli counterparts possess an 

extremum similar to that shown in Fig. 6, which is essential in the present model to avoid 

variational collapse and hence to suitably describe bound nucleons. Consequently there are equi-

potential points on either side of the minima in the variation of the damped Breit-Pauli terms 

with inter-particle distance which conceivably could lead to orthogonal orbitals of contrasting 

radial dependence but very nearly equal stability. Once this possibility is accepted, it is not 

difficult to imagine how the results of calculations for larger nuclei could be formulated in terms 

of the nuclear-shell model of Goeppert-Mayer99 and Jensen100, or even more simply in terms of 

distinct neutrons and protons serving as the nuclear constituents. 

 

F. STRUCTURE OF THE LIGHTEST NUCLEI 

It was recognized by Wigner172 in 1933 that the binding energies of the simplest nuclides 

increase very rapidly with atomic mass number, and that this phenomenon is very strong 

evidence for the short range of the forces involved. Even if one allows for the quadratic increase 

in the number of nuclear bonds as nucleons are added, one still finds that the binding energy 

trends are notably different than one observes in the study of atomic and molecular structure. In 

the present model, in which the electron and antineutrino are treated explicitly in the theoretical 

calculations, the next simplest system after the deuteron is the 3He nucleus, with a total of five 

elementary constituents. The experimental total energy of the 3He nucleus relative to that of its 

separated protons, electron and antineutrino is -254965.67 hartree, which corresponds to a 

binding energy of 201992.86 hartree relative to the stable deuteron plus proton fragments. In 

view of the ab configuration assumed for the deuteron in the last section, the simplest 
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assumption is that the additional proton occupies one of these two orbitals with opposite spin. 

Since the potential in Fig. 6 has only one extremum, it seems plausible that a third orbital c 

would not be sufficiently stabilized by the e-   complex to make a proton configuration with 

three open shells advantageous. Because of the 0- character of the e-   unit the overall symmetry 

of such a a
2b ground state would be 1/2-. 

In order to investigate these possibilities, a series of calculations has been carried out for 

the p3e-   system employing the 4s,2p basis introduced in Chapter VII.B. It was not possible to 

solve the secular problem corresponding to a full CI treatment in this case, however. Instead a 

multiple reference173 CI common in molecular calculations has been employed, which should be 

capable of approximating the corresponding full CI eigenvalues and wavefunction to a 

satisfactory approximation. The CI space considered is generated by taking all possible single 

and double excitations relative to a series of 42 reference configurations chosen on the basis of 

the magnitude of their coefficients in the final eigenvectors. The Hamiltonian employed is again 

that of Table I augmented with the spin-spin δ-function term for the proton-proton interaction 

discussed in Chapter VII.E. The same q/mo value (0.5375 a.u) for   is assumed as yields the 

experimental neutron (negative) binding energy for the p+e-   system (Chapter VII.B). The same 

value of the exponential damping constant A (1.0567 a.u.) is also employed as in the latter 

treatment. The exponents of the most compact two s-type functions were optimized specifically 

for the p3e-   system in the 1/2- state, and it was found that these values are about 30% larger 

than those which produce minimal energy for the p2e-   system, i.e. l = 0.338 x 109 ao
-2 and 2 

= 0.8 x 108 ao
2). 

The total energy obtained in the optimum 4s,2p treatment is found to be -212334.852 

hartree. Optimization of the above exponents from their original p2e-   values brought an energy 

lowering of 14562 hartree, indicating a substantial contraction of the charge distribution of the 

protons in the larger p3e-   system. The resulting total energy is thus 42631 hartree (1.16 MeV) 

higher than the experimentally deduced value for the 3He nucleus mentioned above. The 

computed binding energy relative to the p2e-   1- state (see Table XVIII) and a free proton is 

141202 hartree. Although this is a substantial amount, it is still only 69.9% of the experimental 

energy difference between the 3He nuc1eus and the deuteron plus proton system. The spin-spin 

-function proton-proton interaction is quite important in this determination, having a value of 
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127952 hartree, as compared to virtually zero magnitude for the corresponding p2e-   expectation 

value in the 1- state. 

The most important configuration in the p3e-   wavefunction is of the a
2b type, so that 

the simplest interpretation is that that the more compact s-type orbital corresponds to that 

occupied by the two 3He protons in the conventional description. The magnitude of the 

Coulomb repulsion for the three protons is 35369.772 hartree, nearly five times the value 

found for the p2e-   1- system. Since there are three times as many pair-wise interactions in the 

heavier system, this result is also evidence for a general contraction of the p3e-   system 

relative to its two-proton counterpart (see Table XVIII). This result is understandable with 

reference to the nature of the XBPS Hamilonian employed in the present treatment. As a new 

proton is added to the p2e-   system, one has both an increase in the total kinetic energy of 

these heavy particles and an enhancement of their net attractive interactions for the e-   

complex of lighter elements, thereby disturbing the equilibrium prevailing for the lighter 

nuclide. Because the changes in the short-range attractive interactions are greater, this leads to 

a drawing of the entire system together and a greater increase in total binding energy than 

would be possible by simply occupying the original proton orbitals of the lighter system. 

Under these circumstances one must be wary of making a strict correspondence between the 

s1/2 orbitals occupied in the deuteron and 3He, respectively. The fact that only one electron and 

antineutrino are present inevitably leads to the designation of only one of the nucleons as a 

neutron (open-shell occupation) and the remaining pair as protons (closed-shell). 

This line of argumentation leads to an interesting question, however, namely what 

happens when still another proton is added to the system. On the basis of what has been said 

above, it is tempting to think that the resulting (4Li) nuc1eus would be bound by a rather large 

margin, possessing a closed-shell a
2b

2 proton configuration. A Li isotope of this mass 

number is not stable, which raises the specter of a breakdown in the above model, or at least 

unusually high Coulomb repulsion effects that make such extrapolations very inaccurate. This 

need not be the case, however, because the 4Li system is more likely unstable because it is 

prone to electron capture and the subsequent formation of the highly stable alpha particle 4He 

(E=-982528.11 hartree), rather than because it is subject to spontaneous decomposition itself. 

Calculations similar to those discussed above have thus also been carried out for a 

system with four protons and a single e-   unit. The closed-shell a
2b

2 proton configuration 
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mentioned above corresponds to a 0- p4e-   state. The most stable state of this symmetry in the 

present treatment does not have a significant contribution from this configuration, however. 

Instead, proton p orbitals show significant occupation, which according to the nuclear-shell 

model are the next available to the hypothetical 4Li nucleus. The total energy of this 0- state is 

-219926.758 hartree, some 7600 hartree lower than that of the p3e-   1/2- ground state. The 

lowest energy obtained for the four-proton system is for the 0+ state (-313119.128 hartree). 

There is also a 1+ state of only slightly higher energy (-310409.680 hartree) and a 1- species 

lying just above it (-303091.067 hartree). In the first two cases the preferred configuration is 

a
2bc, i.e. three-fold s1/2 occupation corresponding to the p3e-   ground state discussed above 

and having the remaining proton located in the lowest p shell. Since there is no spin-orbit term 

of the type foreseen in the nuclear shell model99.100 in the Hamiltonian employed, there is 

essentially no splitting computed between the corresponding p1/2 and p3/2 sub-shells. Even with 

such a specific proton-proton interaction, however, it seems clear that the lowest of such states 

would be quite unstable with respect to the electron capture process required to form the 4He 

nucleus. The experimental total energy of the latter’s 0+ ground state is still more than 18 MeV 

lower than any of the calculated results for the p4e-v system associated with the 4Li nucleus in 

the present model, and so it seems plausible that such states could not exist for sufficient time 

to be observed prior to their decay. Hence, no contradiction exists between the present 

computed results and experiment. The lifetime174 of the 5Li isotope is only 10-21 s and this 

species should be considerably more stable than the lighter 4Li system, in agreement with this 

assessment. 

As a result, it seems best to terminate the present discussion of systems formed by adding 

still more protons to a single e-v binary and turn instead to the far more interesting possibility 

that as the number of protons continues to increase in a nucleus, there is a strong attraction for 

additional electrons and antineutrinos. The fact that a   species is also required in electron 

capture is consistent with the inevitable appearance of a departing neutrino as well (see Chapter 

IV. B), both of which come from the same massless    binary according to the present model. 

Such considerations lead one naturally into a discussion of the weak interaction in theoretical 

physics, but this is best deferred until the next chapter. Instead a second nuclear series will be 

considered which results from the addition of successive protons to a pair of e-   units. 

A system of two protons and two e-   singlets can best be thought of in the present 

model in terms of a deuteron interacting with a single electron-antineutrino unit. The spatial 

orbitals which comprise the latter’s wavefunction must be different than those employed for 

the first e-   complex because according to the XBPS calculations of Chapter VI, every 
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conceivable spin combination other than that for the lowest-lying 0- state is quite unstable. It 

therefore follows that the next best two-particle e-   function is probably somewhat less stable 

than the first. In essence the calculations show that one proton must make up for deficiencies 

related to the electron’s pairing with a particle of a significantly smaller charge-to-mass ratio 

than that of its antiparticle. A proton has the capacity for doing this because it has a net 

attraction for both the electron and antineutrino (see Tables X, XVII, XVIII) and it has 

relatively small kinetic energy in the required short inter-particle distance range. Nonetheless it 

can’t quite achieve net binding with an e-   unit on a one-to-one basis. This result amounts to 

concluding that a bound system of two neutrons does not exist, as is well known 

experimentally, even though the simplest view of nuclear structure holds that the nn 

interaction is of quite similar strength as that for pn. 

The situation seems likely to improve when an excess of protons is available, especially 

because the inter-proton distances can become smaller because of the net increase in the spin-

same-orbit and Darwin term attraction to the e-   species. A system with three protons and two 

such binaries corresponds to one proton and two neutrons in the conventional accounting, i.e. 

the tritium nucleus 3H. Experimentally this system is found to be only 0.4935 MeV (18136 

hartree) less stable than the 3He nucleus. Considering that their respective total energies are on 

the order of -250000 hartree relative to their separated (stable) particles, this is a comparatively 

small difference. As before with 3He, two configurations come into question to describe the 

ground state, namely a
2b and ab

2. Because the number of particles increases to seven in 

the 3H calculations in the present model, it has not been possible to carry out explicit 

calculations to study this point. One can speculate that the relative stability of the a and b 

proton orbitals must depend fairly strongly on the number of e-   units present in a given 

system, however. It may even be that the designation of each of these s1/2 species as either of 

proton or neutron type is different for 3H. so that the composition of the doubly occupied 

orbitals of the two systems are actually fairly similar to one another.  

In any event the true ground-state wavefunctions of both 3He and 3H can be expected to 

consist of heavy mixtures of the above two configurations in a CI sense. What of the low-lying 

excited states of complementary structure which are indicated in each case, however? It seems 

conceivable that whenever either system occupies the state of lesser stability that it rapidly 

either loses or gains an e-   unit to become the corresponding ground state of the other system 

without greatly altering the original occupation of its two most stable proton orbitals a and b. 

In fact, only one of the four possible configurations is truly stable, since the 3H ground state is 

known to undergo beta decay with a half-life of 12.4 years to form the 3He ground state.174 In 
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other words, 3He is weakly repelled by a second e-   species but this effect can be minimized 

by altering its proton charge distributions. The situation may also in some way be similar to a 

phenomenon which often occurs in molecular physics,175 according to which two iso-

electronic systems have mutually inverted ground and excited states with correspondingly 

distinctive nuclear conformations. For example, ozone prefers to doubly occupy the 4b2 orbital 

which tends to give it an open-chain structure, whereas cyclopropane176 prefers the 2b1 species 

instead, which in turn allows it to have a triangular ring conformation. Both molecules have 

excited states with the opposite occupations, however, whose nuclear conformations are quite 

different as a result, corresponding to an open-chain form of cyclopropane and a ringed isomer 

of ozone. In this case the numbers of electrons are equal for the two systems but the nuclear 

environment is quite different. In the present comparison of 3H and 3He, the number of protons 

is equal according to the present model (corresponding to the mass number in standard usage) , 

but the two systems differ in the number of e-   units combined with them in each case. 

Another important characteristic of the e-   complex which it shares with the e+e- 

massless system is that the Darwin repulsion between the two constituent particles is very 

small (see Tables X-XVIII). As remarked in; Chapter VI.D, the expectation value for the un-

damped Darwin term vanishes exactly for the e+e- 0- prototype system. In both cases this result 

indicates that the particles avoid each other so completely that they never (or only rarely in the 

e-   case) reside in the same region of space (with or without the same spin). This result 

strongly implies that a definite region of space must be reserved to accommodate each 

electron-antineutrino pair within a given nucleus. Analysis of Table III shows that this 

situation arises primarily because it allows for maximum advantage to be taken of the 

attractive Breit-Pauli interactions between the two particles. In e+e-, for example, any change 

in the respective charge distributions which leads to a non-zero -function expectation value 

must result in a net increase in total energy because a variational minimum is involved. The 

situation is not quite as severe for e-   (Tables X-XVIII), but nonetheless the absolute 

magnitude of the Darwin term in this instance is only 5% of that of the corresponding spin-

same-orbit expectation value. At the same time the calculations indicate that the proton and 

electron charge distributions are not similarly restricted. as a rather large Darwin interaction is 

invariably computed between them (178980.181 hartree in Table XVIII, for example). 

These results are very reminiscent of the experimental observations mentioned in 

Chapter IV.C. They indicate that the nuclear volume is essentially directly proportional to the 

number of its constituent nucleons. According to the present calculations, it appears somewhat 

more precise to say that the nuclear volume is proportional to the number of constituent e-   
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units, which arithmetically amounts to essentially the same relationship. In other words, 

because each electron must avoid each antineutrino, one can expect a fixed volume to be 

reserved for every such pair of light particles to insure maximum stability for the nucleus as a 

whole. The protons are much freer to move in a small volume because their rest masses are so 

much greater, but even as they shrink in orbital size with increased binding, the corresponding 

e-   charge distributions remain relatively unaffected. This observation is also consistent with 

the form of the exponential damping factors in the spin-same-orbit and Darwin terms (Table I), 

which as mentioned before allow a closer approach to the lighter particles to maximize the 

attractive forces as each proton is added to the system. The exponential operators are strongly 

dependent on the momentum (and consequently the orbital compositions) of the electron and 

antineutrino, however, so that the volume occupied by them is relatively independent of the 

number of protons in their environment. Only if the proton occupation drops below or rises 

above a critical level necessary to support a given number of e-   units is a volume change 

advantageous, which is to say a beta interaction occurs to either decrease or augment the 

number of electron-antineutrino pairs within the confines of the nucleus. 

To conclude this section it remains to discuss the result of adding a fourth proton to the 

double e-   complex. The product is clearly the relatively stable 4He nucleus, originally named 

the alpha particle a century ago.50 It has a closed-shell ground state corresponding to the a
2b

2 

proton configuration and represents an optimal proportion between the number of protons and 

electrons for such light nuclei. The experimental binding energy of the last proton (compared 

to 3He) is 728212 hartree. Relative to two neutrons and protons this represents a binding 

energy of 1.04 megahartree, i.e. in excess of 250000 hartree per proton (nucleon). The latter 

result is about 2.5 times larger than the corresponding value for 3He and 3H. The indication is 

that the proton a,b orbitals shrink markedly as the last proton is added, which is consistent 

with the closed-shell configuration characterizing this system. The fact that 4He is the only 

stable nucleus with this mass number indicates that the number of e-   units is similarly 

optimal, however, as already discussed in connection with the hypothetical 4Li system. 

 

G. NUCLEI HEAVIER THAN THE ALPHA PARTICLE: COMPARISON WITH THE 

NUCLEAR- SHELL MODEL 

The discussion of the last section is seen to be largely consistent with the nuclear-shell 

model of Goeppert-Mayer99 and Jensen,100 differing from it mainly in the concept of protons 

interacting with e-   units rather than neutrons as elemental particles. The lowest-energy 

proton s1/2 orbitals a and b simply replace the corresponding neutron and proton species 
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employed in the shell model. A key element in the XBPS calculations which suggests this 

adjustment is the finding that the most stable state of the e-   system is a singlet. Since neither 

the electron nor the antineutrino can exist inside the nucleus without the other, it follows that 

pairs of these fermions can be added indefinitely without directly affecting the magnitude of 

the angular momentum of the constituent protons of a given system. 

The possibility exists that the hierarchy of spin-orbitals for proton-neutron shells in the 

original model can be obtained from calculations based on an augmented XBPS Hamiltonian 

similar to that employed above in Chapters VII.E-F, in which case the resulting proton shells 

are expected to occur in pairs of the same symmetry, in analogy to the a and b s1/2 species 

already considered. It is likely that the p1/2 s1/2 configuration for e-   is not the only possibility, 

however. Any configuration of two orbitals of the same j but differing by one unit in l contains 

a single 0- multiplet, and thus different e-   units could vary widely with respect to their l-type 

orbital composition while still retaining their singlet characteristic. One can conceive of a 

series of concentric spherical units, each differing in volume from their neighbor of smaller 

radius by a constant amount, consistent with the arguments of the last section based on the 

Darwin term. The exact nature of these relationships is a matter to be settled by explicit 

calculations for larger nuclei. 

The negative parity of the e-   units must have an effect on the overall nuclear 

symmetry, but it is generally accepted that there is no way to determine absolute parities of 

nuclear states experimentally.157 In the case of nuclei it should be noted that parity is always 

inferred indirectly on the basis of angular momentum changes which occur upon scattering 

relatively light systems such as deuterons off heavier nuclei. Analysis of the resulting proton 

or neutron capture reactions177 allows a determination of the l value of the incoming nucleon 

from which the corresponding parity change is deduced. Since the e-   complex has J = 0, it is 

impossible to learn anything about its parity from such investigations, so that existing 

assignments of nucleon quantum numbers necessarily only refer to the proton orbitals which 

are occupied in the calculations of the present model. By assuming that the e-   units always 

have 0- symmetry, it is always a simple matter to convert the total J values obtained on the 

basis of the present model to those deduced from the nucleon capture angular momentum 

distributions. For example, since the deuteron has a single such unit, it follows that the 1- 

symmetry computed for its ground state is tantamount to predicting that the results of such 

experiments will lead to a 1+ assignment, as actually observed. Nonetheless, although the 

intrinsic negative parity of the e-   unit defies detection in the traditional nuclear physics 

experiments described above, it will be seen to have interesting consequences regarding the 
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interpretation of other pivotal observations in elementary particles physics, as will be 

discussed in succeeding chapters. 

It is well to emphasize that the XBPS treatment does not assume fixed positions for the 

various nucleons, in contrast to the practice in the Born-Oppenheimer approximation 

commonly used in molecular calculations. As a result, the symmetry of the corresponding 

Hamiltonian is that of the full rotation group with inversion, exactly as assumed in the nuclear-

shell model. This feature does not really distinguish molecules from nuclei, however, because 

the rotational states of the former also transform rigorously as irreducible representations of 

the same point group.l78 This seems surprising in view of the fact that molecules are said to 

have electric dipole moments, but a closer analysis shows that such properties only result as a 

consequence of the symmetry reduction produced by the introduction of an external electric 

field.l79 The electric dipole moments of molecules are thus seen to result because perturbations 

of this nature cause rotational states of different parity to mix with one another. In the last 

analysis it is the relatively small energy separation of rotational states which distinguishes 

molecules from nuclei in this respect. In summary, the rotational symmetry of the XBPS 

wavefunctions results because no comparable “clamped-nuclei” assumption to that of the 

Born-Oppenheimer approximation is made, rather than because a convenient simplification is 

introduced ad hoc in order to maintain identification with the principles of the nuclear-shell 

model. The calculations discussed above have the disadvantage of simultaneously including 

translational effects as well, but the difficulties brought about by this characteristic become 

somewhat less critical for systems containing relatively heavy particles such as protons. 

After the 1s1/2 shells have been filled, the shell model leads us to expect that the next 

most stable orbital available to succeeding protons is 1p3/2, closely followed by 1p1/2. Since the 

present model foresees pairs of such proton orbitals, it might be expected that the same 

symmetry is not always involved for both partners. Because the two orbitals are assumed to 

occupy essentially equi-potential locations (see Sect. VII.E and Fig. 6) relative to a given e-   

unit, however, it seems at least plausible that they differ only in their respective radial 

distributions. The operators involved in the XBPS model are of the spin-orbit and related type, 

and as this choice has been suggested in part by the results of the nuclear shell model, it is thus 

clearly consistent with this approach. If the traditional q/mo factors of the Breit-Pauli 

Hamiltonianl06 (Table I) are employed exclusively, it is seen that the only interactions of this 

nature which are of great importance for protons are the spin-same-orbit and Darwin terms, 

whereas the e-   units participate in all such interactions (except the Darwin term for the most 

part). A spin-orbit term which can account for the large p3/2- pl/2 and related splittings deduced 
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from the locations of nuclear energy levels99.100,165.167 is also required, however, which has far 

larger coupling constants than those found in the conventional Breit-Pauli interactionsl06 

between protons. 

A spin-spin -function operator employing a unit (electronic) q/mo value for the proton-

proton interactions has been found to be effective in explaining the triplet multiplicity of the 

deuteron's ground state (Chapter VII.F), but it is clear that such a term cannot account for the 

observed splittings of j levels belonging to the same l quantum number. It needs to be 

recognized that such spin-orbit interactions cannot be assumed to occur between a proton and 

an antiproton without upsetting the arguments of Sect. V.E.  They predict that the e+e- and p+p- 

systems have wavefunctions which are strictly related by a scaling operation. It is also clear 

that some type of long-range damping is required, similar to that originally suggested by 

Yukawa91.92, to account for the fact that the influence of the strong interaction does not appear 

to extend beyond nuclear dimensions. 

The search for such spin-dependent proton-proton interactions is clearly far easier when 

an accurate description of the central field attracting these particles is available. It is in this 

context that the present XBPS Hamiltonian can play a crucial role. The e-   units provide a 

strong attraction for protons while having no direct effect on the angular momentum of the 

nucleus as a whole by virtue of their 0- symmetry. In this view the bond between a proton and 

a neutron comes about to a large extent because two protons are strongly attracted to the same 

electron and antineutrino. Since the protons in question occupy different orbitals (Sect. VII. E), 

their individual relationships to the lighter particles can still be quite different from one 

another, thereby making it appear that they are associated with two fundamentally different 

particles, i.e. a neutron on the one hand and a proton on the other, exactly as foreseen in the 

nuclear shell model. 

 

H. THE ISOSPIN PROPERTY AND ITS RELATION TO THE XBPS MODE 

Before concluding this comparison between the results of the preceding calculations and 

the concepts which form the basis of the theory of nuclear physics, it is important to give close 

consideration to another fundamental quantity, the isospin property.88.89 The present model 

employs a Hamiltonian which depends only on the spatial and spin coordinates of the 

constituent particles of a given system, and on this basis the corresponding energies and other 

expectation values are computed without making any prior assumptions whatsoever regarding 

the isospin property. It is thus important to see how the fundamental relationships underlying 

the isospin theory might be inferred from the results of such calculations. The idea which led 
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to the introduction of isospin can be traced back to the suggestion of Heisenberg87 in 1932 that 

a neutron and a proton can be looked upon as two different states of the same system 

(nucleon). As such, these fundamental particles are referred to as an isospin doublet, differing 

only in the z component of the vectorial quantity I. The latter’s transformation properties are 

assumed to be identical to those of orbital and spin angular momentum, and so a well-defined 

mathematical framework for the theoretical treatment of isospin is immediately at hand. 

The most important physical conclusion regarding such isospin multiplets is that the 

various component systems would be perfectly degenerate if only the hadronic force were 

active, and not the electromagnetic (gravitational forces can be safely ignored because of the 

nature of the problem). The theory asserts that under these circumstances the rest masses of the 

proton and neutron would be of identical magnitude. In the present model emphasis is placed 

instead on the possibility of converting a proton into a neutron by the addition of an electron 

and an antineutrino in the form of an e-v binary unit. In this sense, elimination of the 

electromagnetic force can be equated with placing bare protons in an environment which is 

absolutely free of electrons and antineutrinos. Because of the high density of massless e+e- and 

   binary systems, so the present model goes, this state of affairs is impossible to achieve by 

any experimental means, similarly as it is not really feasible to turn the electromagnetic force 

off and on at one’s volition. 

Explicit calculations with the XBPS Hamiltonian show that a system of two protons 

forms neither bound states nor resonances, and hence in this sense the pp interaction is purely 

repulsive. The reason that roughly one hundred years of scattering experiments have been 

interpreted differently is understandable in terms of the premise that whenever two protons 

approach each other at very close range, they have a sufficiently strong attraction for an 

electron and an antineutrino to overcome the dissociation barriers of the ever-present e+e- and 

   binary systems, thus making these particles available, i.e. “creating” them in the 

conventional terminology. The fact that the partner positrons and neutrinos are always set free 

in such nuclear formation processes is consistent with this interpretation, although the 

evidence is clearly less than totally unambiguous. To settle the matter definitively would 

require experimental proof that particles can be created or destroyed with appropriate 

application of energy, which amounts to observing the unobservable. Suffice it to say that the 

charge independence of nuclear reactions, which is at the root of the isospin concept, is 

accounted for in the XBPS model. Thus to the extent that a suitable Hamiltonian can be found 

and the associated Schrödinger equation solved to a satisfactory degree of accuracy, one can 

expect the key results of isospin theory to emerge from such treatments without having to 
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make additional assumptions of an ad hoc nature.  

One of the greatest successes of the isospin theory in the realm of nuclear physics is the 

elucidation of trends in the rest masses of isobaric nuclides,180 i.e. groups of systems with the 

same mass number. One of the clearest examples of this type is the isospin triplet 14C, 14N and 

14O in their respective 0+ states. In such cases it is found that the differences in the rest masses 

of these systems can be estimated to a good approximation by comparing the respective 

magnitudes of the Coulomb repulsion of their constituent protons and correcting for the 

promotion energy required to convert protons into neutrons. In the present model isobaric 

nuclides differ from one another mainly in the number of their constituent e-v units, each of 

which changes the atomic number of a given nucleus without changing its mass number. 

Assuming that the various proton shells correspond to pairs of orbitals a, b which can be 

associated on a one-to-one basis with the neutron and proton one-particle functions of the 

nuclear-shell model, it is only necessary in the present view that the occupation of the 

outermost shells (in the above case of pl/2 symmetry) change in concert with the addition or 

loss of the e-   units. 

The relatively good agreement achieved with experimental data through the above 

approximation suggests that proton orbitals can be distinguished in a reasonably unambiguous 

manner on the basis of their spatial relationship to the e-   unit lying closest to it. Again the 

existence of pairs of equipotential points in the exponential damped Breit-Pauli terms, as 

indicated in the schematic diagram of Fig. 6, make such an identification at least plausible. 

More significant in this respect is perhaps the spin-dependent force which exists between the 

protons, however. The (partial) concretization of this interaction discussed in Chapter VII.E 

prevents the development of atomic-like trends in which shells tend to be completely filled 

with electrons before the next most stable species is to be occupied. By providing a strong 

repulsive interaction between protons of opposite spin, this term minimizes the importance of 

stability differences between two neighboring shells and causes them to be occupied 

alternately in a manner akin to the way houses and hotels are added to properties of the same 

color in the parlor game Monopoly.  Moreover, the p4e-   calculations of Chapter VII.F 

indicate that the gain in stability possible by further occupying one of the “neutron” orbitals is 

very much dependent on the number of neighboring e-   units in the system. 

Another key aspect of the isospin formulation is its assumption of nuclear wavefunctions 

which are anti-symmetric with respect to any exchange of a proton and a neutron.88 This 

specification is referred to as the generalized Pauli principle181 to call attention to the fact that 

in the original workl38 an anti-symmetric form was only required for indistinguishable 
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fermions. In the present model no such generalization is necessary because protons are already 

assumed to satisfy the Pauli anti-symmetry principle, and accordingly it is actually two of 

these particles which are being permuted when one speaks in the conventional model of an 

exchange of a proton and a neutron. The corresponding electron and antineutrino of the 

“neutronic” proton are totally separate particles in this view, and thus are not affected by such 

a permutation. In retrospect, it would be more difficult to bring the present model in line with 

the isospin formulation if the latter insisted that its nuclear wavefunction did not have to satisfy 

a particular permutation symmetry for the exchange of a proton and a neutron. This eventuality 

would force an exception to the original Pauli principle138 to be allowed in the present model 

according to which the exchange of two such indistinguishable protons would not lead to a 

sign change in the total wavefunctions under these circumstances. Instead the realization of the 

consequences of beta decay of neutrons left no other choice in the formulation of the isospin 

theory88.89 to broaden the definition of “indistinguishable” particles in the Pauli principle to 

include the proton and the neutron in the same class despite their apparently distinctive 

characteristics. 

In this discussion it is also important to recognize that the predictions of the isospin 

theory in nuclear physics are not of a generally quantitative nature. The comparisons of the 

energies of isobaric nuclides mentioned at the beginning of this section do often work 

remarkably well for ground states, but the experience with excited states is less sanguine. In 

their book Goeppert-Mayer and Jensen84 point out, for example, that although excited levels of 

a nucleus with Iz = 1 should be closely related to some of those of the corresponding isobar 

with Iz = 0, “seldom has it been possible to make an unambiguous assignment of this 

kind.”167,182 As a result these authors prefer to distinguish between the "charge symmetry" of 

nuclear forces, involving either two protons or two neutrons Iz = 1), and “charge 

independence” when a neutron-proton interaction is present, concluding that the experimental 

evidence for the latter property is not nearly as strong as for the former. Furthermore, it is well 

known that correspondingly simple relationships in either isotopic or isotonic series are all but 

non-existent, as illustrated by the deuteron-3He-alpha particle series172 discussed in Chapter 

VII.F. There is thus a danger of oversimplifying the theory of nuclear binding by rigidly 

assuming that all nucleons in equivalent shells have the same properties except for 

electromagnetic effects. 

As an additional remark on the relation of the isospin concept to the present model, it 

seems inescapable that at some point the number of e-   units reaches a critical value, at which 

point it is no longer possible to form even a meta-stable nucleus with the original number of 
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nucleons. In isospin theory such theoretical isobaric members are simply assumed to be non-

existent, whereas in an ab initio approach they correspond to virtual states whose mass and 

other properties can be computed in principle, but which in all likelihood are quite unstable to 

either beta decay or electron capture processes. A similar situation is not uncommon in atomic 

and molecular physics, whereby states which correspond to bound species for other 

(isoelectronic) systems are found to lie in some continuum region for the system of immediate 

interest. Sometimes a resonance of the expected character can be located, but more often than 

not such corresponding (diabatic) states are totally absent in the computed spectrum, or more 

precisely, they are apportioned among the wave functions of continuum states lying in the 

appropriate energy range. 

In summary, the present model can be expected to be at least indirectly relevant to the 

isospin concept by virtue of its (hoped for) capacity to successfully predict the masses and 

properties of a variety of related nuclear systems. To the extent that the solutions of the 

corresponding Schrödinger equations can be obtained quantitatively, and in the process be 

shown to reproduce the pertinent experimental data to a satisfactory degree of approximation, 

such results will inevitably be found to be in agreement with the conclusions otherwise 

reached independently through application of the theory of isospin. Such an attitude toward a 

concept which has become so well established over the years as to have been referred to by 

one author183 as an “industry” might well be perceived by some as unacceptably leger. 

Opinions have varied widely on this issue, however, as illustrated by a passing reference made 

in 1950 by Goldstein184 in his survey of the principles of classical mechanics in which he 

wrote, “indeed for nuclear forces we don't have any theory worth speaking about.” We shall 

return to the subject of isospin in Chapter IX.J when the relationship of the present model to 

the quark theory of elementary particles is taken up. 

 

I. NUCLEAR REACTIONS 

The discussion of nuclear forces in terms of the XBPS model has thus far being confined 

to the study of structure alone. The possibility of carrying out calculations for such systems on 

an ab initio basis also carries with it the prospect of studying nuclear reactions in a new light. 

One can order these processes most conveniently in terms of the types of particles which are 

produced by them. These include ,  and  rays in the original language used to describe this 

field.50 Later on neutrons were also discovered as decay products,14 and the general 

possibilities of nuclear fusion and fission became known. When studying reactions it is 

necessary to know something about energy barriers separating products from reactants, and not 
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just relative energies in their respective equilibrium states. Since the Born-Oppenheimer 

approximation is not used in the XBPS treatment, there are no potential curves as such from 

which to deduce the magnitudes of such barrier heights. For many purposes the variation of 

the total energy with scale factor  for the associated one-particle basis set provides equivalent 

information, however, as demonstrated in the e+e- and    treatments (Figs. 7 and 9). As  is 

increased from small values the energy always rises until a certain point when the short-range 

interactions begin to overtake the effects of kinetic energy (Fig. 5). The heights of such 

computed barriers are necessarily basis-set dependent, since for a complete set the 

corresponding results must be independent of scale factor. For relatively large basis sets this 

degree of saturation still remains an unattainable ideal, however, and one can hope that data 

such as shown in the above figures can be successfully analyzed in the suggested manner. 

Because of the extensive computations required in the present model for the treatment of 

systems consisting of a few particles, it is likely that such investigations will not be feasible for 

heavy nuclei, thus making the study of nuclear fission and alpha-particle decays accessible 

only if suitable approximations can be found which allow inert shells to be treated in a 

simplified manner. The subject of beta decay will be taken up in detail in the next chapter, 

however, and the treatment of photon emissions from light nuclei also appears to be a practical 

goal of ab initio calculations of this type. In the latter case it is necessary to develop methods 

which clearly distinguish pairs of states differing mainly in translational energy from those 

corresponding to distinct internal states between which spectroscopically observable 

transitions are expected to occur. 

The most attractive reaction type that might be accessible to treatment by such 

computational methods is nuclear fusion, since only relatively small nuclei in their respective 

ground states are involved in the most interesting cases. There has recently been renewed 

interest in this subject because of reports on electrochemical studies on heavy water with 

platinum and palladium electrodes.185,186 The results of these experiments have led to 

speculation regarding the identity of the reactions which might be involved, although there is 

mounting evidence that some of the original observations187 can be explained to at least a large 

extent on the basis of purely chemical transformations. Traditional high-temperature fusion 

experiments have been based largely on the reaction of tritium and deuterium to give 4He plus 

a neutron.188 The exothermicity of the above tritium reaction is 646458.62 hartree (17.6 MeV), 

which compares favorably with that of the analogous fusion process  

 

d+d→3He+n           VII.4 
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whose exothermicity is only 120238.74 hartree (3.3 MeV). Despite the fact that no radioactive 

substances are required to drive the latter reaction, the higher heat output of the tritium process 

makes it technically more appealing. The reaction of 3He plus a neutron is itself quite 

exothermic, however, since it leads to the formation of the highly stable alpha particle. If this 

product were formed directly in the d + d reaction, the corresponding exothermicity would 

increase to 876582.49 hartree (23.8 MeV), 6.2 MeV more than in the t + d counterpart 

preferred in the high-temperature fusion investigations.l88 Moreover, both reactants and 

product of the former process are thermodynamically stable. 

The reason that 4He is not formed with sufficient regularity from d + d collisionsis 

understandable in terms of the laws of conservation of energy and momentum. A second 

product is indispensible for sharing the energy potentially released in this reaction, and 

decomposition into 3He plus a neutron achieves this purpose with relatively high probability 

under typical reaction conditions. A photon could carry away most of the available 23.8 MeV 

energy if the intermediate 4He state reached were of non-zero multiplicity, however, so as to 

make a subsequent emission process to the J=0 ground state allowed. Since deuterons have 

zero isospin such an excited 4He state must also be expected to be an isospin singlet, but this in 

itself would not seem to rule out the formation of an intermediate with angular momentum J = 

1 or 2 because of the triplet multiplicity of each deuteron. If the pertinent 4He wavefunctions 

became available, it would be possible to compute the rate for radiative decay to the ground 

state as well as for decomposition into the 3He-plus-neutron products. The practicality of such 

calculations is something which remains open to question at the present stage of development, 

but this example at least illustrates how the above quantum mechanical approach might be 

used to shed light on the mechanisms governing the reactions of small nuclei. 

 

VIII. WEAK INTERACTION IN THE XBPS MODEL: PARITY CONSERVATION AND 

SOLAR  NEUTRINOS 

In the preceding chapter the strong interaction responsible for nuclear binding has been 

represented in large part by means of an exponentially-damped, momentum-dependent 

potential which has as its low-velocity limit the spin-orbit and related operators of the Breit-

Pauli Hamiltonian.106 The key assumption in the accompanying theoretical model is that the 

antineutrino is capable of undergoing an attractive short-range interaction with other particles 

because it possesses a non-zero charge-to-rest-mass ratio (its charge and rest mass are each 

assumed to be zero). Under these conditions it is shown that the two-body potential defined 
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above (XBPS Hamiltonian) is capable of binding protons to e-   binary systems with sufficient 

force to allow identification of the stable products with experimentally observed nuclei. 

Instead of assuming that the electron and antineutrino decay particles of a neutron are created 

at the time of its decomposition, it is demonstrated that, contrary to past argumentation, a 

potential does exist which is sufficiently attractive to confine such light particles within a 

volume of typical nuclear dimensions. In this view the electron and antineutrino retain their 

existence within the bound nucleus, and they are simply set free in beta decay processes. 

The question that obviously arises as a result is whether such a model can be used in a 

consistent manner to describe the weak interaction itself, i.e. the force which is believed to be 

responsible for the beta decay of nuclides. The accepted view in theoretical physics today is 

that the strong and weak interactions are basically different in nature, although the possibility 

has long been sought of unifying them in some way with each other as well as with at least the 

electromagnetic interaction. In more recent times a theory which succeeds in combining the 

electromagnetic and the weak interactions has been formulated,189 but the hoped-for union 

with the strong nuclear force has yet to be achieved. Once it has been assumed that the binding 

of nuclei can be described in terms of interactions involving three different constituents, the 

proton, electron and antineutrino, however, it is straightforward to assume that the same types 

of effects must be involved when such systems undergo spontaneous decomposition. This line 

of approach is investigated in the present chapter. 

 

A. QUANTUM MECHANICAL THEORY OF RADIATIONLESS TRANSITIONS 

It has been mentioned in Chapter IV.A that the neutron can be looked upon as an excited 

state of a system whose ground state is unbound, a state of affairs which is analogous to that 

existing for excimers in molecular physics. The beta decay of a neutron involves a 

radiationless transition in the language of that field, since photons are not emitted in the 

process. The most direct way of computing the lifetime of any radiationless decay is to solve 

the corresponding Schrödinger equation for the excited state in question (more commonly 

referred to as a resonance). The eigenvalues associated with such meta-stable states are 

complex (Er - iEi) and the line width Γ associated with its decay is equal to twice the 

imaginary component Ei.
190 The same Hamiltonian is employed for this purpose as for the 

computation of bound states. The distinction between stability and meta-stability of a given 

state arises naturally out of the solution of the corresponding Schrödinger equation, namely in 

terms of the magnitude of Ei (zero for stable, non-zero for unstable or resonance states). More 

details about such ab initio calculations may be found in the works of the author and his group 
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members.191,192  Upon carrying over this formally simple approach to the present discussion, 

one must expect that the neutron’s energy eigenvalue is actually complex and corresponds to a 

line width  =  /, where the lifetime  is observed experimentally to be 918 s. 

Because the neutron’s lifetime is quite long in comparison with those of typical atomic 

or molecular radiationless processes, it is quite impractical to compute its value in the above 

manner, however. The imaginary part of the corresponding energy eigenvalue is only in the 

order of 10-18 eV, as compared with a total (real) energy of 29000 hartree (0.789 Mev), so the 

accuracy required in obtaining a useful result in this way is prohibitively high.  

Instead, it is far better in such cases to resort to an approximate method closely related to 

it, namely the Fermi golden rule,193 which can be derived from the time-dependent 

perturbation formalism introduced by Dirac.194 In essence, low-order perturbation theory is 

employed to obtain the desired result, and because the effect of interest is very small the 

accuracy expected from this level of approximation is correspondingly high. The usual 

procedure is to divide the total Hamiltonian into two parts, H0 and H’, and first obtain 

solutions for the former operator’s Schrödinger equation which can subsequently be used as a 

basis in which to apply the golden-rule formalism. In a typical application a spin-free 

Hamiltonian (H0) is diagonalized, while the spin-orbit operator serves as H’. In the present 

example, it is very difficult to know how to divide up the XBPS Hamiltonian, however, 

especially to identify a small interaction in it which is responsible for inducing the transition 

from initial to final state. Such a division of the total interactions is not essential, however, as 

can be judged from the complex eigenvalue approach first discussed, in which only the full 

Hamiltonian is actually needed. Because the golden-rule formalism deals with off-diagonal 

matrix elements of H’ in a basis of functions which diagonalize H0, it follows that the 

corresponding full Hamiltonian matrix elements have the same magnitude as those for the 

perturbing term alone. 

On this basis it can be recognized that the main purpose of dividing up the full 

Hamiltonian into H’ and H0 components is to provide a suitable definition of the initial and 

final states of the problem. The difficulty in applying the golden-rule formalism for the XBPS 

Hamiltonian in the description of neutron decay thus comes down to identifying realistic initial 

and final states which represent the physical situation satisfactorily. In a spin-orbit pre-

dissociation of a molecular energy level,195 for example, one chooses pure spin states of 

different multiplicity for this purpose. In another typical example, Born-Oppenheimer 

solutions are taken as initial and final states and allowed to interact via the nuclear kinetic 

energy operator (non-adiabatic effects). A completely equivalent way of proceeding in both 
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cases, however, consists of first diagonalizing the full Hamiltonian and identifying solutions 

which correspond to mixtures of the initial and final states normally employed in the golden-

rule approach. A unitary (diabatic) transformation can then be defined which connects the 

diagonal representation of the full Hamiltonian to one which is non-diagonal, based on the 

physically appropriate golden-rule states. The off-diagonal matrix elements of the latter 

Hamiltonian matrix are then recognized as the quantities to be substituted in the golden-rule 

formula for the desired lifetime computation. 

When described in this way the above procedure sounds a bit arbitrary, which in a 

certain sense it is, but no less so than in the alternative method of dividing up the full 

Hamiltonian into two parts. The correct lifetime can only be obtained if the choice of initial 

and final states conforms to the experimental conditions at hand. That is why the complex 

eigenvalue method is more acceptable in principle because no comparable choice is needed in 

this case. Instead, it is only necessary to identify the Schrödinger equation solution which 

corresponds to the physical state of interest. In summary, to describe the weak interaction in 

terms of the XBPS Hamiltonian it is not necessary to first devise a new interaction, but rather 

to identify a suitable diabatic transformation which leads to the physically meaningful initial 

and final states involved in the decay processes of interest. 

 

B. SPIN-FLIP MECHANISM FOR NEUTRON DECAY 

In Chapter VII.A it was noted that the most stable state of the p+e-   system to be 

associated with the neutron has 1/2- symmetry and that the Ms = 1/2 component can be 

described primarily in terms of the spin configuration p (e-  ß – e-ß ), that is, the e-   0- 

complex discussed above is bound meta-stably to the proton in this model. The spin of the 

neutron is thus determined almost entirely by that of the proton.196 The spins of the three 

particles emitted after neutron decay have been studied experimentally by Burgy et al.75 These 

authors found that of the three MJ = 1/2 spin combinations possible for the p+e-   system, one 

is missing almost entirely, namely ß. It is thus seen that the antineutrino carries away the 

original total spin of the neutron to a large extent, and this implies that the proton and electron 

form a singlet complex once decomposition takes place. Since the beta decay process involves 

a transition between two states of the same system, we can combine the above theoretical and 

experimental results to arrive at the following interpretation. In the initial (meta-stable) state 

the spins of the electron and antineutrino are opposite and constantly alternating. At the time 

of decay, a spin flip occurs so that the proton and electron spins become opposite and 

alternating and the   spin consequently must remain fixed. The system is expected to be quite 



162 

 

unstable in the resulting spin configuration, so that decomposition occurs as a consequence. 

A key result of the above p+e-   calculations based on the XBPS Hamiltonian is that the 

absence of the ß spin configuration is not complete. The CI coefficients of Table XII show 

that the ideal ratio of 3 : 1 of the two doublet spin eigenfunctions (see Chapter VII.A) 

corresponding to the same spatial orbital occupation is never quite attained. Discrepancies of 

1- 2 % in the square of this ratio are generally observed.196 

 

With reference to the general discussion of lifetime computations given in the preceding 

section, it seems reasonable to assume that this admixture of another 1/2- spin eigenfunction is at 

least partially responsible for the neutron’s instability. Because of this impurity in the p+e-   

wavefunction (1) there is a small probability that the system foregoes the 0- arrangement 

preferred by the e-   complex, thereby causing the system as a whole to break apart. A diabatic 

transformation can then be defined along the lines discussed above which removes this impurity 

by mixing in a second state (2) which consists primarily of the other (undesirable) spin 

configuration. The p+e-   diabatic state i
D with the pure e-   0- component is then defined as: 

 

i
D  = cos  1 + sin  2        VIII.1 

 

A second diabatic state corresponding to the orthonormal 1/2- spin function is similarly defined 

as: 

 

2
D  = -sin  1 + cos  2        VIII.2 

 

Normally several such excited states are required to allow for a thorough deperturbation of the 

desired initial diabatic state, in which case a unitary transformation of higher dimension is 

required. 

In order to use the results of the p+e-   calculations discussed in Chapter VII to obtain an 

estimate of the corresponding decay lifetime, it is necessary to compute matrix elements over the 

full XBPS Hamiltonian between the diabatic states defined in the last section. This is a simple 

matter if the eigenvalues corresponding to the adiabatic excited states n needed to define the 

required unitary transformation are known, involving a reverse transformation of the diagonal 

Hamiltonian matrix in the original eigenvector basis. This brings us to an important qualitative 

point, however. The decay process must involve a final state of the same total energy as that of 

1
D, which rules out any of the other diabatic species described above. All such states must be 
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far less stable, corresponding to a highly undesirable change in the spin orientations of the three 

component particles relative to those in the initial state. Instead the true final state c
D is a 

member of a continuum corresponding to the free proton, electron and antineutrino system of the 

same energy as i
D. More precisely there are an infinite number of such states which correspond 

to the continuous range of antineutrino and electron energies whose distribution was successfully 

predicted by Fermi.52,55,197 in his original theory of beta decay. The other diabatic species 

mentioned above are thus to be looked upon as virtual states which only act as intermediates in 

the decay process. 

The decay is accordingly expected to be predominantly of second order, and properly 

described by the golden rule formula:193 

<1
D Hc

D> = 
n

'  <1
D Hn

D> <n
D Hc

D> (En
D – E1

D)-1      VIII.3     

and  -1 = 2|<1
D Hc

D>|2 dN/dE,  VIII.4                   

where  is the lifetime in atomic units (  a0/e
2 ) and dN/dE is the density of states of the 

continuum.197 From these equations it is relatively easy to imagine why the neutron’s decay 

lifetime is so long. First, the energy denominators En
D – E1

D are expected to be quite large, as 

already mentioned. Secondly, each of the continuum functions c
D is a free-particle state and as 

such cannot be expected to have very large Hamiltonian matrix elements with the very compact 

diabatic functions n
D which are confined for all practical purposes to within nuclear 

dimensions. In this connection it is well to note that the matrix element <1
D Hc

D> is not 

computed ab initio in the original theory,197 but rather is inferred from the measured lifetime of 

the decay process. 

Thus far we have only emphasized the effect of different spin orientations on the lifetime 

of the p+e-   system, but it also seems clear that the sl/2-pl/2 (or p3/2-d3/2) polarization effects 

discussed in Chapter VII.A also should be an important factor. One of the major inducements for 

the binding of a proton in the XBPS calculations is its attractive spin-same-orbit interaction with 

the electron, which for an s1/2 proton orbital requires that the electron occupy a pl/2 species as far 

as possible. The antineutrino resists any polarization of the electronic charge distribution from 

s1/2 to pl/2 because such a change decreases its own attraction for the electron. When a relatively 

small number of protons is present in a nucleus as compared to the number of e-   units, the 

competition for the electron’s favor is expected to be intense, and this in turn increases the 
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possibility of a spin flip of the type discussed above. When more protons are added, however, the 

electron can more readily adjust its orbital character to satisfy them at the expense of the 

antineutrino without sacrificing the overall stability of the nuc1eus. It can thus be anticipated that 

nuclei of high binding energy are characterized by relatively highly polarized e-   units relative 

to their respective proton-free states, while at the same time preserving the 0- character of the 

light-partic1e binaries more thoroughly than has been computed above for the p+e-   neutron 

system. 

Nevertheless, in view of the variety of Breit-Pauli terms which contribute to the stability of 

the e-   units as opposed to those with a major influence on the nuc1ear protons (Tables XIV-

XVI), it still seems highly plausible that the electron and antineutrino remain indispensible to 

one another for the purposes of keeping them bound within the narrow confines of any given 

nuc1eus. This characteristic of the XBPS Hamiltonian (Table I) thus ensures adherence to the 

well-known fact that beta decay always involves an addition or loss of the same number of 

electrons as antineutrinos (or positrons and neutrinos). In this way neutrons can be converted into 

protons and vice-versa as a consequence of beta decay. When an excess of protons is present the 

results of the XBPS calculations (Sect. VI.G) indicate that a relatively high binding energy is still 

possible. Under these circumstances, however, the nucleus becomes unstable to electron capture 

that would otherwise lead to the conversion of protons into neutrons via this mechanism in order 

to further enhance stability. Ultimately in the present model it is the high density of the e+e- and 

   massless binaries throughout the universe (see Chapter II.D) which keeps systems such as 

4Li from having a stable existence. 

 

C. LONGITUDINAL POLARIZATION AND PARITY CONSERVATION 

 

In Chapter IV.B the phenomenon of longitudinal polarization of the emitted particles in 

beta-decay processes was briefly mentioned.  In the period immediately following the first such 

experiments60 physicists quickly had to come to grips with the surprising thesis that parity is not 

conserved in the weak interaction. This proposal had first been made by Lee and Yang59 in 1956. 

The original motivation for their hypothesis was the observation196 of two seemingly identical 

particles, then tentatively referred to as  and , which nonetheless were thought to decay 

differently from one another (see Chapter IX.C). As mentioned before, since the evidence from 



165 

 

nuclear and atomic-molecular processes was consistent with the view that parity is conserved in 

all physical interactions, the assertion that this state of affairs does not hold generally was first 

met with considerable skepticism. 

The experiments of Wu et al.60, carried out in response to the suggestion of Yang and Lee 

and fulfilling their expectations in a spectacular manner, changed this view dramatically, 

however. The situation is perhaps best illustrated by a letter69 written by Pauli shortly after being 

confronted with this experimental evidence. The theoretician who had prevented the discarding 

of the conservation of energy principle51 in interpreting the results of beta decay by postulating 

instead the existence of a previously unknown particle,39 the neutrino , was now put in the 

position of having to accept the fall of an equally cherished law of nature, the conservation of 

parity. When we examine the theoretical arguments which ultimately led to this development, 

however, we find that an important assumption of a different kind is also involved, one which 

has been at issue from the outset of the present study, namely the hypothesis of the creation and 

annihilation of matter. It is therefore interesting to review the key experimental observations with 

special emphasis on this aspect of the theoretical description. 

The 60Co beta decay studied by Wu et al.60 involves the Gamov-Teller selection rule,62 J 

= 1, which makes the experimental verification of the longitudinal polarization of the emitted 

particles somewhat easier to follow. Since the experiment is carried out at an initial temperature 

of only 0.01° K in the presence of a strong magnetic field, the J = 5, MJ = 5 state of 60Co is 

populated almost exclusively prior to decay, from which the J = 4, MJ = 4 60Ni state must be 

formed in view of the above selection rules. Conservation of angular momentum thus requires 

that the emitted electron and antineutrino both have  spin, i.e. pointing in the same direction as 

that of the product nucleus. Since electrons are observed to exit predominantly in the direction 

opposite to that of the external magnetic field, the hypothesized polarization effect is clearly 

demonstrated by this experiment. The polarization is not complete, but it is found to be of the 

highest degree that can be expected when account is taken of the fact that the electron’s velocity 

is less than the speed of light. As Wu recounted in a subsequent review article,198 "... viewed 

from the position of the emitted beta particles, the nuclei 60Co appear to rotate clockwise; left can 

be distinguished from right, therefore, parity is not always conserved, as shown by this 

experiment; moreover, the asymmetry observed is as large as possible." 
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It was subsequently shown that electrons are also longitudinally polarized when they 

emerge from un-oriented nuclei.199,200  By counting electrons spinning parallel (dλ+ and 

antiparallel (dλ-) to the direction of the nuclear spins the polarization P was determined as 

                            P = (dλ+ - dλ-)/(dλ+ + dλ-) = -/+ v/c, 

where the upper and lower signs hold for decay electrons and positrons, respectively.  The 

degree of polarization was demonstrated to be proportional to the particle’s velocity (v=c2p/W , 

where p and W are its momentum and energy, respectively.  In addition, these experiments 

verified that the sign of the polarization was opposite for the anti-particle, i.e. positrons behave 

as right-handed screws, while electrons are more likely to be left-handed by the same margin. 

     The neutrino’s longitudinal polarization in the weak interaction was also measured by 

studying the nuclear recoil in β-decays.201  It was found that the polarization was complete within 

experimental error. Neutrinos were found to behave as left-handed screws, while anti-neutrinos 

exhibited the opposite polarization, thereby providing a clear means of distinguishing between 

these two charge-less particles. 

Subsequent experiments202 on the electron capture of 152Eu demonstrated that the emitted 

neutrinos are also left-handed, and by inference that the antineutrino is right-handed. Nuclear 

recoil in both Gamov-Teller (J=1) and Fermi (J=0) decays consistently verify this property 

of neutrinos and antineutrinos.198-200 In the 60Co decay the recoil of the product nucleus is such, 

for example, that conservation of momentum forces the emitted antineutrinos to always exit in 

the direction of the applied magnetic field. This fact when combined with its  spin as deduced 

above leads to the conclusion that the antineutrino is characterized by positive (right-handed) 

helicity. 

The thrust of the parity non-conservation argument is thus as follows. Since neutron decay 

takes place in free space, one must expect on the basis of assuming that parity is conserved in all 

interactions, beta decay in particular, that there should be no preferred direction of motion 

relative to the nuclear spin. An applied magnetic field can have no effect on this relationship, 

because as a pseudo-vector it is unchanged by a coordinate inversion. If a neutron is a particle 

without internal structure prior to its decomposition, the observed longitudinal polarization of its 

decay particles is therefore incompatible with parity conservation. The situation changes if the 

original system consists of three particles instead of one, however, as suggested in Refs. [203-

205]. Particularly if the relative orientation of the spins of these particles plays a major role in 
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determining the stability of the initial and final systems, it is no longer logically compelling that 

the longitudinal polarization observed in all beta decays is inconsistent with parity conservation. 

The calculations for the p+e-   system discussed in Refs. [203-205] indicate, for example, 

that the e-   complex greatly prefers to be in a singlet state, and that the spontaneous decay 

comes about primarily because of a spin flip which destroys this relationship between these two 

light particles. The terms in the XBPS Hamiltonian which are responsible for this result are the 

short-range Breit-Pauli interactions which at typical atomic inter-particle separations correspond 

to magnetic effects. The Hamiltonian itself commutes with each of the parity, charge-conjugation 

and time-reversal operators as well as any combination thereof, including the CPT product of the 

Schwinger-Pauli-Luder's theorem,72-74 so it cannot be claimed that there is any inherent property 

in the present model which could lead to a non-conservation of any of the above quantities. 

Calculations with this Hamiltonian find a strong binding for the proton, electron and antineutrino 

in the lowest 1/2- state of the combined system, which it has been argued (Chapter VII.C) would 

correspond to a (meta-stable) particle with a magnetic moment of the order of a nuclear Bohr 

magneton. After a spin flip occurs of the type discussed above, it can be expected that a quite 

different situation results, however, in which each partic1e is strongly repelled by the same 

forces which hold the system together in its original meta-stable configuration. That there might 

be a high correlation between the spin of each particle and its direction of motion under such 

circumstances is not at all implausible, in decided contrast to what must be concluded if it is 

simply assumed that the electron and antineutrino first come into existence at the time the decay 

process begins and not before it. 

If we assume that strong magnetic-like fields are set loose at the time of beta decay, in 

accord with the arguments based on the present calculations, it follows that the spins of the 

individual particles (and their magnetic moments) determine the strength of these forces. There is 

no law of conservation of magnetic fields, but the net force on the three constituent particles 

must be unchanged by virtue of Newton’s Third Law as a result of such an internal change in the 

structure of the decaying system, and the same holds true for the system’s total angular 

momentum. Since no particle is affected by a self-generated magnetic field, it follows that the 

resulting forces are different for each of the decaying species. For example, the antineutrino is 

only acted upon by the fields of the proton and electron, while the electron experiences the fields 
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of the antineutrino and proton only. The only requirement is that the vector sum of the individual 

forces vanishes. 

Since the exponentially-damped Breit-Pauli interactions are mainly responsible for such 

forces according to the present calculations, it follows that the charge-to-rest-mass ratios which 

are the coupling constants determining the magnitudes of these effects are crucial quantities for 

understanding the dynamics of beta decay. In the p+e-   system the absolute magnitude of the 

q/mo values decreases in the order: electron, antineutrino, proton. A positive q/mo value only 

about 60-70% as great in absolute magnitude as that of the electron is required to obtain the 

experimental neutron energy in the above calculations. It will be recalled from Chapter VI.A that 

this choice still allows for a consistent explanation of the non-ionizing properties of neutrinos 

(Fig. 8) on the basis of the exclusively long-range repulsive character of the corresponding 

interactions which result from it, while at the same time providing for short-range attractive 

forces of the strength required to form a suitable e-  complex with which to bind protons in 

nuclei. 

On the basis of these considerations an interesting series of correlations can be identified 

between various theoretical and experimental properties related to the longitudinal polarization 

phenomenon. For example, the q/mo values for e+ and   are positive, just as are their helicities. 

Charge conjugation changes the sign of these q/mo ratios, giving them negative values for e- and 

, which is also the sign of their helicities. In terms of the Breit-Pauli interactions, the correlation 

becomes even more striking, namely the magnetic moments of each of the four particles above 

point in the same direction as their momentum vector in beta-decay. After taking account of the 

v/c factor in the polarization function,197,199 one can summarize all known experiments dealing 

with this phenomenon as follows (Fig. 15): the emitted electrons and neutrinos and/or their 

antiparticles always show a strong preference for orienting their magnetic moments parallel to 

and in the same direction as the forces acting on them after beta decay occurs. 

In any conventional system subjected to a strong magnetic field, it can be expected that the 

constituents with the largest magnetic moments will show the strongest reaction in order to 

minimize the total energy, so the direction of the accompanying force can be deduced most 

simply by observing their behavior. The above correlation is perfectly consistent with such a 

pattern. The lighter components of the neutron or other beta-decaying systems orient themselves 

with a definite preference. The importance of the v/c ratio also fits in with such observations, 
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since the velocity of the emitted electrons is clearly a good indicator of the strength of the forces 

to which they are subjected, and their tendency to orient themselves in the magnetic field 

depends very much on this factor. Since the net force on the nucleus must be zero as a whole 

because no external interactions are present, it is also clear that not every constituent is free to 

alter its spin direction so as to have its magnetic moment parallel to the magnetic field. 

 

 
 
FIG. 15. Schematic diagram showing the relationship between the linear pi and total angular Ji momenta of the particles emitted 

upon the beta decay of a neutron. The magnetic moment µi = (qi/2moi) Ji of the electron and antineutrino is observed to point in 
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the same direction as its momentum vector pi, thus giving rise to the phenomenon of longitudinal polarization. The corresponding 

proton quantities (with by far the smallest |q/mo| value of the three decay particles) must point in opposite directions in order to 

satisfy the conservation laws for linear and angular momentum for the system as a whole. If all three particles are assumed to be 

present in the neutron prior to decay, it is possible to explain this behavior in terms of inhomogeneous magnetic-like fields which 

arise as a result of a non-radiative transition (spin flip), rather than as a violation of the law of parity conservation. 

 

 

As a result, the behavior of the heavier particles in the weak interaction is inevitably more 

determined by momentum conservation laws than by any magnetic preferences of its own. Thus, 

the positive muon must leave a decaying pion with the opposite spin and velocity direction as the 

associated neutrino.76,77 Consequently, since a neutrino has negative helicity, so must the positive 

muon as well. We thus have a system (µ+) which has a magnetic moment with a sign opposite to 

that of its helicity. This behavior is exactly what must be expected when one realizes the |q/mo| 

value of the neutrino is much larger than that of its heavier counterpart. It therefore has more to 

gain by orienting its spin in a particular direction than does the muon. Similarly, the proton also 

exhibits a negative helicity75,202 in beta decay, i.e. of opposite sign to its magnetic moment. This 

is clearly seen in Fermi (J = 0) interactions for which both electron and antineutrino must 

depart in the same direction with opposing spins. Under these circumstances the proton must 

recoil in the opposite direction. The experimental results indicate that the   spin is almost 

always parallel (with a 5/6 probablity) to that of the decaying neutron, so the proton spin must be 

opposite to that of the electron (and thus parallel to that of the antineutrino) to ensure doublet 

multiplicity for the system as a whole. If on the other hand, the electron and anti-neutrino were 

created in a state with S=0, there would be equal probability that the neutron and   spins would 

be anti-parallel, contrary to the experimental data.  Again, the proton can be looked upon as 

simply reacting to the magnetic behaviour of the lighter particles, and therefore foregoing its 

tendency in the isolated state to align its magnetic moment in the same direction as its 

momentum.206 In summary, the lighter particles behave in the weak interaction as if they strongly 

prefer to orient their magnetic moments in the direction of the respective field acting on each of 

them (Fig. 15), while the behaviour of all other (heavier) particles in the same processes can be 

understood on the basis of the consequences of the consequences of the conservation laws for 

linear and angular momentum. 

The occurrence of longitudinal polarization in pion and muon decays is also discussed in 

detail in Sect. V of Ref. [206].  It is therein concluded that “the pion decay studies do not really 

tell us anything about the intrinsic helicity of the muon, demonstrating only that νμ, like νe, is left-
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handed and fully polarized in such experiments.”  The muon decay process is more complicated 

since it produces three particles (e+,  μ and νe). After detailed consideration of the spin 

relationships, it is concluded that “it appears that the motion of the neutrinos determines the 

nature of the longitudinal polarization effects observed for the heavier particles involved in weak 

decays.” 

There is one other key point which needs to be taken into account in attempting to 

rationalize the observed correlation between magnetic moments of particles and the direction of 

their motion. A homogenous magnetic field does not impart a net force on a magnet. Instead only 

a torque is applied which tends to orient the magnetic moment of the system in the direction of 

the field. Since the particles in beta decay depart with high energy, it is clear that the 

corresponding fields acting upon each of them cannot be homogenous, but such a property is 

hardly surprising in view of the spin-flip mechanism in the above model, which causes a rapid 

reorganization of the magnetic forces. In the Stern-Gerlach experiment an inhomogeneous 

magnetic field imparts a net force on an electron or other particle which deflects it in a given 

direction, depending on the sign of the magnetic moment µ and that of the field gradient. If the B 

field is in the z direction, E = - µzBz and the component of force in the same direction is given by 

Fz = µz Bz/z. This means that if the gradient is positive in the direction of the magnetic field, 

i.e. Bz/z>0, the direction of the force must be the same as that of the magnetic moment µz. 

Since electrons and neutrinos prefer to move with their magnetic moments in the same 

direction as their momenta in beta decay, the above arguments indicate that the field gradient 

would have to be positive in the field direction for each particle at the time immediately 

following the radiationless transition. The key point is that such a field is generated by the 

spontaneous decay of the nucleus.  It is distinct from an ordinary magnetic field, in other words. 

To this end, it will be given a name, namely BE, which makes clear that it is electroweak in 

character and is not to be confused with a magnetic field.  Moreover, it will be helpful to specify 

the particle on which the field acts, for example, by including the particle name in parentheses.  

Thus, for the neutrino the corresponding field will be denoted BE (ν).  It is directed outward 

from the nucleus along the z axis of the specific coordinate system used to describe this 

interaction.  The force applied to the neutrino is therefore denoted Fz (ν) = µz (ν) BEz (ν)/z, in 

order to make the analogy with the magnetic Stern-Gerlach effect as transparent as possible.  The 

sign of µz (ν) is clearly critical in the ensuing analysis.  It determines whether the electroweak 
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magnetic moment is parallel or anti-parallel to the spin of the particle.  The experimental data 

indicate that this sign is negative for both the electron and neutrino and positive for each of their 

respective antiparticles. 

The example of the neutron decay in Fig. 15 serves as a useful illustration of the above 

interaction.  It is modelled after the Fermi decay with ΔJ=0 in which the antineutrino emerges 

with α spin while the electron has β spin.  In the case of the antineutrino, this means that the sign 

of the magnetic moment μ   is positive and therefore that it points in the same direction as its spin 

J  .  As the particle with the smallest rest mass it is assumed that the electroweak field gradient 

BEz ( )/z is positive at the onset of the transition.  Accordingly, the force also points along the 

positive z axis, and therefore one expects the antineutrino to be ejected in the forward direction 

as shown in the figure.  Note, however, that if the spin direction is changed by for example 

inverting the magnetic field in the longitudinal polarization experiment, the result would be that 

the direction of μ   is also changed.  Inverting the magnetic field has no effect on the electroweak 

field, however, so one expects from the electroweak Stern-Gerlach analogue that the force and 

therefore the momentum P   direction are changed as well.  As a result, the spin and momentum 

vectors would both still lie in the same direction, and the helicity of the antineutrino would have 

the same value (right-handed) as before the change in magnetic field occurred. 

Nonetheless, it is still possible to imagine another set of experimental conditions in which 

the antineutrino would be found to behave as a left-handed screw.  This is not possible in the 

present example because it is assumed that the field gradient BEz ( )/z would inevitably be 

positive at such an early stage in the decay.  In other words, it is not necessary to assume a 

unique characteristic for the antineutrino in order to explain its exclusively positive helicity in 

the Fermi decay process.  A completely similar analysis can be made for the Gamov-Teller 

decays.  The same conclusion holds for the decays of un-oriented nuclei.  The salient point in all 

these cases is that the sign of the electroweak field gradient must be expected to be positive at the 

time that the field acts on such a massless particle.  If this were not the case, a left-handed 

antineutrino would be possible and there is no reason to expect that this relationship cannot exist 

in other types of natural processes.    

The emission characteristics of the electron in the Gamov-Teller decay,60 in which case 

both the electron and antineutrino have α spin, can be explained in a very similar way.  One only 

needs to assume that there is a reasonable chance that the corresponding field gradient  
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BEz (e-)/z will be positive at the time of the electron’s ejection from the nucleus.  The 

likelihood of having a negative value for the field gradient at this time increases with the elapsed 

time subsequent to the moment of spontaneous decay.  This possibility can be the reason for the 

v/c factor in the electron counting rate.198-201  If the field gradient is still positive at the time of 

emission, it is expected that, since the magnetic moment μe points in the opposite direction as 

BE(e-), the momentum Pe will also point in that direction.  In that case, it is seen that Je (α spin) 

and Pe are anti-parallel and that the predominant helicity for the electron value is -1, as is 

observed.   

The fact that the electron has α spin is a consequence of the presence of a magnetic field.  

Reversing the direction of the magnetic field changes the value of the spin to β, which in turn 

also changes the direction of μe.  As a consequence of the analogue of the Stern-Gerlach effect, 

i.e. because the sign of BEz (e
-)/z remains constant, this means that the electron momentum 

also changes direction.  Therefore, the helicity of the electron is unchanged, i.e. Je and Pe remain 

anti-parallel to one another.  This shows up in the experiment by the reversal in the electron 

counting rate.  The preference is still for the decay electrons to be detected more in the backward 

direction to the applied magnetic field (and nuclear spin) than the forward. 

While it is difficult to be certain about such details, the above set of circumstances does 

make such an arrangement seem at least plausible. If it were possible to observe one of the 

lighter particles from down field at the start of the decay, it is reasonable to expect that the field 

strength acting on it would increase monotonically as it is approached more closely. For the 

gradient to be positive at the location of the particle itself would mean that there is a type of 

inertial effect according to which the field’s build-up would not stop until some later point in 

time. The larger this effect, the greater the force that would be imparted to the particle, and the 

greater the tendency for a system with a large |q/mo| ratio to orient its magnetic moment along 

the field direction in which it departs. That would mean positive helicity for positrons and 

antineutrinos, and negative helicity for electrons and neutrinos, exactly as observed. 

The point of this argument is not to insist that specific conditions caused by damped Breit-

Pauli. interactions must occur exactly as speculated above. Rather, it is to show that once one 

assumes that the neutron is a system with a tri-atomic composition (p+e-  ) prior to its decay, it 

is no longer necessary to assume that the pertinent Hamiltonian must fail to commute with the 

parity and/or charge-conjugation operations to produce the type of correlations observed 
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experimentally between the respective spin and momentum directions of beta decay fragments. 

In other words, there is no reason to be certain that parity is not conserved in the weak 

interaction once one gives up the idea that only a single partic1e with no internal components is 

present prior to decay.  

The same observations can be taken as strong evidence that: a) the electron and 

antineutrino do exist as components of the neutron or of an associated bound nucleus, and b) the 

forces which bind them together (and overcome the high kinetic energies required by such close 

confinement) are very much dependent on the spin orientations of the individual particles both 

before and after the decay process occurs. Again, it can be noted that the analysis of multiplet 

structure in the nuclear-shell model of Goeppert-Mayer99 and Jensen100 quite consistent with the 

second of these points, indicating that strong spin-orbit and related effects of Breit-Pauli type are 

needed to explain the observed systematics in electromagnetic and other properties of such 

systems. 

Viewed in this manner it is possible to draw a parallel between the longitudinal 

polarization phenomenon and another effect which proved to be crucial in the development of 

the theory of molecular structure. For many years there was considerable uncertainty over the 

question of whether an electrolyte such as NaCl is best looked upon as a neutral diatomic 

molecule or as a pair of oppositely charged atomic ions. It was known that melts of sodium 

chloride and other salts could be electrolyzed to give the respective positive and negative ions, 

but since a substance such as water was thought to consist of molecules even though it can be 

decomposed by electrolysis into ions as well, this characteristic was not deemed sufficient in 

itself to settle the issue. The study of the colligative properties of solvents (vapor pressure, 

melting and boiling points and osmotic pressure) ultimately did produce clarity,207 however, 

since a system such as NaCl was found to exhibit nearly double the effect per gram-mole of 

solute as any of a large series of non-electrolytes. This result showed that the individual ions in 

NaCl enjoy nearly the same freedom of movement in the condensed phase as do single 

molecules of non-polar substances. 

By analogy, the question raised in the present analysis is whether a neutron always behaves 

as a single unit up to the point at which it undergoes decay. The only way to answer this question 

affirmatively based on the longitudinal polarization results is to discard the law of parity 

conservation in the weak interaction. As soon as one leaves open the possibility that the neutron 
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is a meta-stable complex of three different elemental particles, however, such a conclusion is no 

longer the only alternative. Instead, one can turn the argument around and say, because parity 

must be conserved, there is no recourse but to assume that the neutron does contain several 

component particles before decay, and therefore that they are not merely created at the time the 

decomposition process begins.  The construction of a Hamiltonian which is capable of describing 

the binding of protons, electrons and antineutrinos within the small dimensions of a nucleus 

clearly gives credence to the latter interpretation, and thereby raises the possibility that parity, 

charge conjugation and time reversal, just as energy, linear and angular momentum, are all 

perfectly conserved in beta decay, as well as in all other physical processes which have yet to be 

observed. More details about the general subject of longitudinal polarization experiments and the 

related theoretical discussions may be found elsewhere.208   

 

D. TWO-COMPONENT THEORY OF THE NEUTRINO AND SUGGESTED EXPERIMENTAL 

TEST 

An outgrowth of the longitudinal polarization experiments was the introduction of a two-

component theory of the neutrino.  A forerunner of this theory had been given by Weyl.67  Two 

updated versions were proposed, one by Landau,65 Lee and Yang64 and Salam66 and another by 

Majorana209 and Serpe.210  In both cases it was assumed that the neutrino and antineutrino are 

identical.  A new quantity, helicity (H), was introduced, in which a value of +1 was assigned to 

the antineutrino (right-handed screw) and a value of -1 to the neutrino (left-handed screw).  The 

two-component theory holds that that ν cannot behave as a right-handed screw, and that   

cannot be left-handed.   

The two-component theory of the neutrino is strictly valid only if its rest mass is exactly 

equal to zero.  It was originally assumed that only the product of parity and charge conjugation 

operations PC is an invariant changing left-handed neutrinos into right-handed antineutrinos.67 

Later experiments with pion and muon decays211 indicated that there is no difference in the 

helicities of such high-energy neutrinos νμ and antineutrinos  μ than in their counterparts in 

lower-energy nuclear decays (νe and  e) bolstered belief in the non-conservation of parity in the 

weak interaction. 

The neutrino’s longitudinal polarization in the weak interaction was also measured by 

studying nuclear recoil in β decays,201 whereby it is was found that the polarization was complete 



176 

 

within experimental error.  Neutrinos were found to behave as left-handed screws, while 

antineutrinos exhibited the opposite polarization, thereby providing a clear means of 

distinguishing between them, despite the fact that both are charge-less.  The observation of 

nearly total polarization for the neutrinos is consistent with the v/c dependence observed for 

electrons, since both ν and   are expected to have nearly zero inertial mass and thus move with 

close to speed c.  For Fermi transitions (ΔJ=0) the correlation distribution was found to be  

1 + a (v/c) cosθ, where v is the electron velocity and θ the angle between the electron and 

neutrino momentum vectors. The value of a was found to be +0.97 +/- 0.14, in agreement with 

the theoretical value of +1, which was predicted based on the opposite signs of the longitudinal 

polarization of electrons and antineutrinos.  A similar cos θ dependence was noted in 

experiments with polarized 60Co,60 where the angle is between nuclear spin and the electron 

velocity.  For Gamov-Teller transitions (ΔJ=1), a value of a = -0.39+/- 0.05 was measured, also 

within experimental error of the corresponding theoretical value of a =-1/3. 

Nowhere is the contrast greater between the present dynamical interpretation of the 

longitudinal polarization phenomenon and the two-component theory discussed above.64-67,209,210   

The latter holds that there is no such thing as a right-handed neutrino, of whatever flavor, nor is 

there a left-handed anti-neutrino.  The dynamical model indicates, on the contrary, that it is just a 

matter of the conditions under which neutrinos can be observed experimentally.  There is thus a 

need for a means of distinguishing between these two views.  In the following, an experiment 

will be outlined which at least has the potential of settling this issue in a definitive manner, and 

also the broader issue of whether parity is always conserved or not. 

When a spinning object collides with a wall, it normally rebounds in the opposite direction 

and either stops spinning or continues rotating in the same direction as before.  Therefore, when 

a neutrino experiences a head-on collision with a heavier particle, a similar result can be 

expected, but this means that a left-handed neutrino would often be converted into a right-

handed one.  Yet, the two-component theory of the neutrino holds that this result is absolutely 

impossible, whereas the dynamical model under discussion suggests not only that it can happen, 

but even that it is a far more probable result than that the neutrino would reverse its spin as well 

as its velocity direction as a result of the collision. 

To investigate the two-component theory, it is necessary to measure the change in spin that 

occurs when neutrinos collide with nuclei.  If the colliding neutrino does reverse its spin 
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direction, one unit of angular momentum must be transferred to the collision partner.  Therefore, 

if the recoiling nucleus is in a J=0 spin state, then its total spin would change in a head-on 

collision as well.  Observation of an accelerated nucleus in its original spin-less state would then 

be an indication that the backward scattered neutrino also has the same spin as it had before the 

collision and, therefore, that it must have changed its helicity.  Such behaviour would clearly 

stand in contradiction to the two-component theory of the neutrino, and therefore demonstrate 

that the longitudinal polarization experiments are by no means incompatible with parity 

conservation. 

Because of the known extreme penetrability of neutrinos, it is of course very unlikely that 

the aforementioned collision with a nucleus could be detected in practice.  The possibility needs 

to be put in context with the original argument of Lee and Yang.59 Under the experimental 

conditions of the Gamov-Teller ΔJ=1 test carried out by Wu et al.,60 the spin of the emitted 

electron points in the direction of the magnetic field. Therefore, they argued that if parity is 

conserved in this process, it should be equi-probable to detect the decay electrons in the forward 

as in the backward direction relative to the field vector.  The experiments showed, however, that 

there was a large asymmetry, with more electrons emitted in the direction opposite to the field 

vector than along it.  The amount of longitudinal polarization was found to be proportional to the 

velocity ratio v/c of the decaying electrons.60  Since spin is an axial vector, while momentum is a 

polar vector, Lee and Yang59 argued that parity cannot be conserved in this process, because 

simply inverting the coordinate system does not lead to an equi-probable experimental 

arrangement. i.e. with the electrons departing mainly in the forward direction relative to the 

magnetic field. 

In their book,212,213 Frauenfelder and Henley argue forcefully in favour of parity non-

conservation based on the Wu et al.60 experiment.  In their Fig. 9.6 on p. 208, they show a 

concise illustration of the Gamov-Teller ΔJ=1 decay.  The cerium magnesium nitrate nucleus 

with spin J=5 is subjected to a strong magnetic field B which is parallel to the nuclear spin.  They 

point out that as a result at the outset the emitted electrons have almost exclusively α spin.  The 

normalized counting rate in the forward direction is found to be only 78% of its value at a later 

time when the adiabatic magnetization has ceased to have an influence on the results and the 

spins of the electrons are just as likely to be β as α. The corresponding proportion in the 

backward direction is 120% of the latter value, whereby ideally the two percentages must add up 
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to 200%.  In terms of the electron counting notation used in Chapter VIII.C, dλ+ = 0.79 and dλ- = 

1.21, so that the ratio  P = (dλ+ - dλ-)/(dλ+ + dλ-) = -0.42/2.0= -0.21.  The latter value of P is thus 

seen to be consistent with v= 0.21 c as the average speed of the electrons considered in the 

experiment.   

According to the present interpretation, these results lead to the conclusion that the 

probability that the electroweak field gradient is positive, i.e. in the same direction as both the 

electroweak field itself and also the applied magnetic field, is 0.605.  The corresponding value 

for a neutrino would be 1.0. Since the electron spin is α at this stage of the experiment, its 

magnetic moment points in the opposite direction to the magnetic field, which, by virtue of the 

electroweak analogue of the Stern-Gerlach effect, causes a force to be applied in the backward 

direction. By elimination, the corresponding probability value for the electroweak field gradient 

to be negative is only 0.395, i.e. in the direction opposite to the magnetic field, which causes a 

force to be applied in the forward direction to the field in this case.  According to the present 

theory, there is an inertial effect involved in the radiative decay process which is responsible for 

the above disparity, whereby the greater the speed of the particle, the greater the probability that 

the field will be increasing at the time that it is ejected.  The result is that more electrons are 

counted in the backward direction than in the forward. As time goes on, the likelihood that the 

electron spin is parallel to the nuclear spin gradually decreases as a result of adiabatic 

demagnetization.  Eventually, it becomes just as likely for the electrons to have β spin as α, and 

no further polarization is observed. 

When the field direction is reversed, the counting rate bias shifts in direction, but it is again 

more likely that the electrons are emitted in the backward direction to the field, and by the same 

margin as before.  On this basis, they conclude, in agreement with the earlier position of Yang 

and Lee59 that parity is not conserved in this case. 

Once one accepts the fact that there is an electroweak field generated in nuclear decay, 

however, the situation looks quite different.  Everything falls into place by assuming that the EB 

field points in the direction of the nuclear spin and that the field gradient also points in this 

direction at the onset of the decay process.  The Stern-Gerlach analogue therefore predicts that 

the direction of the force on the emitted electron is the same as for its magnetic moment, which 

points in the opposite direction as its spin.  Thus, the favored direction of the electron momentum 

is opposite to that of its spin, as observed.  As time goes on, the likelihood that the electron spin 
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is parallel to the nuclear spin gradually decreases as a result of adiabatic demagnetization.  

Eventually, it becomes just as likely for the electrons to have β spin as α, and no further 

polarization is observed. 

Finally, when the direction of the magnetic field B is changed, the nuclear spin also 

changes under the low-temperature conditions of the experiment.  Consistency therefore requires 

that the direction of the electroweak field EB and its gradient at the outset of the decay process 

continue to lie parallel to the nuclear spin; thus, they are also changed relative to the original 

arrangement.  Note that the magnetic field is completely independent of EB.  The radiative decay 

takes place spontaneously even for un-oriented nuclei,200,212 for example.   

The role of the magnetic field in the Wu et al. experiment60 is to insure that the ejected 

electrons have α spin because of the ΔJ=1 selection rule.  The calculations indicate that prior to 

decay there is an even chance that the electrons will have β spin and thus that there must be a 

“spin-flip” in order to induce the transition.  The results of the electron counting experiments 

60,213 can be explained by assuming that the spin-flip produces an electroweak field in the same 

direction as the applied magnetic field.  To be specific, if the magnetic field is in the north (N) 

direction, the electroweak field [EB (e-)] must also lie in this direction.  The magnetic moment of 

the electron lies in the south (S) direction because of its α spin.  At the early stages of the 

transition the EB field is increasing, i.e.  EBz/z>0.  As a result, the Stern-Gerlach force is 

pointed in the S direction as well, and therefore in the opposite direction to the electron spin, 

thereby producing the negative helicity which is observed.  This state of affairs is more likely to 

occur when the speed of the ejected electrons is quite high, which is the cause of the observed 

v/c dependence of the disparity in the electron counting results.60,213 

      When the direction of the B field is reversed so that it now points in the S direction, its parity 

is unchanged because it is an axial vector, as pointed out by Lee and Yang.59  The EB field 

gradient does change sign, however, because it is a polar vector quantity.  The EB(e-) field is 

now increasing in the S direction in the early stages of the decay process, and therefore the parity 

of the field gradient, unlike that of the EB(e-) field itself does change; the field is now increasing 

in the S direction, contrary to the original situation.  The electrons still possess predominantly α 

spin because of the magnetic field, but now the spin is directed to the south (S).  Therefore, the 

magnetic moment of the electrons has changed direction as well, and is now pointed toward the 

north (N).  According to the electroweak Stern-Gerlach effect, this means that the force applied 
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to the electrons is now pointed in the N direction, which is opposite to the direction of the 

electron spins (S).  Again, the result is that there is a counting disparity in favor of the backward 

direction to the nuclear spin, as observed.  Clearly, one obtains the same conformation by leaving 

the magnetic field unchanged and simply inverting the coordinate system.  There is no change of 

any physical consequence; in particular, the electron still prefers to move in the backward 

direction to the magnetic field.  

Thus parity is conserved in the interaction when the interpretation is based on a dynamical 

effect which occurs when it is assumed that the electron and antineutrino already exist in the 

neutron prior to decay. Consistent with the experiment suggested above, one would therefore 

expect that the recoiled neutrinos would indeed have the same spin relative to their initial value 

even though their momentum is now opposite.  In other words, one expects that both spin 

components are available to the neutrino on this basis, in opposition to the belief in the two-

component theory.  More discussion on this point can be found in Sect. III of Ref. [206]. 

 

E. THE FATE OF SOLAR NEUTRINOS 

 

The neutrino plays a potentially crucial role in the field of astronomy because of its ability 

to penetrate through dense material such as that contained in stars. It is well established that 

nuclear reactions of various types dominate in processes binding stellar material together, and 

details regarding their rates and relative occurrence in the sun's core are well understood.214 As 

mentioned in Chapter IV. B, however, careful measurements of the solar flux reaching the 

earth80 have led to the conclusion that less than half of the neutrinos expected on the basis of the 

above theoretical conclusions are actually observed. A number of different reactions are 

involved, but the overall production of neutrinos on the sun is governed by the elemental process 

in which two protons combine with a single electron to produce a deuteron plus one neutrino. 

Although vast amounts of matter are involved and the cross section for neutrino detection is 

extremely small, it can still be argued strongly that the discrepancy between theory and 

experiment cannot simply be explained away on the basis of faulty observation. On the other 

hand, the number of protons undergoing fusion on the sun would appear to be equally well 

established, so that no legitimate doubt can be raised on this basis either. 

Especially since the solar neutrino puzzle has been with us for more than half a century,80 it 

seems highly possible that a solution exists which does not cast doubt on either the accuracy of 
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the data employed to explain the sun’s changing composition with time or the reliability of the 

pertinent experimental neutrino detection techniques. The neutrino-producing reaction referred to 

above is closely related to eqs. (IV.ii-v) in Chapter IV.A. Accordingly, it is necessary that a 

neutrino be created at the time of the fusion reaction. In the previous discussion we have 

consistently employed an alternative interpretation based on the corresponding eqs. (IV.ii’-v’). In 

this view, a    binary species present at the start of the reaction is dissociated to produce both 

the departing neutrino and the antineutrino required for neutron formation. Elemental balance is 

restored to the fusion reaction and no particles need to be either created or destroyed in the 

process. 

Calculations with the XBPS Hamiltonian lead to a relatively deep energy minimum for the 

v   system (Fig. 9) as a function of basis set scale factor, which can be interpreted in terms of a 

massless bound state with a relatively small interparticle distance (r  2). In this model the    

system can be looked upon as a diatomic system undergoing a reaction in which the bond 

holding the two component particles together first needs to be broken. If a molecule such as N2 

reacts with a heavy atom according to the equation, N2 + X → NX + N, it is generally necessary 

to add an amount of energy equal to the N2 D0 value of 9.92 eV to break the strong N-N bond. If 

the molecule exists in one of its high-lying ro-vibrational states, a much smaller amount of 

energy is needed for this purpose, however, and the probability of inducing a reaction is likely to 

be enhanced as a result. More generally, one speaks of an activation barrier210,211 to such 

reactions, with the reaction rate increasing as the higher vibrational levels of the reactant 

complex become more densely populated. 

The    binary system discussed in Chapter VI.I (Fig. 8) does not have a series of ro-

vibrational levels comparable to those of a diatomic molecule, but it does have a definite energy 

barrier for dissociation, the value of which could be a key factor in understanding the results of 

the solar neutrino observations.80 It seems at least conceivable that at the high temperatures 

present in the solar environment (for which kT is on the order of a keV), the equilibrium 

distribution between bound and separated v,   pairs, 

 

   →   +            VIII.5 
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would be shifted significantly toward the side of free neutrinos and antineutrinos compared to 

what is observed under typical laboratory conditions. If, as seems likely, the probability of 

(essentially) free antineutrinos participating in the key solar fusion processes is considerably 

greater than for their counterparts found in tightly bound    binary systems, a relatively small 

change in the position of the above equilibrium could lead to a significant variation in the energy 

profile of the neutrinos produced in such reactions. 

The simplest fusion reaction, 

 

p+ + p+ + e+e- +    → d+ + e+ +      VIII.6 

 

 

would now be replaced in a large number of cases by its “neutrinoless” counterpart, 

 

p+ + p+ + e+e- +   → d+ + e+.     VIII.7 

 

In the latter process the positron is emitted with a mono-energetic spectrum, rather than the 

continuous range of values expected from eq. (VIII.6), and none of the excess energy is 

transmitted to a neutrino. Similarly, the other most commonly occurring solar fusion reaction, 

 

 7Be + e- +    → 7Li +             VIII.8 

 

in which mono-energetic neutrinos are produced (0.86 Me V), becomes 

 
 7Be + e- +   → 7Li     VIII.9 

 

when free antineutrinos are available. Again, no neutrino is expected to result from this reaction, 

at least as long as the excess energy can be carried away by another particle such as a photon. In 

both cases the effect would be a substantial reduction in the number of neutrinos otherwise 

expected to reach the earth’s surface with sufficient energy to undergo the capture reaction 

employed in the experimental detection scheme of Davis and coworkers.80 

If one assumes that the neutrinos produced in fusion reactions are simply created from 

nothing as a means of carrying off the energy expended in such processes, there is seemingly no 

need to consider initial reaction conditions in attempting to predict the energy distribution of the 

emitted particles. The situation changes dramatically, however, if one recognizes the possibility 

that the antineutrinos and neutrinos normally observed are actually produced by the dissociation 
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of binary systems in which these particles are strongly bound together. In this case, questions 

about the equilibrium concentration of bound and unbound species under a given set of 

experimental conditions, as well as their comparative re-activities, need to be answered in order 

to obtain a reliable prediction of the outcome of such processes.215        

This could mean, for example, that the standard eqs. (VIII.6) and (VIII.8) are replaced by 

eqs. (XVIII.7) and (XVIII.9), respectively, in a significant number of cases. This occurrence 

would provide a clear explanation of why the amount of the neutrino flux reaching the earth’s 

surface is notably less than expected, without finding fault with either the data believed to be 

accurate for the frequency of solar reactions or the experimental methods used to detect the 

neutrinos once they have arrived at the earth’s surface.  That could be the key to finally solving 

the neutrino puzzle after so much time has passed since Davis and Bahcall80 first pointed out its 

existence in 1964. 

 

IX. ELEMENTARY PARTICLE THEORY WITHOUT CREATION AND ANNIHILATION OF 

MATTER 

 

The concept of the creation and annihilation of matter is such an integral part of modern 

theoretical physics that any attempt to modify it requires a wide-ranging survey of many types of 

phenomena. It is not enough to show that the hypothesis can be avoided in dealing with one 

group of experimental findings, only to conclude that it is nevertheless essential for a consistent 

interpretation of other classes of observations. In the present chapter we will give consideration 

to the properties of elementary particles observed in high-energy interactions other than those 

directly involved in conventional chemical and nuclear reactions.  

The broad lines of the approach we shall take to this subject have already been laid down 

in the previous sections dealing with the structure of the neutron. If one makes the counter-

hypothesis that nothing appears and disappears from existence in the course of physical 

processes and that an essential particle balance is always maintained as a consequence, it 

becomes necessary to assume that the neutron is not an indivisible entity, but rather that it is a 

compound of the three elemental particles into which it decays after a relatively short lifetime. 

Consistency requires that the same assumption apply to the many (meta-stable) members of the 

lepton, meson and baryon families which have been identified since high-energy processes 

became accessible in laboratory investigations. At the same time, it is important to consider what 
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relation such an approach has to existing theories on this subject, particularly those based on the 

quark model of elementary particles. As mentioned in Chapter IV.D. the possibility that the 

building blocks employed in a comprehensive theory of elementary particles are themselves 

composed of still simpler forms of matter does not necessarily invalidate such an alternative 

model, particularly if useful results can be obtained from it which are either unavailable from the 

competing theories or can only be extracted from them with significantly more difficulty. 

In the present approach, we will continue to replace the conventional assumption of the 

creation and destruction of particle-antiparticle pairs with that of the existence of binary systems 

of zero rest mass, specifically e+e-, p+p- and   . In one sense this substitution has already been 

programmed into the theory because most elementary particle processes as yet observed can be 

interpreted in terms of effectively balanced equations obtained by the heuristic addition or 

subtraction of appropriate numbers of particle-antiparticle pairs. The reactions of eqs. (IV.i-v) 

and/or eqs. (IV.i’-v’) mentioned in Chapter IV.A offer a simple illustration of this general 

procedure. In many ways it is easier to deal theoretically with particles which simply pass to and 

from existence, because otherwise one has to be concerned with the detailed representation of 

states of matter which carry neither energy nor momentum at a given stage of a reaction. The 

calculations of Chapter VI have attempted to address this problem with the help of a 

Schrödinger-type formalism, but there remain many details of specific experimental processes 

which need to receive careful consideration in order to properly assess the viability of the 

massless binary hypothesis. 

 

A. THE STRUCTURE OF MUONS AND PIONS IN THE XBPS MODEL 

The lightest meta-stable elementary particle with a measurable lifetime is the muon µ, a 

fermion of unit electric charge, existing in particle and antiparticle forms. As before with the 

neutron, one can proceed on the supposition that the identity of is decay products is an important 

indicator of its elemental composition. A significant distinction can be noted, however, namely 

the muon's decay products are not unique, although this is nearly the case. By far the main decay 

mode leads to the production of three particles,216,217 e,  and  . In general we will refrain from 

discussing how the identification of the decay products is established unless there is some 

important question regarding it.  
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There are three other reactions for which upper limits for fractional occurrence are 

reported, however. Of these the most likely corresponds to the products e and two photons (), 

which are thought to occur in less than 1.6 x 10-3 % of all muon decays. Two other even rarer 

sets of products (by roughly three orders of magnitude) are respectively 3e (e, e+, e-) and e. 

Under the circumstances there is really no choice in the present approach but to assume that the 

muon composition is e,  and  , i.e. the major products, but it is useful to consider how the 

other possible products might arise. 

The almost negligible occurrence of the e decay branch is one of the factors which has led 

to the conclusion82 that muon neutrinos are not identical with those occurring in nuclear beta 

decay, as will be discussed in the folowing section. In the present model one can at least 

rationalize the existence of such a possible decay branch by simply assuming that the component 

 and   species might combine to form a massless    binary which does not carry away any 

energy and is thus undetectable. Since the remaining electron product would violate the 

conservation laws of energy and momentum by taking up all the decay energy, something else 

would have to be involved, however. Just as with the conventional radiative processes discussed 

in Chapters II and III, it can be assumed that some energy could be carried away by a photon. 

Instead of the latter simply being created, however, it is consistent with the present model to 

assume that an e+e- system which is found in the massless state prior to the initiation of the decay 

process might undergo an interaction with the muon. 

In much the same way, more than one photon might conceivably become involved. At the 

same time, the decay energy of 104 MeV is more than sufficient to cause an e+e- binary to be 

broken into its two component elements, thereby producing yet another set of products (3e). The 

only point that should be emphasized at this juncture is that just because a balanced equation can 

be written down does not at all mean that the corresponding reaction will occur with significant 

probability. The potential advantage of an ab initio model such as the present one is that in 

principle it allows not only the computation of the energy and wavefunction of particles such as 

the muon, but also its relevant reaction rates and/or transition probabilities. The experimental 

evidence shows that each of the three minor decay modes is rarely if ever observed and one 

would hope that calculations can eventually be carried out to satisfactorily explain why this is the 

case. 
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For the present the immediate goal is to treat the e   system with the help of the XBPS 

Hamiltionian in an analogous manner as for p+e-   in Chapters VII.A,B. The simplest way of 

comparing these two systems is to replace the 0- e-   complex of the neutron by the 

corresponding    state and let a positron play the role of the proton relative to the earlier 

calculations. The resulting wave function would seemingly be consistent with the fact that the 

muon’s magnetic moment is measured to be exactly what one would expect for an electron with 

a correspondingly greater rest mass (207 me).
218 Any magnetic properties of  and   should be 

expected to be effectively cancelled, but the binding of an electron to them in a resonance-type 

state would keep it from behaving as a free particle in the presence of an applied magnetic field. 

A quite similar argument has been given in Chapter VII.C to rationalize the fact that the 

neutron's magnetic moment is only on the order of a nuclear Bohr magneton, even though it is 

also assumed to have an electron as one of its constituents. The energy of the e+   system 

relative to its separated products can be expected to be much higher than for p+e-   because a) a 

positron must have much higher kinetic energy than a proton in a tight-binding state and b) even 

though it has a much larger q/mo value than p, it can make little use of this advantage because of 

the essential neutrality of the    component. 

To investigate how the XBPS Hamiltonian would describe such an e+   system, 

calculations have been carried out by employing two different basis sets which are analogous to 

those discussed in Chapter VII for the p+e-   complex. The same neutrino (antineutrino) |q/mo| 

values are assumed as before, namely 0.5733 and 0.630 a.u. for the smaller (2s,2p) and larger 

(2s,2p,2d) basis respectively. It will be recalled that these values were chosen in order to satisfy 

the condition of obtaining the experimental neutron rest energy of 28781 hartree as lowest 

eigenvalue in the corresponding full CI treatment. For consistency the previous values of the 

damping constant A have been employed for each basis (1.054 a.u. for 2s,2p and 1.26475 a.u. for 

3s,2p,2d), these having been chosen in a similar manner to obtain the 2mc2 binding energies for 

the various particle-antiparticle binary systems. 

The total energy values obtained from these calculations are shown as a function of the 

respective basis scale factors in Fig. 16. The small basis leads to a very low minimal energy of 

-277630 hartree, which would indicate that the e+   system is actually bound with respect to the 

energy of the constituent particles separated to infinity. When the d functions are included the 
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picture changes significantly, however, with the minimal energy of the system increasing to a 

positive value of 17954 hartree, an increase of nearly 300000 hartree (8.0 MeV) relative to the 

first result. By contrast, the correspondingp+e-   minimal energies in the analogous treatments 

are computed (Fig. 17) to be the same in both treatments (as provided for by the above choices of 

the respective q/mo antineutrino values in each basis). 

The computed results thus indicate that the positron can easily polarize the    

system in the very small 2s,2p basis, producing significant binding, but that this process 

becomes rapidly less effective as polarization functions are added to the basis. The 

increased value of the damping constant A in the 2s,2p,2d basis greatly reduces the 

magnitude of the attractive r-3 operators in the Hamiltonian, and the corresponding 

reduction in the system’s total kinetic energy brought about by the basis set improvement 

falls far short of making up for this effect, unlike the situation for its p+e-   counterpart. 

An analysis of the corresponding energy contributions is given in Table XIX for the larger 

basis which helps to understand the origin of the above effects. The most novel result in 

the table is that the usual pattern of signs of the various interactions is not adhered to for 

the e+   pair. Normally one finds that particles with the same sign for their q/mo values, as 

in this case, have positive energy contributions for each of the spin-orbit, orbit-orbit and 

spin-spin interactions, but a negative value for the Darwin term. Instead, for e+   one 

obtains negative values for the spin-other-orbit, orbit-orbit and spin-spin contributions. 

The spin-spin δ-function term in the latter case has an expectation value which is actually 

more negative than either of its e+ and    counterparts. 
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FIG. 16. Comparison of the variation of the e+   (µ+) total energy (in khartree) a function of the scaling factor  in XBPS 

model calculations employing two different basis sets. 
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FIG. 17. Comparison of the variation of the p+e-   (n) total energy (in khartree) as a function of the scaling factor  in XBPS 

model calculations employing two different basis sets. 

 

TABLE XIX. Energy contributions (in hartree) of various operators (see Table I for definitions) and particle combinations for the 

1/2- ground state of the e+   muon (µ+) system obtained by employing the 2s,2p,2d basis with scale factor  = 0.14, exponential 

damping constant A = 1.2648 a.u. and antineutrino q/mo value of 0.63 a.u. for the XBPS Hamiltonian. . 

 

Operator e+    e+   Total 

 Kinetic Energy 914699.446 (e+) 1246689.492 () 1366978.39(  ) 3528367.329 
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 Spin-same-orbit -186658.825 -324413.699 37375.604 -473696.920 

 Spin-other-orbit -377147.037 -655810.773 -92665.363 -1125623.173 

 Darwin Term 144372.056 99577.870 -260521.486 -16571.560 

 Orbit-orbit -385608.003 -610417.712 -164475.609 -1160501.324 

 Spin-spin -157191.708 -303279.608 -24061.778 -484533.094 

 Spin-spin  -57379.559 -42673.178 -149434.600 -249487.337 

 Total Energy    17953.923 

 

Comparison with the corresponding 2s,2p results shows, however, that the absolute 

magnitudes of these various e+   terms are only about one-half as large for the 2s,2p,2d basis, 

and so there seems to be a definite trend to sharply curtail their influence on the overall binding 

process as the level of treatment improves. It is very difficult to say anything more quantitative 

about what the minimal e+   energy is in the limit of a complete basis being employed, but it 

seems at least likely that a) a reasonably deep potential well should still exist and b) that the 

corresponding energy at this point should be much higher than indicated in the 2s,2p,2d 

treatment. The experimental rest mass of the muon corresponds to a total energy of 3.864 x 106 

hartree relative to that of its decay products, so the calculations carried out to date are still greatly 

deficient in this respect. It may also be that the resonance state most properly identified with the 

muon at the present level of treatment actually corresponds to one of the computed excited states 

lying at much higher energy rather than the most stable such species whose properties are shown 

in Table XIX and Fig. 16. 

Qualitatively a rather consistent picture emerges from the computed results, however. The 

positron must come very close to the    complex to overcome a large centrifugal barrier. For a 

narrow range of interparticle distance it might be sufficiently attracted to the neutrino (negative 

q/mo value according to the p+e-   computations) to induce a polarization in the    system. 

Comparison with the p+e-   results indicates that this is a relatively unstable situation, because 

the neutrino is more strongly attracted to e+ than to   by virtue of the former's larger (positive)  

q /mo value. In order to bind such light particles together it has been found in the preceding 

chapters that they should have opposite spins. In the p+e-   system the antineutrino is sufficiently 

more attractive for the electron than the proton that there is relatively little question about which 

pair of particles should bear a singlet relationship to one another. One can imagine there is a 
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much greater competition between e+ and   to form a 0- complex with a neutrino, however, and 

that this eventuality shortens the lifetime of this three-particle system considerably. 

Experimentally the muon decays 4.17 x 108 times faster than the neutron. The possibility that a 

muon neutrino (µ) is fundamentally different from e is an additional source of uncertainty in 

the above ca1culations, as considered in detail in the next section. One could vary  the q/mo 

value for µ so as to obtain the experimental muon binding energy, in which case it would be of 

interest to see how much the two charge-to-mass ratios differ in the p+e-e and e+µ  e 

ca1culations. 

The above model for the structure of the muon also provides a ready explanation for the 

negligible probability of producing a photon in its decay processes. Since the stability of the e   

system requires the existence of a particular spin relationship between  and  , it seems quite 

likely that any bond between them is destroyed in the decay process, causing these two particles 

to go off in different directions rather than as a bound diatomic system. The decay energy is 

therefore divided up among all three component particles, with no need to involve an additional 

system in the neighborhood of the muon at the time of disintegration. The possibility that a muon 

is formed by the interaction of the same three particles, i.e. the reverse reaction, is almost never 

realized experimentally. Instead, the most common mechanism for the formation of muons 

involves the decay of pions, as will be discussed below. 

Since the  mesons are observed to have a neutrino and a muon product in virtually all 

decay processes, it is consistent with the present model to propose that they are tetra-atomic 

systems, composed of an electron and three neutrinos. For + it seems likely that two neutrinos 

are present, along with one e+ and one  . In this way two of the components would have positive 

q/mo values, and two others negative. The µ+ species has a positive magnetic moment, and thus 

would be much more likely to form a bond with a neutrino (negative q/mo) at short range than 

with an antineutrino. Just as the two muons, the  systems bear a particle-antiparticle 

relationship to one another, consistent with the above structure. The rest mass of the charged 

pions is 34 MeV or 1.25 x 106 hartree greater than for µ. Thus the increase in energy required to 

attach a fourth particle to the system is about the same as the energy per particle needed to form 

the e+   complex. 
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The present model also helps to explain why pions are more likely to be formed in high-

energy reactions than are muons.219 The latter are seen to be relatively unsaturated with respect 

to the addition of neutrinos, and these can be provided by massless    binary systems. It is not 

possible to be more definite about such relationships without the benefit of quantitative 

calculations, but at least a picture of the muon-pion relationship emerges which is qualitatively 

consistent with what has been found in the treatment of proton-containing systems. The pions are 

known to have singlet multiplicity and as such can be distinguished from the other tetra-atomic 

system treated above, the p2e-   deuteron analogue. The XBPS computations for the e+e- and    

systems show that by far the lowest energy results in such light particle-antiparticle pairs for 

singlet multiplicity. This finding strongly suggests that the most stable states of systems 

composed of more than two such particles will either be singlets for an even or doublets for an 

odd number of constituents. 

The same argument has been used above (Chapter VII) to justify the well-known fact that 

the multiplicities of nuclei are determined solely by the nucleon spins, since electrons and 

antineutrinos must be expected to occur exclusively with paired spins to maintain the required 

stability within systems of such small radius. The relatively saturated nature of the charged pions 

also helps to explain the fact that they interact with nuclear matter much more readily than do 

muons. In this view, while the ingredients for muon formation, namely electrons and neutrinos of 

both helicities, are available in typical high-energy processes, the possibility of further reaction 

to form pions under the same conditions is relatively high. In cosmic rays it is found that when 

the translational energy drops below 100 MeV, however, the pions are much less strongly 

interacting, at which point their decay into muons becomes the favored process. 

Five other minor decay modes are thought to occur for the charged pions, with fractions of  

10-4-10-8. The corresponding products are e, µ, 0e, e and ee+e-. All of these results can 

be thought of as arising from the addition or loss of a    and/or e+e- binary system. In the first 

case, for example, it is necessary to assume that a    species is formed but that all the decay 

energy is carried away by the remaining electron and neutrino of the original pion. In the second 

case, an additional photon is observed as well as the usual muon and neutrino products, which is 

always at least a theoretical possibility in the present model. The 0 species mentioned in the 

third minor process requires a separate discussion below, while the manner in which the e 

products could be formed is analogous to that in the process already discussed above for muon 
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decay involving a photon. Consequently, this is an equally (highly) improbable event, as is the 

related process in which the photon is replaced by its e+ and e- fragments. 

The neutral pi meson 0 has a rest mass only 3.4% smaller than that of  and hence is 

thought to bear a close relationship to them, a feature which is of considerable importance in the 

theory of isospin. Yet the decay products are quite different for the neutral pion, and thus there is 

evidence that its composition is notably different than that of the charged species. In this case 

there are two relatively important decay modes,216,217 namely  and e+e-, the former occurring 

98.83% of the time. The assumed e+e- structure of the photon in the present model indicates that 

the 0 neutral pion contains at least one electron and positron. Even though no neutrinos have 

ever been observed among the decay products, it still seems probable that they are constituents of 

0 based on its close relationship to the charged pions. A conceivable structure would be e+e-  , 

for example, in which case it must be assumed that upon decomposition of the 0 a    binary is 

always formed in a massless state. This would suggest that the decay mechanism is significantly 

different than for the charged pions, which at least is consistent with the fact that 0 has a much 

shorter lifetime (0.84 x 10-16 s vs. 2.6024 x 10-8 s) than the other two particles. In this case the 

decay would most plausibly be assumed to arise from a pairing of the ,   and e+,e- constituents 

which is quite different than in the metastable 0 structure itself. The energy given off in the 

decomposition would then have to be taken up in part by a neighboring (initially massless) e+e- 

system, producing two observable photons as decay products, either as bound e+e- species in the 

main branch or as one bound () and one unbound electron-positron pair in the other. 

Since e and  have similar kinetic energies in tightly bound systems, it is reasonable to 

expect that a 0 structure of this nature would also be a singlet, with about the same energy 

relative to its separated products as the charged pions. The larger q/m0 values of electrons vis-a-

vis neutrinos, plus the possibility of a favorable Coulomb interaction (with suitable polarization 

of the respective charge distributions) is seemingly consistent with an increase in attractive 

contributions to the potential energy relative to systems with only one electron and three 

neutrinos, and this might explain why 0 is 2.0 x 105 hartree more stable than  (again compared 

to their respective separated products). The assumed 0 structure also agrees with the fact that it 

is its own antiparticle. From this point of view an e+e-e+e- composition would be equally suitable, 

but again consideration of characteristics of the various pion decay modes suggests that such a 
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structure differs too greatly from that assumed for the charged pions to be consistent with the fact 

that all three of them have very similar rest masses. The  decay to 0 plus e mentioned above 

can be made into a balanced equation by imparting a portion of the released energy to a 

neighboring massless e+e- system which then decomposes. The resulting electron would then 

effectively replace one of the charged pion’s neutrinos to form 0, while setting free the 

corresponding charged antiparticle. In general, once the available energy exceeds the rest masses 

of such meta-stable particles, there exists a certain theoretical possibility for their formation 

because of the relatively small binding energies of the    and e+e- binaries in their massless 

ground states and the abundance expected for such species based on statistical considerations 

(Chapter II.D). 

 

B. MUON NEUTRINOS 

A key consideration in the foregoing section is whether the neutrinos involved in the decay 

of pions and muons are different from those first encountered in (nuclear) beta decay processes. 

In 1961 the conclusion was reached82 that they are not the same, and it is interesting to consider 

the experimental evidence supporting this view. It should be recalled that the XBPS Hamiltonian 

leaves open the possibility that any q/mo value for a massless, chargeless particle is consistent 

with the requirement that its particle-antiparticle binary have zero rest mass (Chapter VI.J). The 

same damping constant A leads to the desired (vanishing) energy for any q/mo value by virtue of 

the scaling theorem discussed earlier, so in this sense the present model would be compatible 

with the existence of more than one type of neutrino. It is necessary, however, to assume that the 

rest masses of each type of neutrino be exactly zero to obtain such a result in the XBPS model. 

Experimentally one is only able to give upper limits for the rest masses of e and µ but there is 

no proof that the true value might not be zero in both cases, so such a theoretical assumption is 

tenable. Originally the argument for the muon neutrino being distinct from that involved in 

nuclear beta decay was based solely on the absence (or at least vanishingly small occurrence 

rate) of the decay µ → e (see previous section). A muon quantum number Lµ was introduced220 

to explain this observation (or lack of it). As usual this quantity is assumed to be conserved in 

allowed processes, and by construction this is not possible for the above photon-producing 

decay. Accordingly Lµ is 1 for µ but zero for e and . The pions are also assigned a value of Lµ 
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= 0, which means that the corresponding values for  µ and µ are -1 and 1 respectively, which 

assignment renders pion decay into a muon and neutrino allowed (i.e. Lµ is conserved). 

On the basis of Lµ conservation it can also be argued that the reaction of a muon neutrino 

with a neutron cannot produce an electron and a proton, since only the former particle has Lµ  0. 

The reaction would be allowed if a muon and a proton were the products, however. An 

experiment employing high-energy pions to produce muon neutrinos82 was carried out to test this 

supposition and the results verified that muons are produced and not electrons, consistent with 

the Lµ conservation principle. On this basis it has generally been accepted that µ and e are two 

different entities, each having its own antiparticle and presumably differing in other properties 

from one another. The helicities measured for µ and e are the same (negative and both positive 

for the respective antineutrinos).221,222 

One should note, however, that the reaction conditions under which pion neutrinos are 

scattered off neutrons are not the same82 as for the corresponding processes first studied in 

nuclear beta decays. For example, the original Reines-Cowan experiment58 involves 

antineutrinos of 2.5 MeV energy, for which the corresponding cross section for proton-positron 

production is only 11  4 x 10-44 cm2. The Brookhaven experiments82 by contrast employ 

neutrinos of much higher energies (in the GeV range), in which case muons are produced with a 

cross section as high as 10-38 cm2, at least five orders of magnitude greater. Under the 

circumstances it cannot be argued with complete certainty that the distinctive reaction profiles of 

the two types of neutrinos prove that an intrinsic difference exists between these particles unless 

it can be shown that such widely different experimental conditions have no effect on the 

outcomes of the respective experiments. In other words it would not be the first time that 

different products are found to result from ostensibly the same reaction performed under widely 

differing experimental conditions. 

If one looks at the specifics of the neutrino scattering process, it is clear that a muon can 

only be produced if the neutrino energy in the center-of-mass framework is in excess of 105 

MeV because of the relatively large muon rest mass. This condition is not fulfilled in the Reines-

Cowan experiment.58 On the other hand, it is conceivable that when much higher energies are 

involved, as in the Brookhaven experiments,82 the production of electrons is suppressed to the 

extent that only muons are formed initially (muons decay to electrons eventually anyway). The 

only way to really be certain that this is not the case is to run the two types of experiments under 
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exactly the same conditions, but this is very difficult (impossible?) to arrange in practice. If 

muon neutrinos are really different from electron neutrinos, it could be demonstrated by 

somehow accelerating the latter to energies of 1 GeV or more and seeing how many muons and 

electrons are produced under these circumstances. As it stands now, all we know for certain is 

that the cross section for muon production is relatively high when the reacting neutrinos have 

energies in excess of 1 GeV, while that for electron production is much lower for neutrino 

energies of a few MeV and essentially zero for energies in the GeV range. 

Especially since the longitudinal polarization experiments for the two types of neutrinos 

indicate no difference in their helicity properties,221,222 the availability of such experimental 

evidence for high-energy e scattering (E  500 MeV) would seem highly desirable, if not 

essential, to remove any doubt that μ might not in fact be identical to e. Based on what has been 

found in calculations with the XBPS Hamiltonian for the p+e-   system, which in the present 

model is associated with the neutron, it is not difficult to imagine that the probability of freeing 

an electron by scattering neutrinos off a meta-stable nucleus is very small. With relatively little 

kinetic energy it is very difficult for the neutrino to overcome the substantial centrifugal barrier 

(Figs.8-9), and thus come close enough to the system’s electron to dislodge it. Increasing the 

energy to the GeV range decreases the neutrino’s de Broglie radius by at least 100 times, which 

greatly increases the probability of decomposing the nucleus, as observed in the high-energy 

pion experiments.77 At such close distances the neutrino is much more likely to make use of the 

short-range attractive potential needed to obtain binding in such systems according to the present 

model. In the process of removing an electron from the rest of the nucleus under such high-

energy conditions, it therefore seems likely that the neutron’s antineutrino could retain its 

attraction for the electron while at the same time forming a bond with the incoming neutrino. The 

result would be that the tri-atomic e-   complex is formed, which in the last section has been 

identified with the negative muon. 

In other words, increasing the energy of the scattering neutrinos not only increases the 

probability of breaking up the nucleus but also can be expected to have a decided influence on 

the nature of the decay products as well. When the energy falls below the 105 MeV threshhold, it 

is impossible to form a muon under any circumstances, so when a reaction does occur, the only 

possibility is for an electron to be set free. Above this energy the experiments might be 

indicating that the only way to free the electron from its position within the nucleus is to have it 
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become attached to the incoming neutrino without losing its hold on an antineutrino also present 

in the scattered nucleus. 

The discussion about whether there are two kinds of neutrinos became even more 

complicated when it was reported that a third flavor, the tau neutrino, had been found.223  The tau 

particle itself is 20 times heavier than the muon.  The arguments given above for the possible 

fallacious assignment of the muon neutrino also apply in the case of the tau neutrino.  It is also 

worth noting that there was a parallel attempt to investigate whether the proton is subject to 

decay, as predicted by the Grand Unified Theories224,225 of elementary particles, but in the 

meantime it is taken as a virtual certainty that this is not the case. A perfectly stable proton is 

completely consistent with the XBPX model.  The related work involved new experiments 

dealing with atmospheric neutrinos, however.  This led to the theory of neutrino oscillations.226 

When an atmospheric neutrino interaction occurs inside water, secondary particles are 

produced, and some of them travel faster than the speed of light in water.  In this case Cherenkov 

radiation is observed. The signature of an electron is much different than for a muon.223  A 

prediction of the numbers of e-like and μ-like events226 was not verified to a satisfactory extent, 

and this led to an explanation in terms of neutrino oscillations. This theoretical result is still 

controversial, as indicated, for example, by the fact that there was a period of 3.5 years between 

the initial submission of Kajita’s paper223 and its eventual publication.  One of the questions this 

work raises is whether the muon neutrino actually exists as such or whether instead that it is 

constantly changing from one type to another. 

Without the benefit of quantitatively reliable calculations it is difficult to either prove or 

disprove the validity of such a model. If the neutrino q/mo value required for the present XBPS 

Hamiltonian (retaining the original e+e- damping constant A) to yield the experimentally 

measured rest mass of the muon as the minimal energy for a (meta-stably) bound e   system is 

the same as needed to obtain the neutron’s rest mass for the p+ e-   system, such evidence would 

seemingly favor the conclusion that µ and e are actually identical, as suggested by the 

arguments given above. If instead one looks at such reactions as involving annihilation of 

incoming particles and creation of outgoing species in their place, it is reasonable to overlook 

such possibilities and simply conclude that at least two fundamentally different types (or flavors) 

of neutrinos must exist in order to explain the results of the Brookhaven high-energy pion 

experiments.82 Once it is assumed that particles cannot be created and destroyed, however, it is 
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necessary to consider the mechanism of the neutrino attachment process in more detail, and it 

becomes less obvious that such a conclusion is justified. 

One of the most remarkable claims of the theory of neutrino oscillations is that it requires 

that there be a non-zero rest mass of the neutrino.223 Pauli’s argument for the existence of the 

neutrino in β decay227 was based on his belief that the laws of energy and momentum 

conversation must be satisfied in such a process.  Moreover, this fact could only be explained by 

the existence of a third particle, in addition to the daughter nucleus and an electron, in the 

products of the decay.  The distribution in the energy of the electrons emitted in the decay of 12B 

is shown in Fig. 9-20 of Ref. [228], for example.  It shows first and foremost that there is a wide 

range of kinetic energies, in agreement with Pauli’s conclusion than a two-particle decay is ruled 

out by these results. Careful attention to detail shows, however, that the maximum in kinetic 

energy is exactly what one would expect for astrictly two-particle decay.  The simplest 

explanation of the latter finding is that the third particle possesses a vanishing rest mass.  During 

his lifetime, Pauli complained57 that the upper limit for this rest mass was set too high.  Contrast 

this statement to the remark made by Kajita:223 “If the mass of the neutrino is heavy, one naively 

expects that the maximum energy of the observed electron is lower than that in the case of a 

massless neutrino.”  Comparison of these two views emphasizes the need for renewed effort to 

minimize the discrepancy between the observed maximum kinetic energy of the decay electrons 

and the theoretical value indicated on the basis of assuming a vanishing rest mass for the 

neutrino.  Such investigations are at least relatively straightforward in comparison to the 

extremely complex attempts to verify neutrino oscillations.  Until a definitive result can be 

obtained from such experiments, the possibility continues to exist that the assumption of both the 

Grand Unified Theories and the XBPS model of a massless neutrino is completely justified. 

One of the main differences in the properties of massless vs. massive neutrinos concerns 

their maximum speed.  According to Einstein’s relativity theory,4 it is impossible for an object 

with rest mass m0>0 to ever reach a speed of v=c since this would mean that its relativistic 

mass/energy would attain an infinite value.  As discussed in previous work,229 however, a 

massless particle not only can travel with v=c but also with speed in excess of c.  Sommerfeld230 

disputed this point, but he based his conclusion on the Lorentz transformation (LT), which has 

since been shown to be invalid.  This is because it leads to the conclusion of remote non-

simultaneity, as illustrated in his popular example of lightning strikes on a moving train.231  The 
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Newton-Voigt transformation (NVT232) corrects this error, and shows that super-luminal speeds 

can be attained by light passing through a medium with ng<1.  If neutrinos have zero rest mass, 

the same argument might be used to predict v>c speeds for neutrinos, but this seems highly 

unlikely because of the absence of a comparable medium with which they might interact.  There 

is nonetheless a strong likelihood that neutrinos always move with speed v=c in free space 

because of their vanishing rest mass. 

 

C. CHARGED KAON COMPOSITION AND DECAYS: SYSTEMATIC NOTATION 

Since a general procedure has been developed in the previous chapters to describe the 

compositions of elementary particles, it becomes convenient to define some simplified notation 

which will help to make the subsequent presentation more compact. Especially after the 

discussion of the preceding section, it is at least tempting to restrict the class of Aufbau particles 

to include only the proton, electron and neutrino plus their respective antiparticles. It is helpful 

then to define a "composition vector" which contains an ordered set of occupation numbers for 

these particles in the order p-, e+,  . p+, e-, , i.e. antiparticle occupations before the decimal 

point, and corresponding particle values after it. For example, a proton is 100 (omitting the 

decimal when no antiparticles are involved), an electron is 10 (omitting left-hand zeroes where 

possible), and a neutrino is simply 1 (without a decimal point). The corresponding antiparticles 

then are 100., 10. and 1,, respectively, suppressing right-hand zeroes when only antiparticles are 

present. The corresponding three particle-antiparticle binaries are then denoted by 100.100, 

10.10 and 1.1 respectively, i.e. zeroes are only used as placeholders when absolutely necessary to 

avoid any ambiguities regarding which particles are present in a given system. 

With the help of this notation a number of the most frequently occurring elementary 

particles are analyzed in terms of their known decay products in Table XX. Since the thesis put 

forth in the above discussion is that different groups of decay products can only differ from the 

corresponding meta-stable particle’s composition by an integral number of particle-antiparticle 

binaries, however, a further simplification can be introduced. Instead of listing the composition 

vectors for each collection of decay products, the numbers of such (differentiating) particle-

antiparticle binaries is listed in the order: p+p-, e+e- and   . Net losses of such species are 

indicated with a bar over the corresponding number. As an example, consider the muon and its 

various decay products. Since its composition has been assumed above to include one electron 
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(µ-), one antineutrino and one neutrino, the corresponding vector is 1.11 (or 11.1 for µ+). Since 

the major decay products are e-  , no change in the corresponding composition vector is needed 

to represent this branch, as indicated by a zero in the right-hand part of Table XX.  

        The next set of decay products considered is e, which can be obtained relative to the 

original 1.11 composition by the addition of two e+e- binaries and the corresponding loss of one 

of    type. Hence this decay is listed as 2 1  (again left-hand zero occupations are suppressed in 

the notation, in this case indicating the lack of involvement of p+p- binaries). Note that the 

corresponding µ+ decay also involves the 2 1 differential occupation of binary systems, this time 

relative to a 11.1 composition. Charge conjugation is represented in the composition vector 

notation by interchanging parts of the vector lying on opposite sides of the decimal point, but no 

corresponding change in the net gain or loss of particle-antiparticle binaries is ever needed. The 

other two decays discussed in Chapter IX.A involve a 1 1  change in binary systems in both 

cases, i.e. producing respectively three electrons (ee+e-) or eγ. In general no distinction is made 

between  and e+e- in this notational scheme, consistent with the discussion in Chapters II and III 

in which the photon is assigned an electron-positron composition. The various conventions may 

be conveniently checked using the example of the pions and their decays, also as discussed in 

Chapter IX.A. 

 

 

TABLE XX. Classification of elementary particles by means of composition vectors as discussed in the text (rest masses in units 

of MeV /c2). The composition vector is an ordered set of six occupation numbers abc.def, whereby a, b and c are respectively the 

number of constituent antiprotons, positrons and; antineutrinos, and d, e and f are the corresponding numbers of protons, 

electrons and neutrinos. Left-hand zeroes are suppressed and the decimal point is given explicitly only when antiparticles are 

present. Also listed are the known (or in some cases, assumed) decay products of each particle and the fraction of each type of 

decay (see Refs. 216,217). The number of particle-antiparticle binary systems needed to balance the corresponding decay reactive 

equation (binary increment BI) according to the present model are listed in the last column by means of the ordered set of 

numbers ghi, where g, h and i are respectively the number of additional p+p-, e+e- and    species required (a bar over any of the 

latter quantities indicates that the binary systems must be included as products rather than reactants to achieve elemental balance; 

0 denotes that no change in the corresponding number of binaries is needed relative to the reactants and decay fragments as 

written). 

 

 

 

 

 

Particle Symbol Rest Mass Composition Decay Fraction BI 

        (Lifetime) Vector Products    

proton P+ 938.25920.0052  100 stable    
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electron e- 0.51100410.0000016  10 stable    

neutrino  

p- 

e+ 

  

p+p- 

0.0  1 s table    

antiproton 938.25920.0052 100.  stable    

positron 0.51100410.000001.6 10.  Stable    

antineutrino 0.0 1.  Stable    

prophoton 0.0 100.100 Stable    

photon e+e-() 0.0 10.10 Stable    

photrino    0.0 1.1 Stable    

muon µ- 105.6590.0003 1.11 e-   1.00  0 

 (=2.1994 x 10-6s)   e- < 1.6 x 10-5 

<6 x 10-9 

< 2.2 x 10-8 

1.00 

1.24 x 10-4 

1.24 x 10-4 

1.02 x 10-8 

3.0 x 10-8 

< 3.4 x 10-8 

2 1  

    3 e 1 1  

    e- 1 1  

charged pion - 139.56880.0064 2.11 µ-   0 

 ( = 2.6024 x 10-8s)  e-   1  

     µ-   10 

    0e-   10 

    e-   1 1  

    e-  e+e- 1 1  

 

 

 

 

 

 

 

TABLE XVII continued 

        

Particle Symbol Rest Mass Composition Decay Fraction BI 

          (Lifetime) Vector Products    

neutral pion 0 134.9645  0.007 4 11.11  0.9883 1 1  

  (=8.4x10-17s}   e+e- 0.0117 1 1  

     <5.0 x 10-6 2 1  
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    e+e-e+e- 3.47 x 10-5 1 1  

charged kaon K- 493.7150.037 13.22 µ-   0.6352 1 1  

  (= 1.2371 x 10-8s)  -0 0.2106 0 

    --+ 0.0559 2 

    -00 0.0173 11 

    µ-0   0.0324 0 

    e-0 0.0485 1  

    e-00 1.8 x 10-5 10 

    -e 3.7 x 10-5 1 

    -e <5.0 x 10-7 1 

    --+ 0.9 x 10-5 2 

    -+-   <3 x 10-6 2 

    e-   1.38 x 10-5 1 2  

    e-   <7 x 10-5 2  

    -0 2.66 x 10-4 10 

    -+- 1 x 10-4 12 

    0e-   3.7 x 10-4 1 1  

    -e+e- < 4.0 x 10-7 1  

    ee < 1.5 x 10-5 1  

    -µ+µ- < 2.4 x 10-6 1 

    - < 3.5 x 10-5 1 1  

    - <3 x 10-4 2 1  

    -   <1.4 x 10-6 1 0 

    - <4 x 10-6 1  

    -e+µ- < 3 x 10-8 0 

    -e-µ+ < 1.4 x 10-8 0 

    µ-    <7 x 10-6 1 0 

neutral kaon KS
0 497.71  0.13 13.13 +- 0.6881 0 

(short-lived)  (=8.82 x 1=-11s)  00 0.3119 1 1  

    µ+µ- < 7.0 x 10-6 1  

    E+e- < 3.5 x 10-4 3  
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    +- 

 

2.3 x 10-3 10 

    < 7.0 x 10-4 1 3  

 

TABLE XX continued 

     

Particle Symbol Rest Mass Composition Decay Fraction BI 

           (Lifetime) Vector Products    

Neutral kaon KL
0 497.710.13 13.13 000 0.215 20 

(long-lived)   (=5.181 x 10-8s)  +-0 0.126 11 

     +µ-   0.269 0 

     +e-   0.388 1  

     +e-   0.013 1 1  

     +- 1.57 x 10-3 0 

     00 9.4 x 10-4 1 1  

     +- <4.0 x 10-4 10 

     0 <2.4 x 10-4 2 2  

      4.9 x 10-4 1 3  

     eµ < 1.6 x 10-9 2  

     µ+µ- < 1.9 x 10-9 1  

     E+e- < 1.6 x 10-9 3  

Eta  548.80.6 22.22  0.380 2  

   (=2.50 x 10-19s)  0 0.031 1 1  

     30 0.300 11 

     +-0 0.239 2 

     +- 0.050 1 

     0e+e- <4.0 x 10-4 1  

     +-e+e- 1.0 x 10-3 1 

     +-0 <2.0 x 10-3 12 

     +- <2.0 x 10-3 11 

     µ+µ- 2.2 x 10-5 1 0 

     µ+µ-0 <5 x 10-4 1 
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The next most massive mesons are the charged kaons K. Their decay energy is 3-4 times 

larger than for the muons and pions, and as a result it comes as no surprise that the number and 

variety of corresponding decay products grows accordingly. No less than six branches are 

observed with fractions in excess of 1%. In addition, many other less probable reactions are 

thought to occur. The first problem that arises as a result is that it is now less clear what 

elemental composition should be assigned to these particles prior to their decay. It is interesting 

to compare this situation with that faced by chemists when they are confronted with a previously 

unknown system which is found to participate in several different reactions under similar 

conditions. The new ingredient in the puzzle which clearly complicates matters in the present 

case, however, is that there is no way to be absolutely certain how many particle-antiparticle 

binaries are either consumed or generated during the course of high-energy elementary particle 

decays. Under the circumstances one can never really claim that an absolute determination of the 

structure of a given particle has been made. There is naturally a certain logic in choosing a 

composition which requires a minimal addition or loss of various particle-antiparticle binaries to 

achieve elemental balance in the totality of all decay modes for the system, and this approach has 

generally been taken in constructing the entries of Table XX. In the future it can be hoped that 

calculations of the particle’s rest mass along the lines discussed in Chapter IX.A and earlier in 

this work will help to verify whether a given assignment is realistic, but even if that situation 

comes to pass, it is still necessary to face up to the fact that there can never be any definitive 

means of proving that a particle’s elementary composition has been correctly determined. The 

potential non-observability of the massless particle- antiparticle binaries which might be 

involved in a given decay reaction precludes this possibility. 

With these preliminary remarks let us consider what composition can be assigned to the 

charged kaons based on the present model. One possible choice for the composition vector of K- 

is 2.11, i.e. the same as for -. The possibility that two different elementary particles might have 

the same composition in terms of numbers of electrons and neutrinos cannot be ruled out, 

because their different properties may simply arise because of the way the constituent particles 

are bonded together in each system. Again, in terms of conventional phenomena known in 

chemistry and molecular physics, one can speak of either different isomers or different excited 

states of the same collection of atomic building blocks (elements). It is at least conceivable that a 
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collection of one electron and three neutrinos can be bound together in ways that are sufficiently 

different to produce distinct meta-stable states differing from one another by a large amount of 

energy (rest mass). On the basis of the calculations already discussed, for example, it is clear that 

rearranging the respective spin orientations of the various pairs of constituent particles can have 

a profound effect on the resulting total energy of the state formed. 

The principle of requiring a minimal number of particle-antiparticle binaries to account for 

the observed decay modes of a given system nevertheless suggests a different assignment for the 

K- structure, namely 13.22. Such a choice keeps the number of e+e- and    binaries to an 

average of essentially one each in the six most important K- decay modes. The entries in Table 

XX are thus determined on this basis. The fact that this assignment puts the number of 

constituent particles at eight, which is double that for each of the pions, whereas the 

corresponding K/ rest mass ratios are on the order of three to one, would therefore suggest 

that the kinetic energy of each electron and neutrino must be significantly greater for the charged 

kaons than for the muon and pion systems first considered. Since it is expected that the electron 

constituents must travel with nearly the speed of light, i.e. only slightly more slowly than the 

neutrinos, because of the very small dimensions involved, it follows that the total kinetic energy 

increases nearly linearly with the reciprocal of the interparticle separation for both kaons and 

pions. Thus the 13.22 assignment for the K- composition in Table XX suggests that the radius of 

this system is somewhat smaller than that of the pions. 

The main decay branch (63.52%) for K leads to the formation of a neutrino and a muon of 

like charge. With an eight-particle assignment for the charged kaons it follows that both a    

and an e+e- massless binary must be formed in this decay and go undetected by virtue of their 

total lack of energy. Historically, the other major decays involving pion products have received 

the lion’s share of interest, particularly since events producing both two and three such particles 

are observed. Because of this observation Lee and Yang were led to postulate59 that parity is not 

conserved in these decays (- puzzle), since each pion is assigned a negative parity and the 

appearence of both even and odd numbers of them had raised questions about how a single 

system can produce different sets of decay products of opposite parity. Further discussion of this 

point will be reserved until the next section, in which the neutral kaons are discussed. In the 

present context it is better to pursue the question of how balanced reactions can be written down 

which cover both sets of pion products. 
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As shown in Table XX, no differential binary systems are needed in the present assignment 

to allow for the formation of  and 0 from K, while two additional    species are needed to 

produce +-+ products (a binary increment of 2 in the table). In the latter case, the large 

amount of decay energy released by the charged kaons must cause the decomposition of these 

neighboring particle-antiparticle systems, with subsequent rearrangement to give the various 

multiple-pion products. The other three relatively frequently occurring decay modes for this 

system require the addition of an e+e- and    binary, no change, and the loss of a single    

species, respectively. Thus, in both the µ-   and e-0   branches it is assumed that massless 

particle-antiparticle binary systems are formed in the decay of the negative kaon. In this 

connection it is well to recall that the discussion of the quantum characteristics of photons in 

Chapter III.C has led to the general conclusion that whenever a particle and its antiparticle form 

a tight-binding state of zero rest mass, the product should have no translational energy relative to 

the center of mass of the initial reactants. Any other state of translation for a product of vanishing 

rest mass must correspond to motion at the speed of light, which makes a transition to it from a 

stationary set of reactants highly improbable. By the same argument, whenever a photon with 

non-zero energy is observed as a decay product, it should correspond to an initially massless e+e- 

system which has simply gained energy as a result of the decay, rather than to one which has 

been formed from the elements of the original meta-stable species. 

This situation implies that the possibility of any such binary system being formed in its 

massless state (and thus going undetected) must be left open on a general basis, i.e. just as for the 

various e+e- and    species which are indicated in Table XX to be present after a given reaction 

(as denoted by means of a bar over the appropriate entry for the number of differential binaries in 

each case). At the same time, it will be assumed throughout that    and p+p- massless systems 

are much less likely to absorb a portion of the decay energy in such processes than their e+e- 

counterparts because of the latter’s larger radius (see Chapter VI.F-H) and greater affinity to 

participate in both long- and short-range interactions. There can be no question that the 

unobservability of massless particle-antiparticle species is a key assumption in the present 

discussion, because it ultimately allows one to forego the creation-annihilation hypothesis in 

interpreting the results of elementary particle decays. 
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D. NEUTRAL KAONS AND MORE ABOUT PARITY CONSERVATION 

The next heaviest elementary particles are the neutral kaons. Just as the charged kaons, 

they have played an important role in the development of the theory of this branch of theoretical 

physics, particularly in the parity non-conservation analysis. It is now believed that there are two 

distinct such particles,216,217 a short-lived KS
0 and a relatively long-lived KL

0. The KS
0 species 

decays predominantly into two pions (=0.882 x 10-10 s), while KL
0 decay generally produces 

three pions (=0.5181 x 10-7 s). The rest masses of the two particles are nearly identical, but they 

are believed to differ by 2 x 10-5 eV. The KL
0 species also undergoes a small fraction of two-pion 

decays,71 however, whose discovery led to some consternation about the then existing theoretical 

interpretation of such processes. Specifically, up to that time (1964) it was held that the product 

of the charge conjugation and parity operations CP is conserved in all interactions, but the two-

pion decays of KL
0 were taken as an unexplained violation of this rule. Since there is general 

agreement that the product TCP commutes with any conceivable Hamiltonian,72-74 this 

development could also be taken as proof that the time-reversal operation also is not conserved. 

In Chapter VIII.C it has been argued that the creation-annihilation hypothesis is crucial to 

the logical argumentation which has led to the conclusion that parity is not conserved in the weak 

interaction. Once one insists that electrons and neutrinos which are observed to exhibit 

longitudinal polarization75-77,198 existed as components of meta-stable particles prior to their 

decay, however, it is no longer possible to justify such a thesis unambiguously on the basis of 

such findings. When Lee and Yang proposed that parity might not be conserved,59 their main 

concern was to explain how the same particle K (or  -  in their notation) could decay both 

into two and three pions in different channels. This argument is based on the assumption that the 

pions all have negative parity, from which it follows that it is impossible for both decays to be 

allowed according to selection rules based on the conservation of this quantity. Since the three-

component model of a neutron (p+e-  ) suggested by the XBPS model offers a way of explaining 

the longitudinal polarization phenomenon while still retaining the possibility that parity does 

commute with the corresponding Hamiltonian, it is well to review the whole question of parity 

conservation from the time it was first called into question by Lee and Yang. 

To do this we start at the point at which the parity concept for particles is usually 

introduced into the theory of elementary particles, namely to interpret the results of low energy 

- capture by deuterons.233 This process leads to the production of two neutrons with or without 
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an additional photon. Because a corresponding set of products nn0 is never observed, it has 

been argued that this process must be forbidden, from which the supposition follows that some 

selection rule must be violated in this case which is satisfied in both of the first two reactions.157 

In search of a suitable selection rule, one was drawn to the consideration of parity. Since a 

deuteron is known to be a triplet while π has zero angular momentum, it can be safely concluded 

on the basis of conservation of angular momentum that the reaction products must form a triplet. 

In this connection it is important to note that it is also assumed that the pion has come to rest 

relative to the deuteron, and thus that there is no additional orbital angular momentum (or 

translation) to be taken into account in the present analysis. 

It is by no means straightforward to deduce the total parity eigenvalue for this system, 

however, because there is no way to measure this quantity directly.157 Moreover, it is not even 

clear that each particle must have a definite parity. An electron is not assigned a parity value, for 

example, nor is the neutrino. It only becomes obvious that a given system should be 

characterized by a definite parity when it can be described in terms of a many-particle wave 

function, such as is the case for hydrogenic atom states in the most well-known example. Such 

an assumption is then implicit for each of the particles involved in the d- interaction.   

With this background the argument can proceed as follows. Since the deuteron is known to 

correspond to a bound proton-neutron state, the parity of the overall reactants is assumed to be 

the product of the individual parities of the three particles, p, n, and -. At this stage of the 

argumentation one has no way of assigning a definite parity to any of these particles individually, 

nor is the value of the product of these quantities known. If parity is conserved, however, as one 

assumes for this process, the combined parity of the product system nn must be equal to the 

corresponding value for the d- reactants. 

Since the two neutrons are indistinguishable fermions, their total wave function must be 

anti-symmetric with respect to their exchange. This anti-symmetry can be looked upon as 

deriving from two factors, the spatial and spin parts of the two-neutron wavefunction, in analogy 

to the treatment of the two-electron He atom which ultimately led to the anti-symmetry principle 

for fermions.138 On this basis it is argued that if the spin state of the neutron pair is a singlet, and 

therefore anti-symmetric with respect to such a permutation, the corresponding spatial state must 

be symmetric. Then it is asserted that a symmetric spatial state is only consistent with an even 

value of the total angular quantum number L of the system. If S = 0 this implies that J = L + S is 
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also even, which is inconsistent with the J=1 value of the initial system d-. Consequently the 

value of S must be unity and the spin state must be symmetric, the spatial state anti-symmetric. 

Therefore, by the same logic, the spatial state must be of odd L, specifically L = 1, and the parity 

of the products as a whole must be negative. 

It should be noted, however, that the purported connection between the permutation 

symmetry of the spatial part of the two-neutron wavefunction and the value of its associated 

orbital angular momentum quantum number is by no means certain once when one allows for the 

possibility that the neutron is not an elemental system, i.e. without internal structure. If the nn  

system contains pairs of protons, electrons and antineutrinos (making it a six-particle system), it 

is not possible to properly describe it in terms of a single set of internal coordinates r12. This 

being the ease, one cannot be certain that the angular characteristics of the two-neutron state can 

be represented exclusively by spherical harmonic functions whose parity is always given by (-

1)L. In the helium atom, for example, states of S (L=O) and P (L=1) type are known for both 

triplets and singlets, and all of them satisfy the Pauli anti-symmetry principle231 

Keeping this qualification in mind, we may follow the argument further. Assuming that L 

= 1 implies odd parity and that this quantity is conserved in the present reaction leads one to 

conclude that the parity of d- must also be negative. If the parity of the proton is defined to be 

positive, which amounts to an additional assumption in the argument, it therefore follows that 

the combined parity of the n- system is also negative, which means the neutron and pion must 

have opposite values for this quantity. Even if one accepts this conclusion, however, it is still not 

possible to say with certainty which of the latter two particles has negative parity, because a 

straightforward theoretical argument157 shows that it is impossible to settle the matter by 

experimental means. A way out of this impasse can only be found with recourse to yet another 

theoretical assumption, as discussed below. 

In Chapter VII.H the theory of isospin was reviewed. The key assumption in this 

development is that the proton and neutron form an isospin doublet. Although a careful parallel 

is drawn between the properties of isospin87-89 and those of spatial angular momentum, no 

provision had been made for an associated parity operation. Since each component of a multiplet 

of a given angular momentum has the same parity value in conventional space, there is 

seemingly good reason to assume that the same relationship holds true for the members of an 

isospin multiplet. On this basis it was ultimately decided that the neutron’s parity is the same as 
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that of the proton, i.e. positive, and by implication that the pion’s parity must be negative. In 

making the above assignment of parities of different components of the same isospin multiplet, 

however, one overlooks the possibility that the spatial parity operation may not be identical to 

the one used in the isospin argumentation. After all, the same physical system can have different 

values of the total angular momentum and isospin quantum numbers, the deuteron being the 

most familiar such example. Why can it not be that there are two different parities as well, one 

operating in conventional space, the other in isospin space? If that is the case it is no longer 

certain that the corresponding two parity eigenvalues are the same for every component of a 

given isospin multiplet. Moreover, even if the respective parities of the proton and neutron are 

equal, there is no more reason to assume that the corresponding value is positive than there is 

that it be negative, as already mentioned. 

In summary, there are no less than three separate, experimentally un-provable, assumptions 

which must be made in order to arrive at the conclusion which has proven to have such dramatic 

consequences in the development of theoretical physics, namely that the parity of the pion is 

negative. If the opposite conclusion is made, there is no violation of a parity selection rule 

required to explain why K can decay into either two or three pions because both sets of products 

then have the same (positive) parity. Similarly there is no need to conclude that CP (or T) is not 

conserved on the basis of the neutral kaon’s decay characteristics.234 The prediction and 

observation of longitudinal polarization in beta decay has been assumed59 to be inconsistent with 

a positive value for the pion’s parity, but as been shown in Chapter VIII.C, recognition of the 

possibility that electrons and antineutrinos might enjoy continuous existence both before and 

after the onset of the corresponding nuclear transition invalidates any such conclusion. The 

question that must be asked under the circumstances is whether one or the other of the logical 

uncertainties connected with the derivation of the pion's negative parity might actually be 

incorrect. Is there perhaps another way to explain all these seemingly baffling observations that 

requires somewhat less dramatic theoretical developments? 

The calculations of the various particle-antiparticle binaries and other systems discussed 

earlier lead to some definite conclusions about symmetry themselves. The Hamiltonian on which 

they are based commutes with T, C and P, as well as with the total angular momentum. The 

results of these calculations indicate that the neutron’s wavefunction has 1/2- symmetry, while 

each of those for the e+e-, p+p- and    systems is 0-, at least in their respective lowest-energy 
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(translationless) states. The deuteron in this model possesses a p2e-   structure, whose ground 

state is computed to have 1- symmetry (Sect. VII.E). The - parity is less certain based on what 

we know thus far from XBPS calculations, but the most likely chioce for its symmetry is 0+, i.e. 

positive parity. This is because it has consistently been found that pairs of light fermions of 

opposite q/mo values prefer 0- states. As indicated in Table XX, the negative pion appears to be 

composed of an electron, a neutrino and two antineutrinos and thus consists of two such pairs 

(Chapter IX.A). Moreover, considerations of particle balance in the d- → nn equation require 

that a    product result as well, which again according to the calculations should have 0- 

symmetry, i.e. negative parity. 

The best inference from the above calculations is therefore: a) the parities of both d and n 

are negative, b) the parities of  (and 0) are positive, and c) the overall parity of the above 

reaction is negative. The last point follows because although nn is found to have positive parity, 

the equation of interest is only balanced with the addition of a single 0-    state. In this way the 

reaction is found to conserve parity, and thus to be an allowed process, in agreement with 

observation: 

       d(1-) + - (0+) → n(1/2-) + n(1/2-) +    (0-)                                                                        IX.1 

Hence no contradiction arises when the pions are assigned positive parity in this reaction. The 

calculations indicate that the parities of the proton and neutron are not the same, although it is 

clear that this relationship depends on the orbitals occupied by the individual proton components 

within a given nucleus. As mentioned above, there is no conflict between this finding and the 

assumption that these two particles are different components of the same isospin doublet87 

because the isospin analogue of the parity operator need not be identical to that acting in physical 

space. With these assignments all of the arguments based on parity violation in the -  puzzle 

or the two- and three-pion decays of K0 lose their validity. If the intrinsic parity of a pion is 

positive, then nothing stands in the way of an odd or even number of such particles being 

produced from the same starting point. On this basis one is led to look for a different explanation 

for the longitudinal polarization phenomenon, one of which has already been formulated in terms 

of the XBPS model in the preceding chapter. 

The details of the reaction given in eq. (IX.1) are also consistent with other characteristics 

of this process. First of all, it is clear that total angular momentum can be conserved, but only if 

J=1. The same conclusion was mentioned in the discussion of parity conservation given above, 
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but the indication now is that the two-neutron state has 3S symmetry, i.e. L=0, in contrast to what 

is usually assumed. With two proton s1/2 spin orbitals involved, we have a concrete verification 

of the assertion that anti-symmetric spatial states can possess even L values. With the help of 

Table XX, we can describe the reaction in terms of a transfer of an electron and an antineutrino 

from the negative pion to the proton of the deuteron. The parallel spins of the proton constituents 

in the original nucleus are not affected by this transfer, so that a triplet two-neutron state must 

result. The    fragment of the pion is then expected to be emitted in its 0- massless state. In all 

this, both parity and total angular momentum must be conserved in the model because the 

Hamiltonian governing the transition commutes with both types of operators. 

What about the reaction in which two neutrons and a photon are produced from d-? In this 

case one must only assume that the parity of the emitted photon is negative, i.e. the same as for 

the massless system from which it is formed. In a dipole-allowed radiative transition it is known 

that the perturbing field has 1- symmetry, from which one must conclude that the non-massless, 

energetic photon resulting from excitation of the latter system has 0-  1- = 1+ symmetry. This 

does not mean at all that every photon with energy different from zero has 1+ symmetry, 

however, rather only that one resulting from a dipole-allowed process relative to a massless 

photon must have this value. Other states of e+e- have different values of J and P. Indeed, it is no 

longer clear that the evenness or oddness of J dictates a definite parity in the case of a photon. It 

is a relativistic particle, always moving with speed c when it possesses non-zero mass, and in that 

case the conventional idea of a wave function consisting of a product of an internal and a purely 

translational factor does not necessarily apply (see Chapter X.B). 

The last of the three reactions suggested for d- would yield nn0, but it is never observed. 

The above assignments indicate that parity is also conserved in this process, however. Does this 

prove that the present parity assignments are wrong? Not at all, because not every reaction 

allowed by symmetry must occur in nature. Other factors can be involved, most prominently the 

availability of conditions for formation of one or the other of the products. In the XBPS model an 

additional e+e- binary is required to balance the above equation because 0 is assigned the 

composition e+e-   (Table XX). Since this massless binary system has negative parity, it cancels 

the deuteron's eigenvalue to give the same (positive) result on both sides of the equation. But is 

there any driving force to involve such an e+e- massless binary? In the model what must happen 

is that the electron and one antineutrino attach themselves to the deuteron’s proton, inducing 
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dissociation into two neutrons. There is a    system left over from - as a result, but it 

apparently prefers to assume its massless state, as indicated in eq. (IX.1). The alternative of 

attaching the    product to a neighboring e+e- massless binary to form a 0 with 135 MeV rest 

mass is perhaps conceivable, but who can say it is not preferable that the    species remain inert 

and instead have all the decay energy go to the departing neutrons? Or to give a part of the 

energy to a massless e+e- system so that it appears as a photon at the end of the reaction? In the 

future it may be possible to carry out calculations which compare these three reaction 

probabilities in a quantitative manner, but for now it should at least be clear that such an 

explanation for the presence or absence of these various reactions is a definite possibility. At the 

very least, it is in no way ruled out by anything one could possibly infer from symmetry 

arguments alone. 

The composition vectors listed in Table XX for KS
0 and KL

0 are suggested on the basis of 

the type and frequency of their respective decay modes. As before with the charged kaons, there 

is some justification for assuming that more than the four particles of a pion are contained in KS
0 

and KL
0 because of their larger rest masses (3-4 times larger than , 0). Because the rest masses 

of the neutral kaons are so similar to those of the charged K species, it is natural to assume that 

the compositions of all these particles must be very similar, particularly with regard to the 

number and type of constituent electrons and neutrinos. The choice in Table XX of a 13.13 

composition for both KS
0 and KL

0 is tantamount to assuming that the two neutral kaons 

correspond to very closely-lying states of the same system. The (assumed) energy difference 

between them (0.5 x 10-5 eV) is so small that it would be all but impossible to compute it in any 

ab initio model. 

The most interesting feature of the decay of the neutral kaons is the fact that sets of both 

two and three pions are observed. In the present model, in which all the pions are suggested to 

have positive parity, one can' expect that even though both types of decay fragments are allowed 

by symmetry, the amount of phase space available in the two cases definitely favors the two-pion 

decays, as observed.216,217 The KS
0 system with a lifetime of 0.882 x 10-10 s exhibits only two-

pion decays, while the KL
0 species has a sixty-fold greater lifetime and produces 000 and +-

0 fragments in a total of 34.1% of its decays. At first it was thought on the basis of theoretical 

arguments involving CP conservation that KL
0 would not exhibit any two-pion decays but in 

1964 Christenson et al. and Abashian et al. showed that this is not the case.71 This work found 
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that 0.2% of all charged modes are two-pion decays (+-). It is worth noting, however, that in 

65.7% of all decays, the observed products are µ and e which in turn are the known 

products of +- decay, i.e. with one pion remaining intact and the other decomposing into a 

muon and a neutrino (or to an electron and neutrino after further decomposition of the muon). 

These types of decays do not normally enter into the parity discussion, however, for the simple 

reason that the electron, neutrino and muon are not assigned a definite parity. 

The assignments in Table XX also leave open the possibility that both KS
0 and KL

0 are 

their own antiparticles, just as is generally accepted for 0. Originally, theoreticians spoke of a 

single neutral kaon K0, whose antiparticle is K
0. The work of Gell-Mann and Pais234 led to the 

designation of two separate particles K1
0 and K2

0 of different lifetimes. Subsequent 

experiments71 ruled out the straightforward assignments of definite and opposite parities to these 

two species, however, contrary to what had been suggested in the above theoretical work. With 

13.13 assignments for both KS and KL, it can be seen that their most common decay products can 

all be reached with the addition of a small number of massless e+e- and    binaries as reactants, 

sometimes with the assumption that such systems go undetected as products as weIl. Accurate 

calculations seem to be the only way of obtaining more confidence in any of these assignments, 

but at least it is clear how they might have to be changed when more information becomes 

available, namely by suitable addition (or subtraction) of e+e- and    binaries to the structures 

given in Table XX. 

The composition vector for the  resonance is more difficult to specify than for any of the 

lighter mesons. Its lifetime is relatively short (2.5 x 10-19 s, corresponding to a linewidth of 2.63 

keV). The most common decay products are groups of two or three pions or several photons, 

with or without pion accompaniment. The two-photon decay occurs in 38.0% of all cases, 

compared to 30.0% for three 30 and 23.9% for +-0 decays. As usual all these products can be 

related by the gain or loss of an integral number of e+e- and    binaries. The mass difference 

relative to the neutral kaons is relatively small (ca. 50 MeV), so that the composition of the  

particle is likely to also be fairly similar, such as the 22.22 designation given in Table XX. The 

only point which should be stressed in this assignment is that the hypothesized availability of 

massless binaries at the site of this and all other particle decays can be used to explain all of the 

observed products. There are a number of other heavier mesons which have not been listed in 
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Table XX, including the ’, , 0, 0, 0, K*0 and K* particles. These resonances play a key 

role in the quark model of elementary particles to be discussed in Chapter IX.J. 

 

E. VIRTUAL PARTICLES IN THE XBPS MODEL 

 One of the most surprising aspects in the development of theoretical physics since the 

introduction of the Schrödinger90 and Dirac103 equations was the necessity of assuming that there 

are virtual photons in the neighborhood of atoms and molecules which need to be considered in 

the form of radiative corrections in computations for “isolated” systems.235-237 In introducing 

these effects it is customary to go to some length to argue that real photons are not involved 

because the assumed entities violate energy and momentum conservation laws. It can be pointed 

out that such behavior is not inconsistent with the fundamental laws of physics, however, 

because Heisenberg’s uncertainty principle238 allows such minor deviations from them. 

Because .of the indisputable accuracy produced in quantum electrodynamics calculations 

making use of radiative corrections, the assumption of virtual photons has become a fixture in 

theoretical physics. The idea received further impetus from Yukawa92 in 1935 when he suggested 

that virtual particles with a mass of roughly 100 MeV /c2 might perform a similar function in the 

transmission of nuclear forces. As already pointed out in Chapter IV, this revolutionary 

hypothesis was ultimately followed by the discovery of the pions in cosmic radiation. Attempts 

to formulate a theory of nuclear binding along the lines of quantum electrodynamics by 

substituting pions for photons have generally been accepted to be quantitatively unreliable,94 but 

this fact has been ascribed to difficulties in treating such interactions at a suitably high 

computational level. In more recent times the W or intermediate boson was sought and found239 

as the analogue of the photon and pion in the weak interaction, lending further weight to this 

theoretical development. 

It is well to mention that one of the main arguments in favor of the exchange of virtual 

particles is taken from Einstein’s general relativity theory,240 according to which it is assumed 

that no interactions at a distance exist. While forces such as gravity can be described quite well 

in terms of a formula involving the distance between two interacting bodies, it is argued that this 

circumstance does not prove that the actual mechanism from which the force arises can be 

explained solely on the basis of the two objects in question. Newton is often criticized for having 

assumed that the gravitational interaction is instantaneous, but in 1692 he wrote241 that it was an 
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“absurdity” to think that bodies act upon one another through a “vacuum, without the mediation 

of anything else.” The long period of searching for an “aether” which transmits the 

electromagnetic force was in line with this view as well. The concept of virtual photons and 

virtual pions tries to get around such difficulties by assuming a) there is a vacuum, but b) 

particles can be created and annihilated anywhere at any time in it, and are thus always available 

for transmitting the observed forces. Once the creation-annihilation hypothesis is questioned, 

however, it is necessary to assume that massless binaries such as e+e-,    and p+p- are always 

available in high concentration everywhere in the physical universe. Adoption of this alternative 

formulation thus suggests that the concept of virtual particles might no longer be required, or at 

least that the distinction between them and physically existent photons may be primarily of a 

heuristic nature. 

To see how the computational techniques which are based on the assumption of virtual 

particles can be recast in a physical model in which neither a vacuum nor anything but real 

particles is accepted, it is helpful to consider the configuration interaction technique described in 

Chapter VI. C in a somewhat different light. Take the CI wavefunction for the helium ground 

state, for example. To a good approximation it consists of a single configuration in which the 1s 

orbital is doubly occupied. To obtain better agreement with experiment, however, it is necessary 

to mix in additional configurations, for example, the 2p2 species. The energy of the latter 

configuration is much higher than that of 1s2, and yet quantum mechanics allows the two 

functions to form a linear combination which gives a better description of the helium ground 

state than either of them alone. One is simply employing a different language when this process 

is referred to as involving a “virtual” 2p2 state. In this way it is possible to incorporate into the 

present model the idea of virtual entities whose interactions violate conservation laws in a 

manner consistent with the provisions of the uncertainty principle. In order to go a step beyond 

this and bring in virtual particles, it is only necessary to have configurations containing spin 

orbitals corresponding to several particle types within the same system. 

When a helium atom interacts with virtual photons according to the present model, it is 

necessary to deal with at least four particles, the two helium electrons and the e+e- complex 

which has been identified with the photon in Chapters II-III. The unperturbed system contains a 

massless 0- photon state, while the radiative corrections correspond to a configuration of much 

higher energy in which the electron and positron are no longer bound together. Such effects are 
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relatively small and it is thus reasonable to expect that their treatment in low-order perturbation 

theory is adequate to obtain the desired accuracy. The matrix element involved is provided by the 

methods of quantum electrodynamics,242 thereby circumventing the problem of working with 

explicit wavefunctions for photons which take account of the internal structure assumed for them 

in the present model. Even if exact solutions for the various e+e- states can be obtained from the 

XBPS model, it can still be anticipated that such an explicit CI treatment of the He atom plus 

photon would be much more difficult to carry through with the required accuracy than is the 

standard perturbational approach. A similar situation has already been met in  Chapter VIII. A 

where the possibility of computing line-widths in terms of complex energy eigenvalues,190 in 

principle the preferred technique, was compared to the simpler approach involving the Fermi 

golden rule.193 When very small imaginary parts of the energy eigenvalue are involved, better 

accuracy can invariably be obtained in the perturbational treatment because the terms omitted in 

such a procedure are negligibly small. One needs to carry out the computations with much more 

effort to approach the same level of accuracy when a strictly variational treatment is employed. 

In this sense the possible advantages of assuming that real photons are involved in the 

quantum electrodynamics theory are only to be found on a conceptual level. The computational 

techniques of the existing theory are well-known to be capable of great accuracy and, except 

perhaps in rare instances not yet encountered, are in no need of further improvement. The 

situation is qualitatively different for nuclear interactions, however. The main reason for this 

distinction appears to be less a matter of the relative strengths of photon and pion interactions, 

however, than the fact that the operators used to describe the two types of interactions in a 

quantum mechanical treatment are known far more accurately for the predominantly Coulomb 

forces governing atomic and molecular systems. One has an excellent starting point in the Dirac 

equation103 or related two-component methods106 from which to apply the necessary radiative 

corrections. The main effects are still to be found in the electrons and nuclei of the atoms and 

molecules of interest in quantum electrodynamics treatments, even though the most interesting 

results often emerge only after the photon interactions are included.  

The main thesis of the XBPS model is that exponentially damped momentum-dependent 

operators of relatively short range are required to obtain a similarly useful starting point for the 

calculation of nuclear binding. By attributing a non-zero value to the charge-to-rest-mass ratio of 

the neutrino, it has been possible to describe the neutron and deuteron as collections of protons, 
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electrons and antineutrinos interacting primarily through such short-range interactions, and 

thereby offsetting the large kinetic energies required for the confinement of light fermions within 

nuclear dimensions. By analogy to the quantum electrodynamics description of atomic systems, 

it can then be expected that the inclusion of pions into the theoretical treatment is required to 

obtain a truly comprehensive representation of the corresponding observed characteristics of 

nuclear interactions. The difference between the present model and earlier proposals to describe 

nuclear binding is that it foresees only a relatively minor role for pions, which might well be 

amenable to a perturbative treatment similarly as for photons in processes dominated by the 

electromagnetic interaction. The emphasis in the XBPS model is more on the nature of the 

quantum mechanical representation of the short-range interaction itself in terms of the 

exponentially damped Breit-Pauli terms such as spin-orbit, orbit-orbit and spin-spin coupling. 

This position no way contradicts the concept of certain particles being responsible for the 

transmission of certain forces, but it clearly places less emphasis upon the idea than is normally 

done in quantum field theory. 

A more significant difference between the XBPS model and other suggested approaches is 

clearly that it denies the need for assuming virtual particles to describe any aspect of the 

corresponding experimental phenomena. Instead of a vacuum filled with nothing, it is assumed 

that free space as we perceive it is in reality permeated with large numbers of massless binary 

systems which are always available to participate in interactions with other (massive) particles. 

These e+e-,    and p+p- systems are not observable directly as long as they remain in their 

respective massless states, but they exist just as surely in this condition as do particles with non-

zero relativistic masses. To describe the interaction of an atomic or nuclear system with such 

entities, it is simply necessary to expand the number of particles treated explicitly in the 

configuration interaction calculations, at least in principle. The resulting wavefunctions have 

contributions from configurations which contain excited states of such binary systems. As a 

result, their effects become observable in practical experiments, the most well-known, of which 

are the magnetic moment determinations for electrons and protons and the measurement of the 

Lamb shift.242 A small admixture of such excited binary states in the wavefunction means that 

the measured properties of the overall system are directly affected by them. 

Such a CI treatment, by construction, requires a set of configurations which share a 

common occupation of spin orbitals corresponding to definite numbers of the same type of 
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particles, which is to say, a perfect elemental balance is a strict condition for treating a physical 

interaction in this manner. This does not exclude the introduction of external fields into the 

governing Hamiltonian, but in a broader sense it leaves open the possibility that any such 

additional effect ultimately has its origin in the existence of other particles in the neighborhood 

of the system in question. It is a “particles only” approach, often deemed to be anathema to the 

quantum field theory. There is no need to see a contradiction in these two views of physical 

theory, however. As usual it is the creation-annihilation hypothesis, in this case in the form of a 

vacuum model of free space, which only makes them seem mutually incompatible. If massless 

particle-antiparticle binaries exist, as the XBPS model’s calculations indicate they do, then they 

must exist everywhere in great numbers at all times according to the laws of statistical 

mechanics. This possibility then allows a ready explanation of how action-at-a-distance effects 

are transmitted throughout space, and especially why it is necessary to assume fields external to 

the observed atomic and nuclear systems in order to obtain a suitably accurate description of 

their interactions. 

 

F. INTERACTIONS OF PROTONS WITH PIONS IN THE XBPS MODEL 

The most explicit evidence for the interaction of pions with nuclear matter is gleaned from 

elastic scattering of high-energy electrons off protons and neutrons.95,97,161 Values for the proton 

form factors vary with momentum transfer in a manner corresponding to a charge distribution 

which varies exponentially with the distance away from the proton’s center of mass. This result 

can be satisfactorily interpreted in terms of a model in which the proton is surrounded by a cloud 

of pions. When an electron approaches a proton at sufficiently high energy it thus encounters not 

only the bare nucleon but also the less massive pions. As a result, it appears that the proton itself 

is not a point charge, unlike the electron and positron, for example. The calculations discussed in 

Chapter VII combined with the arguments of Chapter IX.A regarding the composition of pions in 

the present model allow for a straightforward interpretation of the elastic scattering data, 

however, which puts matters in a different light and does not require the assumption of virtual 

particles in arriving at its conlusions. 

As shown in Fig. 18, the XBPS model envisions a bare proton being continuously 

surrounded by numerous e+e- and    massless binaries whose influence must be taken into 

account in explicit ca1culations in order to properly represent the physical situation. A minimum 
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number of these binaries is required to explain the observed effects. The lowest-energy 

configuration is simply a product of the proton’s spin orbital and the two-partic1e 0- 

wavefunctions for one e+e- and two    binaries in their respective massless states. The proton is 

able to approach the lighter particles relatively closely as a result of the form of the exponential 

damping factor in the XBPS Hamiltonian (see Table l and the discussion in Chapter VII.B). As a 

result, a higher-energy configuration is also needed to obtain a satisfactory description of the 

system. This corresponds to a neutron and a positive pion, which are formed by decomposing an 

e+e- binary to form a p+e- complex plus a positron. These species interact further with the    

binaries, with the antineutrino from one of them joining the proton-electron system to form a 

neutron, while the corresponding neutrino plus an additional    pair combine with the positron 

to form + (11.2 composition vector, see Table XX). This (seven-particle) excited configuration 

mixes with the lower-energy proton-plus-massless-binary species (and other configurations of 

intermediate occupation) to form the final eigenfunction. According to the usual statistical 

interpretation of such wave functions, it follows that the system as a whole spends a certain 

fraction of its time in the excited neutron-plus-+ configuration, which circumstance leads to the 

deflection of high-energy electrons away from the proton itself. Since + has a positive electric 

charge and a relatively small rest mass, it can be expected that the same configuration-mixing 

effect tends to raise the system’s magnetic moment relative to what would be obtained if the e+e- 

and   binaries always remained in their massless states. 

The above effect is far greater than in the case of an electron interacting with photons, with 

the proton magnetic moment being 2.5 times larger than would be expected for a bare (Dirac) 

proton, compared to an analogous deviation of only 0.05% in the case of the electron. The point 

to be stressed in the present context, however, is that there is really no necessity to talk about 

virtual pions in describing this effect once allowance is made for the existence of massless e+e- 

and   binaries in the neighborhood of the proton. Ultimately, it is the large mass of the proton 

which allows it to interact more strongly with such entities than do lighter particles such as 

electrons and neutrinos. 
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FIG. 18. Schematic energy diagram showing the relative stabilities of the bare proton (upper line). proton-photon-photrino 

complex (middle line) and physical proton with a virtual pion cloud, as foreseen in the XBPS model. Calculations indicate that 

the rest mass of the (physically unobserved) proton is several electronic mass units larger than the value of 1836 moe measured 

for the proton in its naturally occurring environment. The n+ virtual state is interpreted as a configuration interaction component 

of the actual (bound) proton wavefunction.  
 

To give further consideration to this point, a series of calculations has been carried out for 

the tri-atomic p+e+e- system. In the 4s,2p basis employed for the p+e-   system in ChapterVII.B, a 

full CI energy of -186373.864 hartree results, which represents a proton binding energy of 

148783 hartree to the e+e- ground state obtained at the same level of treatment. While this 

quantity is likely to become significantly smaller as the quality of the basis set is improved, it 

still indicates that there is a substantial interaction between the proton and such a particle-

antiparticle binary. This result is clearly consistent with the arguments given in Chapter VII.B 

regarding the mechanism of proton binding to the e-   complex, especially when one employs a 
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q/mo value of 1.0 a.u. for the antineutrino in the p+e-   calculations (Table XIII). Recognition of 

this point raises another question, however, namely whether such a large binding energy between 

the proton and the e+e- binary system is compatible with the theory of nuclear binding which has 

been discussed in Chapter VII. A calculation for the p2e+e- system for the same basis (an 

optimum scale factor of 0.10 is found in both cases, as compared to the value of 0.16 obtained 

above) yields a total energy of –305503.616 hartree, which corresponds to a binding energy for 

the second proton of 119221 hartree, 29562 hartree smaller than for the first. Since, according to 

the present model, there is always an abundance of massless e+e- species with which to interact, 

this result indicates there is a reluctance for the protons to group together around a single binary 

of this type. This is in sharp contrast to the experience with the e-   complex when computed at 

the same level of treatment. There the first proton is not bound at all, existing in a p+e-   

resonance state, whereas the second combines with it to form the strongly bound deuteron. 

The results of the above calculations nonetheless suggest that the energy of the bare proton 

would actually be significantly greater if it were not always surrounded by e+e- (and   ) 

systems, which according to the present model corresponds more closely to its physical state 

actually observed in experiments (Fig. 18). Increasing the rest mass of the proton would have 

almost no effect on the calculated total energies because they are referenced to the energy of 

each system’s component particles separated to infinity. On this basis one can expect that the 

mass of the bare proton might be greater than that measured in the laboratory by as much as 

several electronic mass units. Since the polarization effects which cause this stabilization are 

charge-dependent, it can be expected that their influence on the neutron's rest mass vis-a-vis that 

in its isolated (bare) state is much smaller. Such a development would also be at least 

qualitatively consistent with the premises of the isospin theory,87-89 in which the proton and 

neutron are assumed to be of equal mass in the absence of the electromagnetic interaction. 

Recognition of these effects would tend to indicate that the |q/mo| value which must be assumed 

for the neutrinos in order to compute a neutron (p+e-  ) rest mass in agreement with the measured 

value might need to be increased slightly if such environmental influences were properly taken 

into account in the theoretical treatment. It also can be noted that the above calculations are 

consistent with the well-known observation that the interactions of protons and other hadrons 

with photons are not correct1y described by quantum electrodynamics.243 
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A more crucial question arises from this general discussion, however, namely do the 

electron scattering data for nucleons imply that the proton is not a point charge? The answer is 

not at all clear once it is realized that the extension in the charge distribution observed in the 

electron elastic scattering from protons may be tied up at least in large part with the fact that the 

proton is not an isolated system under the governing experimental conditions. It could be that the 

exponential nature of the charge distribution derives from the combination of both the proton and 

the e+e- and    species to which it is tightly bound according to the present calculations (the 

pion cloud also results from this interaction in this view; see Fig. 18). To investigate this point 

further it is clearly necessary to consider the effects of probes in the scattering experiments 

which have significantly smaller de Broglie radii than the electrons employed in the above 

study.95,97,161 

When inelastic scattering processes are investigated with incident electron energies in the 

10 GeV range,244 the nature of the cross sections is different than above and continuum states are 

observed whose charge distributions are no longer exponentially decreasing with the distance 

away from the proton’s center. In essence the results indicate that point charge scatterers are now 

involved. There have been essentially two interpretations of this phenomenon, identifying the 

point particles with some internal structure of the proton245,246 or with the bare nucleon itself.247 

In the present model it seems tempting to focus on the idea that as the energy of the electrons is 

taken up by the proton that they come into excited states which are no longer able to bind pions 

(or alternatively the e+e- and    binary systems) even a small percentage of the time. A 10 GeV 

electron energy corresponds to a proton kinetic energy of 2-3.5 GeV in its own inertial system, 

which is comparable to what is computed for the p+p- binary in its massless state (Chapter VI.G). 

Under these conditions the interparticle distances are so small that even the advantage that the 

proton normally enjoys by virtue of the form of the exponential damping factors in the XBPS 

Hamiltonian in the present model is unable to offset the enormous centrifugal (kinetic energy) 

effects impeding against binding. The proton is therefore no longer attracted by neighboring e+e- 

and    species and behaves as an isolated system. The fact that the curvature in the measured 

cross sections for inelastic electron scattering steadily decreases with the energy of the 

continuum states is at least consistent with such an interpretation. We shall have occasion to 

return to this question later in this chapter when the subject of the quark model of elementary 

particles is taken up again (Chapter IX.J). 
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G. PROTON-ANTIPROTON INTERACTION 

The reaction of a proton with an antiproton can be described in a perfectly analogous 

manner to that of an electron and positron in the XBPS model by virtue of the scaling properties 

of the Hamiltonian employed (ChapterV.D). The energy released is mop/moe times greater in the 

p+p- interaction, and its mean interparticle distance is smaller by the same amount than in the e+e- 

case according to this treatment. It might be expected that when p+ and p- bind together that the 

result is a pair of photons with correspondingly greater energy than for e+e-, but the most 

commonly occurring process observed experimentally involves instead the production of a 

number of pions. It is therefore important to consider this process in somewhat more detail in 

order to find a possible explanation for this phenomenon. 

Because the p+p- massless binary system is much less likely to interact with its 

surroundings by virtue of the relatively small value of its radius, it seems reasonable to assume 

that the energy given off as a result of its formation is borne by other particles in the 

neighborhood. Initially the proton and antiproton can be taken as being at rest in their center of 

mass, and it has been argued in Chapter III.C that the product of their interaction must also 

remain localized in the same region of space. In view of the zero rest mass of the p+p- binary, this 

situation cannot hold if it takes up any energy itself, in which case it must move with the speed 

of light out of the area. The same argument has been used to explain the quantized nature of 

photon interactions, particularly the well known fact that they tend to give up all rather than only 

part of their energy when absorbed by atomic or molecular systems. The enormous amount of 

energy released in the proton-antiproton interaction must be taken up by something, however, 

and because of the conservation of momentum requirement, the most likely recipients in the 

present model are two photons, initially also possessing zero energy and therefore likely at rest in 

the neighborhood of the reaction. 

In this respect the e+e- and p+p- particle-antiparticle reactions initially proceed in a very 

similar manner, but the amount of energy released in the latter process is sufficient to cause 

neighboring e+e- species to decompose into their elements, unlike the situation when a positron 

and electron react with one another.  As shown in Fig. 19, a relatively uncomplicated scenario 

for the observed pion production can be imagined once two pairs of electrons and positrons are 

set free as a result of the proton-antiproton interaction. The conservation laws essentially require 
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that the two e+e- species push off one another (see Fig. 4), so that initially one e+ and e- remain 

near the original center of mass, whereas the other two particles go off in opposite directions at 

high speed. The next step would then involve the attachment of    binaries to each of the 

fragment systems: one to e– to form a transient µ- (Table XX), one to e+ to form µ+, and finally 

one to the remaining e+e- pair to form a 0 species. At such high energies the muons offer an 

attractive target to another    binary, thereby producing the respective charged pions + () and 

and -(  ). Alternatively, two    species might be involved, with the unused  and   particles 

taking up some of the released energy as well. 
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FIG. 19. Schematic diagram showing four stages of the proton-antiproton fusion process producing a system of three pions and 

the massless prophoton (p+p-) system. In the first stage the proton and antiproton are shown to collide with one another in the 

presence of massless e+e- and    systems (I). Their fusion leads to the production of 1.88 GeV of energy which is taken up 

initially by two massless e+e- species, leading to their dissociation in the second stage (II). The latter particles further combine 

with    species to form the e+   (µ+), e+e-   (o) and e-   (µ-) intermediate products in the third step (III), while in the 

final stage the muons react further to form the corresponding charged pion systems (IV). The prophoton product is assumed to 

remain in the translationless state upon its formation and thus escapes experimental detection. 

 

In accord with the notation used in Table XX the reacting system involved is not 100.100, 

i.e. p+p-, but rather 123.123 (or 124.124), which yields as products a + (11.2), a - (2.11), a 0 
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(11.11) and the 100.100 p+p- massless binary (plus an additional  and   in the second case). The 

mechanism described above leads to the production of only three pions, but it is obvious how 

alternative processes might occur which would produce still larger numbers of such mesons. 

Given the amount of energy produced by the p+p- interaction and the relatively small barriers to 

decomposition of the massless e+e- and    binary systems, it is not surprising that a variety of 

such multiple-pion products is observed. 

 

H. COMPOSITION OF HYPERONS IN THE XBPS MODEL 

The next group of elementary particles, in order of increasing rest mass, are the various 

meta-stable baryons, or hyperons, as they are also frequently called. The suggested elemental 

composition of these particles is given in Table XXI, along with a survey of their respective 

decay processes.216.217 There is a well known baryon conservation law governing reactions of 

such systems, and this is obviously consistent with the main thesis of the present work, namely 

that all truly elementary (stable) particles are in continuous existence, regardless of the nature of 

the interactions to which they are subjected. These elements are the proton, electron and neutrino 

and their antiparticles, and since each of the hyperons decays into a collection of such particles 

of which one is always the proton (or antiproton), it is clear that each of them must contain such 

a heavy element if the creation-annihilation hypothesis is to be avoided. The simplest meta-stable 

baryon is the neutron in this view, with a 1.110 composition (Table XXI), whereas the proton is 

one of the elements (100). 

The next lightest hyperon is the Λ particle, which decays into the major sets of products 

p- and n0. The latter differ by a single e+e- binary according to the assignments of Table XX. 

The decay energy is of the order of the pion value, amounting to 177 MeV. The most likely 

composition (2.111) would thus seem to be one proton plus two antineutrinos, one electron and 

one neutrino, i.e. the components of p+ + -. Alternatively, one might take it to be an excited 

state of the neutron itself which upon decay attracts a    binary to its emitted e- and  - particles 

to form a negative pion. In view of the observation that a proton is surrounded by a pion cloud 

even when it is in its ground state, the former assignment is slightly preferred and given 

explicitly in Table XXI. With this choice only a single e+e- massless binary must be added to  

to produce its n0 decay products. The other groups of fragments listed occur far less frequently 

and are easily correlated with the above structure for Λ when allowance is made for the usual 
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addition or loss of particle-antiparticle binary systems. The non-symmetric nature of the Λ 

composition vector indicates that a distinct antiparticle exists with charge-conjugated 

composition, and this is observed as well. 

 

 

TABLE XXI. Classification of baryons by means of compositjon vectors. For notation see Table XX. 

 

 Particle Symbol Rest Mass Composition Decay Fraction BI 

     (Lifetime)  Vector Products    

 proton P 938.25920.0052  100 stable  - - 

 neutron n  939.55270.0052  1.110 p+e-   1.0000 0 

   (=918s)      

 lambda  1115.590.05  2.111 p+- 0.642 0 

   (=2.521 x 10-l0s)   n0 0.358 10 

        p+e-   8.13 x 10-4 1  

          p+µ-   1.57 x 10-4 0 

          p+- 8.5 x 10-4 10 

 sigma plus + 1189.410.07  11.111 p+0 0.516 0 

     ( =8.00 x 10-11s)   n+ 0.484 1 

          p+ 1.24 x 10-3 1  

          n++ 1.31 x 10-4 11 

          e+ 2.02 x 10-5 1 

          nµ+ < 2.4 x 10-5 1 

          ne+ < 1.0 x 10-5 0 

          p+e+e- < 7.0 x 10-6 1  

 neutral sigma      0 1192.480.l0  2.111  1.000 10 

     (<-1.0x10-14s)   e+e- 5.45 x 10-5 10 

 sigma minus - 1197.340.07  2.120 n- 1.000 1 

     ( = 1.484 x 1 0-10s)   ne-   1.10 x 10-3 0 

          nµ-   4.5 x 10-4 1 
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          e-   6.0 x 10-5 1 

          n- 1.0 x 10-4 11 

 neutral xi  0 1314.90.6  12.121 0 1.000 1 

     (=2.98 x 10-l0s)   p+- <0.9 x 10-3 1 0 

       p+e-   < 1.3 x 10-3 1 1  

          +e-   < 1.5 x 10-3 0 

          -e+ < 1.5 x 10-3 0 

          +µ-   < 1.5 x 10-3 1 

          -µ+ < 1.5 x 10-3 1 

          p+µ-   < 1.3 x 10-3 1 0 

 

TABLE XXI continued       

Particle Symbol Rest Mass 

(Lifetime) 

Composition 

Vector 

Decay 

Products 

Fraction BI 

   .       

xi minus -- 1321.290.14 3.121 - 1.000 1 

  ( = 1.672 x 10-l0s)  e-   7.0 x 10-4 0 

    0e-   <5.0 x 10-4 0 

    µ-   < 1.3 x 10-3 1 

    0µ-   <-5.0 x 10-3 1 

    n- < 1.1x 10-3 0 

    ne-   <0.01 1  

omega minus   - 1672.50.5 13.131 0- - 1 

  ( = 1.3 x 10-l0s)  0- - 1 

     - 2 

 

The next three hyperons have nearly the same rest masses and are grouped together as +, 

0 and -, in order of increasing energy. Again two major decay modes are noted for +, namely 

po and n+. With the usual caveat an assignment of 11.111 for its composition is made in Table 

XXI, which is identical to that of its po products. A single    binary must then be added to 
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obtain the n+ fragments, observed in 48.4% of + decays. Otherwise there are six minor decay 

modes such as p and n+, which are easily understandable in the usual way. The composition 

of + implies that an antiparticle also exists, as observed. 

The neutral sigma particle 0 also has an antiparticle. Its decay products consist almost 

exclusively of a  species plus a photon or a separated e+e- pair. This suggests something akin to 

a conventional radiative emission is involved in the decay, so the 0 structure is probably best 

assumed to be the same as that of the  particle. The assumption is that the 77 MeV higher rest 

mass of 0 relative to  is simply a consequence of the mass-energy equivalence relation for two 

different states of the same system. 

The heaviest of the sigma particles is -, again with its own antiparticle. It also has only a 

single major decay mode, producing n-. As such it is probably best to assume that the original 

system contains two electrons, thereby clearly distinguishing its composition from that of +. 

Since the other two  species are assigned a composition of five particles, it is reasonable to 

delete a    pair from the n- fragments in arriving at the - structure, so that a like number of 

constituents is assumed for all members of this hyperon family. A restructuring of the bonding 

between the - and    species can then lead to e-   products (Table XXI). As usual the 

possibility must be left open that each of these assignments may need to be altered by the 

addition or subtraction of e+e- and/or    binary systems. 

The next two hyperons in order of increasing rest mass comprise the  family, 0 and -. 

Both particles have essentially unique decay products, 0 and - respectively. Their difference 

in rest mass compared to the  family members is about 130 MeV, with 0 being more stable 

than - by 6.4 MeV. This suggests a composition of several more particles than for the  species. 

Since 0 is more stable it seems reasonable to assume that it benefits more from the Coulomb 

interaction. Taking the number of constituent particles to be seven in each case leads to 

assignments of 12.121 for 0 and 3.121 for -. Whether the combination of one proton, two 

electrons and a positron (0) reaps more benefit from the Coulomb interaction than just two 

electrons and a proton remains somewhat of an open question in this assignment, but at least the 

assumption that one can estimate such effects by algebraically adding the products of each pair 

of charges does speak in favor of it. As usual each of the minor decay products of both particles 

can be obtained with the help of integral numbers of particle-antiparticle binaries (Table XXI) . 
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The last particle classified as a hyperon is the -, with a rest mass of 1672.5 MeV/c2, some 

340 MeV/c2 greater than for the  particles. It is also a fermion, but it is found to have a quartet 

state, in contrast to all the other hyperons. The compositions of two of its known decay products, 

0- and -0, is the same according to Tables XX and XXI, namely 14.132. The other 

possibility (K-) has an additional    pair. The assignment given in Table XXI of 13.131 

assumes that - has two more constituent elements than the  family members and that    

massless binaries are always involved in its decays. 

Before closing this section, however, it should be noted that there are a large number of 

other resonances found as a result of scattering pions from protons which are often referred to as 

excited nucleon states. Their decay products are generally of the same order. The main 

distinction between these two groups of systems lies experimentally in the magnitude of their 

lifetimes or linewidths. The N’ and  resonances all have widths of ca. 100 MeV, corresponding 

to lifetimes which are shorter by a factor of 1012-1013 compared to those of the hyperons. 

Especially in the present context, it seems pertinent to mention that a distinction on this basis is 

somewhat artificial. Designating something an elementary particle because it only decays with a 

lifetime of 10-10 s, while refraining from the same terminology for less stable systems yielding a 

very similar product spectrum, is in itself an indication that the whole classification system is 

somewhat inconsistent. The present view is that hyperons and the above broad resonances are all 

meta-stable combinations of protons and lighter stable fermions. They are distinguished from 

one another mainly on the basis of the number and type of such particles they contain, as well as 

the manner in which they are bound together by short-range interactions. 

 

I. REACTIONS OF ELEMENTARY PARTICLES 

Throughout this chapter we have been discussing reactions of particles generated in high-

energy collisions, but the emphasis has been placed on one-particle decays. In this section we 

will briefly sample other types of reactions occurring for such systems as a further illustration of 

the utility of the assignments given in Tables XX and XXI. We can start by considering the 

collision of two protons: p+ + p+ → d+ + e+. As usual the equation as conventionally written is 

not balanced. On the left-hand side the composition vector is 200, i.e. two protons, while on the 

right it is 11.210. Balance is obtained by adding an e+e- and a    binary to the initial system and 

by taking account of the fact that positron emission in such a process is inevitably accompanied 
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by the release of a like number of neutrinos. The result is 11.211 on both sides. Nothing is 

created or destroyed in this view. It only appears that just two protons are present at the start of 

the reaction. Instead there are always an infinite number of massless binaries available to 

participate in the reaction in a non-trivial way provided sufficient energy is available to cause 

their decomposition or attachment en masse to a neighboring system. 

It only makes sense to include the binary systems explicitly in the reaction's equation when 

they have a different relationship to their surroundings before and after the process has occurred. 

The situation is thus wholly similar to that encountered when a chemical reaction takes place in a 

water solvent. We could write down 1023 water molecules on both sides of a typical equation, but 

this generally serves no useful purpose and clearly conceals the essential submicroscopic nature 

of the observed process. It occasionally happens, however, that a true picture of such a reaction 

only emerges after careful study, with the result that it is realized that one or more of the water 

molecules does play an essential role in the process, remaining for example as part of the product 

molecules generated by it. The massless binaries perform both the functions of reaction partner 

and catalyst in elementary particle reactions, depending on the specific case. One major 

difference between water and massless binaries, however, is that the latter cannot be observed in 

their state of lowest energy, which has been found in the present work to have 0- symmetry. This 

characteristic makes a unique assignment of elemental composition to each participant in a given 

reaction effectively impossible. That need not be an important deficiency in the utility of the 

theoretical model, however, because the main interest is in the identity and probability of a 

certain reaction’s occurrence. This aspect is not unduly affected by the miscounting of one or 

another of the binary systems, as long as the same error is made on both sides of the equation. 

These are the rules of the game which should be kept in mind in considering other reactions 

below. 

Let us now consider a more complicated process in which a negative kaon collides with a 

high-energy proton. According to Table XX the elemental composition of the initial particles is 

13.122. The products of this reaction are K0, K+ and -, respectively 13.13, 22.13 and 13.131, 

which gives a total of 48.157. The difference between the two totals is 35.35, i.e. three e+e- and 

five    species, which must be added to the reactants to restore elemental balance. These are 

distributed as follows: one e+e- and three   s are needed to form K0, an electron is added to p+ + 

K- and a neutrino is lost to give -, while the remaining particles go into the formation of the 
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positive kaon (including the positron counterpart of the - electron and the neutrino lost from K-

). As usual the assignment is not unique. One would particularly like to know if the K- elements 

are used exclusively in the formation of - or if they are distributed among two or more of the 

products. Only accurate calculations can presumably help to remove such uncertainties. The 

reaction is highly endothermic, which is consistent with the relatively large number of particle-

antiparticle systems which become included in the process. 

As another example let us consider the p + - reaction which gives as products n+-. From 

the point of view of merely balancing the equation it is necessary to compare a proton with a 

neutron-plus-+ combination. The difference is again an integral number of binaries (12), which 

must be supplied on the reactant side of the corresponding equation. One can imagine the process 

starting with the decomposition of the e+e- binary. The electron combines with the proton and a 

species to form a neutron, while the e+ and   counterparts result in the positive pion with the 

addition of the second    species. In actuality it might well be that the initial - species is 

decomposed in the course of the reaction and simply reformed, perhaps with different constituent 

particles, at the conclusion of the process. 

Another set of products observed in p- collisions is K0. We begin with a 2.111 

composition and end with 2.111 + 12.12 = 14.123. The K0 species is its own antiparticle and thus 

can be formed directly from only binary systems, provided the minimum of 496.7 MeV kinetic 

energy is provided at the center of mass in the original collision. The e 
37Cl to e- 37Ar process 

can be similarly described by suppressing the common 36Cl nucleus on both sides, which 

changes it to the typical beta-decay reaction e n → e-p+. This equation is balanced by adding a 

massless    species to the products which is assumed to go undetected. The n reaction, which 

is crucial in the arguments supporting a second type of neutrino, as discussed in Sect. IX.B, is 

already balanced for µ-p+ formation. Only a suitable amount of kinetic energy is additionally 

required to make the latter process possible. In its absence a massless    species can be formed, 

giving the appearance that only an electron and proton are emitted in the process. This is the only 

process which can occur unless the sum of the kinetic energy of the  + n system in its center of 

mass and the decay energy of the neutron exceeds the 105 MeV rest energy difference between 

the muon and the electron. 
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As an example of a more complicated reaction, let us consider the result of a deuteron 

colliding with a K+ particle. One of the more unusual possibilities is the formation247 of the 

products  +p++-. One starts with d+ (1.210) and K+ (22.13), or a total composition vector 

of 23.223. The - assignment in Table XXI is 13.131, which implies 131.113 for p+


+. Adding 

a p+p- binary to the reactant side gives 123.323, which leaves a deficiency of two protons on the 

product side. These are covered by the  particles of 2.111 composition (Table XXI). Adding 

these as products of the reaction gives a result of 135.335, which provides a potential elemental 

balance through the addition of one e+e- and two    species as reactants. The +- pair is 

unchanged by charge conjugation and thus can also be explained in terms of integral numbers of 

particle-antiparticle binaries becoming involved in this reaction. 

In summary, the present analysis in terms of composition vectors of protons, electrons, 

neutrinos and their respective antiparticles at least provides a handy bookkeeping device for 

checking if a series of reaction products is feasible. In the model the occurrence of the given 

reaction depends on a number of factors, especially whether sufficient energy is available. The 

actual reaction probabilities can then be computed in principle, and in this way give a 

quantitative description of the various processes without the need of further assumptions. 

Traditionally one has tended to rationalize whether such reactions are allowed or forbidden by 

defining a series of quantities such as isospin,87-89 hypercharge240,248 and muon quantum 

number218 which have no counterpart in atomic and molecular calculations. In the XBPS model 

it can at least be imagined that these quantities need not be considered explicitly in calculations 

which are capable of providing a suitably quantitative description of such processes.  

 

J. THE QUARK MODEL AND ITS RELATION TO THE XBPS TREATMENT 

The prevailing theory of elementary particles is deeply bound up with concepts of 

symmetry, involving a number of quantities specifically introduced to aid in unraveling the 

tangled web that the experimental data for such systems has produced. As mentioned in Sect. 

IV.D, the basic assumption in many theories which have been put forward is that all matter is 

ultimately formed from a series of building blocks, but the models differ in their specific choices 

for these quantities. Between 1949 and 1956, Fermi27, Yang and Sakata119 developed one of the 

first such variations on this theme. They suggested a set of elements consisting of the proton, 

neutron and lambda particles, thereby setting a precedent for allowing unstable particles to serve 
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as elements. One of the most fundamental concepts employed in this approach was the provision 

that a boson can be constructed from an even number of such fermionic elements. Some of the 

new particles which could be expected from this model have never been found in experiments, 

however, which fact has generally brought it into disuse. 

The suggestion of quarks as building blocks brought with it the new assumption, at least 

relative to the Fermi- Yang-Sakata model, that the building blocks need not be found among the 

list of observed particles. In 1964 when the latter model was first introduced by Gell-Mann116 

and Zweig,117 only three quarks and three antiquarks were needed to explain the structure of all 

known particles. In the meantime this number has been expanded to six each,118 and the resulting 

improved theory has won great respect among physicists for the detail with which it is able to 

describe observed relationships among this otherwise heterogeneous group of systems. 

Symmetry is the watchword in this theory and the more it has been refined and tested, the more it 

has come to be accepted as reality. 

The present calculations are based on a model which does not require the existence of 

quarks or any other particles as elements except the proton, electron, neutrino and their 

antiparticles. It also does not make use of quantum numbers other than those known in the field 

of atomic physics at the time of the introduction of the Schrödinger90 and Dirac103 equations. On 

this basis it can be argued that the present model is relatively free of unproven assumptions, 

which is after all one of the most important criteria to be satisfied by any physical theory. 

Emphasis is placed to a large extent on the identification of a Hamiltonian which when employed 

in standard quantum mechanical procedures leads to a suitably accurate description of observed 

phenomena, particularly for such quantities as the rest masses and lifetimes of elementary 

particles. As mentioned earlier, the fact that such a model might ultimately be improved to the 

point of delivering a high degree of quantitative reliablility does not necessarily clash with the 

precepts of the quark theory. It is conceivable that the elements assumed in the present model, 

particularly the proton, are composed of still less massive building blocks such as quarks or even 

more fundamental particles. Even if experiments continue to be unable to provide definitive, 

positive, direct evidence that quarks exist, such as isolating and identifying a particle with a 

charge of 1/3 e or 2/3 e, it can still be true that such entities nevertheless exist with essentially 

the same properties as are required for them in the theory. Similarly the fact that one or the other 

of its key predictions cannot be verified, such as for example that the proton decay with an 
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extremely long but nonetheless finite lifetime,85,86 in no way constitutes a disproof of the model 

as a whole. In short, the possibility that two fundamentally different theories might explain the 

same set of observations inevitably leaves one with an uneasy feeling, but does not in itself 

amount to indisputable evidence that at least one of them is seriously flawed. 

Yet one knows from experience with simpler problems in the field of mathematics that 

multiple solutions of different characteristics are more the rule than the exception. The goal of 

finding a set of elements or building blocks from which to synthesize all known material 

particles is similar to the familiar exercise in the theory of finite-dimensional linear spaces of 

determining a set of basis functions to span a given linear manifold. It is impossible to find a 

suitable choice of functions for this purpose whose number is less than the dimension of the 

corresponding space, but there is no difficulty in finding a solution involving more than this 

minimal number. It is easier to construct a polynomial fit to a given set of experimental results 

which satisfies a given least-squares criterion when the ratio between the number of terms in the 

expansion and that of available data points is relatively large. In general, one is inclined to favor 

solutions which rely on a minimal number of elements (basis functions or free parameters) to 

accomplish the desired purpose. 

The quark model, in its most modern form holds that there are a total of twelve fermions of 

non-integral electric charge plus a number of leptons and their antiparticles which nature uses as 

building blocks. The XBPS model by contrast hypothesizes that only six elements are needed, 

the proton, electron, neutrino and their respective antiparticles. It also uses only two intrinsic 

properties of these particles in its formulation, namely their electric charge and rest mass (or the 

ratio of these quantities in the case of the massless neutrinos). Other quantities such as angular 

momentum quantum numbers and parities arise naturally out of the solutions of differential 

equations. No direct use is made of quantities such as isospin, muon quantum number and 

hypercharge. It is proposed instead that quasi-degenerate groups of particles such as the pions 

arise naturally from the theory when one solves a Schrödinger equation in which the true 

elemental compositions of these systems appear explicitly. It is clear then that the present model 

at least attempts to represent the structure of elementary particles with a far less elaborate system 

of hypotheses than does the quark theory. It is equally clear that the success of the XBPS model 

ultimately lies in its ability to obtain reliable approximate solutions to the Schrödinger equations 



237 

 

arising from it, without greatly increasing the number of free parameters and/or ad hoc 

assumptions needed to attain this goal. 

If this goal can be achieved in a systematic manner, it will constitute strong evidence 

supporting the major assumptions which have been made in previous chapters, such as that of the 

ubiquitous presence of massless particle-antiparticle binary systems or the non-zero charge-to-

rest-mass ratios of the neutrinos. In this sense there is a clear parallel between the present model 

and that of the quark theory. Both contain assumptions which of their very nature cannot be 

contradicted by experiment. In the latter case there is no way to prove that quarks do not exist or 

that protons do not have a finite lifetime. On the other hand, as already mentioned, these 

assumptions might be verifiable, at least in principle. It is not difficult to imagine experimental 

investigations which could produce such results, but if quarks really do not exist the wasted 

effort could be enormous. Similarly, the basic assumptions underlying the XBPS model appear 

to be impossible to refute by experimental means. How does one prove that two particles pass 

out of existence, for example, or how can one be certain that a neutrino does not have a given 

charge-to-rest-mass ratio when theoretical calculations indicate that conventional magnetic 

fields would be incapable of deflecting it regardless of what value it might have (Sects. VI.I-J)? 

The likelihood is thus that none of the above assumptions in either theoretical model will ever be 

definitively proven to be either true or false. Instead the theories must be judged on their 

respective abilities to make detailed predictions regarding other types of experiments, especially 

of those which will first become possible in the coming years. 

Before concluding this discussion it is well to consider several further points, one of an 

experimental and two others of a theoretical nature. The deep inelastic scattering experiments244 

mentioned in Sect. IX.F are often taken as an indication that the proton does have internal 

components which are point charges, just as the corresponding elastic form factors95,97,161 are 

used to justify the position that the proton has a finite radius. If the assumptions of the XBPS 

model are correct, a quite different interpretation can be given to the same results. Accordingly, 

the proton, just as the electron (and neutrino), could be regarded as a point entity. The elastic 

scattering data95,97,161 could simply be a consequence of the admixture of neutron-pion character 

(or binding with e+e- and    binary systems; see Fig. 18) in the wavefunction of the proton in its 

normal environment, whereas the higher-energy data244 for the corresponding continuum might 

be a reflection of the free proton’s isolated state. In the XBPS model, the charge (probability) 
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distributions of all these particles have finite dimensions, but the terms in the corresponding 

Hamiltonian are constructed entirely under the assumption that each of them is a point particle. 

From this point of view an experimental proof that the proton has a finite lifetime would be 

inconsistent with the present model because it would be incongruous to hold that a point-charge 

system could be meta-stable. 

On the theoretical side it is interesting to compare the way isospin degeneracy is defined in 

the description of elementary particles as opposed to its original usage in the field of nuclear 

physics,87-89 The classic example common to both fields is the nucleon doublet consisting of the 

proton and neutron, i.e. with I= ½. Each of these particles has its own antiparticle, which together 

form a different isospin doublet. The pi mesons on the other hand are said to form a single 

isospin triplet, consisting of the +, 0 and - particles, even though the two charged members 

bear the same particle-antiparticle relationship as the proton and antiproton in the first example. 

Similarly the K+ and K- particles are paired in the same isospin doublet. According to this 

prescription the nucleons actually form an isospin quartet, but as already mentioned the standard 

theory assigns them to two different doublets instead. In so doing, however, one in effect asserts 

that there is an “accidental” degeneracy between the particles and antiparticles of the respective 

nucleon doublets. The question remains, however, why the particle-antiparticle relationship of 

the charged pions should be described as a true degeneracy in the theory while that of the proton 

and antiproton is given a less fundamental characterization. 

The history of quantum mechanics has led to the belief that accidental degeneracies are 

either not real, as turned out to be the case in the s1/2 - p1/2 example for hydrogenic atoms,249 or 

that some “hidden” symmetry can be found in the Hamiltonian which leads to the realization that 

a higher-order group is actually involved.250 In the case of the proton-antiproton pair it can be 

claimed that the former attitude is probably justified because charge conjugation is not thought to 

be a true symmetry operation (see Sect. VIII.C), but this would imply that respective particles 

and antiparticles actually do not have the same total energy (rest mass). There is no evidence to 

support such a view, although one can always claim that this situation may one day change. Even 

if this eventuality should come about, however, one can wonder why there is no interaction 

capable of mixing the two “basis functions” anyway, similarly as happens in the famous example 

of ortho-para hydrogen conversion.251 
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In their work on the neutral kaons (Sect. IX.D), which do comprise an isospin doublet 

according to the theory, Gell-Mann and Pais234 did pursue the possibility of such hybrids of 

degenerate particles (K0 and K
0) being formed, a phenomenon referred to as hypercharge 

oscillations. Their conclusion was that a basis of hybrid kaons which would be separately 

symmetric and anti-symmetric with respect to the charge conjugation operation C should possess 

distinct decay lifetimes. The observation of three-pion decays several years later252 gave strong 

support to this interpretation. As mentioned in Sect. IX.D, however, further experiments71 

indicated that the long-lived kaon (KL
0; see Table XX) exhibits both two- and three-pion decays, 

which led to the abandonment of the hypothesis of hybrid particles which are eigenfunctions of 

CP, but not the concept of hypercharge oscillations itself.  

The question that seems pertinent in the present general discussion, however, is why such 

“linear-combination” particles do not occur for multiplet partners possessing different electric 

charge, such as for the three pions or the charged kaon pair. Such hybrid particles would 

necessarily have non-integral electric charges and consequently there is no evidence whatsoever 

that they exist. While it is always possible to come up with an argument based on one or more 

conservation laws to rationalize such a finding, it should at least be acknowledged that a far more 

straightforward explanation can be found by simply rejecting the idea in the first place that 

elementary particles can be treated as basis functions for irreducible representations of some 

mathematical group. Even in the case of the neutral kaons, it is still possible to interpret the 

experimental observations in terms of two particles (or two different states of the same particle) 

with well-defined lifetimes (KS
0 and KL

0). Their lack of electric charge simply makes it 

impossible to rule out that oscillations actually do not occur. 

Especially when attention is focused on charged systems, it is seen that elementary 

particles do not generally behave like conventional angular momentum basis functions. For 

example, the spatial properties of the latter can be altered in a continuous manner simply by 

systematically changing the direction of a perturbing magnetic field. In this sense the analogy 

between angular momentum and isospin is not at all as closely drawn as generally assumed. 

Where else in physical applications of group theory does a single basis for a degenerate 

irreducible representation play such an exclusive role as in this model for the structure of 

elementary particles? 
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By contrast, the present model seeks to deal with the fact that two different particles of the 

same rest mass exhibit distinct properties, which are fixed characteristics of each system, by 

employing the following two basic assumptions: a) the true building blocks of nature are the 

proton, electron, neutrino and their respective antiparticles, each of which is an immutable 

element and b) the governing Hamiltonian commutes with the charge-conjugation operation, so 

that any given composite particle must have an antiparticle (in some cases identical with itself) 

with exactly the same rest mass. The possibility of encountering a single particle which is a 

hybrid of two or more other particles is therefore excluded in the present model, whereas it is 

clearly implied by any theory which treats these objects as basis functions for a particular group 

representation. 

The other theoretical point mentioned above has more to do with the internal consistency 

of the XBPS model. Especially in view of the desirability of keeping the number of free 

parameters to a minimum in constructing theoretical models, it can be regarded as a positive 

aspect of the XBPS methodology that it appears capable of accomplishing the goal of obtaining 

maximum binding energies for particle-antiparticle pairs of exactly 2mc2 with the aid of only a 

single parameter, the exponential damping factor A. The scaling arguments of Chapters V-VI 

make clear, however, that this result is only valid for particles with electric charges of e or zero. 

In that sense the properties of the various quark particles (non-integral charge) are incompatible 

with the present assumptions of the XBPS model. The impasse can only be averted by allowing 

two additional damping constants, one for particles with 1/3 e and one for those with 2/3 e. 

Such an additional complication in the underlying theoretical framework might be acceptable on 

general grounds, but it would be a step backward and presumably should only be taken if more is 

accomplished thereby than just ensuring that particular values of quark-antiquark binding 

energies are obtained. 

In summary, the quark model and that presented in the present study differ in a number of 

important respects, although their ultimate goals are quite similar. The XBPS model employs 

notably fewer assumptions and seeks to compute rest masses of elementary particles in an ab 

initio fashion. The quark model derives its plausibility from its capacity to identify and 

rationalize an orderly grouping of meta-stable particles observed in high-energy experiments. In 

so doing it claims, for example, that a charged pi meson is a diatomic system composed of one 

type of quark and the antiparticle of another type. When the resultant particle decays a short time 
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later, however, the fragments observed are ultimately electrons and neutrinos, i.e. leptons in the 

terminology of present-day physics, which do not appear to have a quark composition 

themselves. This model therefore relies firmly on the creation-annihilation hypothesis whose 

validity has been questioned in the present study, and which at the very least cannot be proven 

experimentally. The XBPS model by contrast asserts that the order perceived in the quark theory 

has its origin in the structure of a single Hamiltonian operator which governs the interactions of 

three well-established stable particles and their antiparticles. All other substances are thought to 

be compounds of such elements in various degrees of excitation whose composition can be 

inferred to at least within an integral number of p+p-, e+e- and    binary systems on the basis of 

the identity of their various decay fragments. 

 

X. THEORETICAL DISCUSSION: RELATIVISTIC TREATMENT OF TRANSLATIONAL 

MOTION 

The main tool in the XBPS theoretical model discussed above is a Schrödinger equation 

whose Hamiltonian contains a relativistic free-particle form for the kinetic energy and potential 

terms which are short-range in nature. Specifically, the latter are exponentially-damped, 

momentum-dependent operators, which in the limit of velocities much smaller than that of light 

approach those used in the conventional Breit-Pauli approximation to the Dirac equation. Since 

this formalism is applied to describe interactions such as nuclear binding and elementary particle 

processes, it is evident that it must adhere to the strictures imposed by the theory of special 

relativity for phenomena involving high relative velocities. Theoretical aspects regarding this 

point will be considered in the present chapter, with particular emphasis on the treatment of 

translational motion employed in the present model. This general topic will also be seen to have 

relevance in another important area of quantum mechanical theory, namely the particle-wave 

duality interpretation of physical processes. 

  

A. RELATIONSHIP BETWEEN THE SCHRÖDINGER EQUATION AND MULTI-COMPONENT 

RELATIVISTIC FORMULATIONS 

 

The Dirac equation103 is the cornerstone of a four-component theory for one-electron 

atoms. Just as the Schrödinger equation,90 it can be looked upon as an eigenvalue equation, i.e. 

HD = E, for which the corresponding Hamiltonian consists of a 4 x 4 matrix of operators and 
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the eigenvectors are corresponding four-dimensional vectors called spinors. For a time-

independent HD the same type of separation of time and spin-spatial variables can be obtained as 

for the Schrödinger equation. In this case E becomes a four-dimensional constant matrix and the 

spinors which serve as solutions to the corresponding time-independent Dirac equation are 

functions of spatial and spin coordinates only. Dirac was led to this equation by relativistic 

considerations253, especially the desire to accurately describe atomic fine structure which was 

known to arise from the motion of the electrons and thus could not be satisfactorily represented 

by means of the original electrostatic Schrödinger equation. Since the goal of the present study 

has been the quantitative description of systems involving higher relative velocities than those of 

electrons in atomic systems, it is natural to ask whether the inherently relativistic nature of the 

interactions involved is compatible with a theoretical treatment in which the multi-component 

spinor wavefunctions analogous to those of the Dirac equation are not employed. To answer this 

question it is important to examine the nature of the Dirac four-component theory in some 

detail.254 

As already noted, the differential equation in this formulation employs fourth-order 

operator matrices. In the time-independent version the energy is represented by a constant 

matrix, whereas HD itself contains non-vanishing elements of several types, including some at 

off-diagonal positions. As with all equations involving matrices, it is possible to apply a unitary 

transformation to each of the objects appearing in it to obtain an equivalent differential equation. 

The constant E matrix is unaffected thereby, but the spinor eigenfunctions as well as the 

Hamiltonian matrix will generally have a different appearance after such a transformation. An 

interesting possibility suggests itself as a result, namely that a particular unitary transformation U 

might succeed in producing a diagonal form for the Dirac Hamiltonian HD’. The transformed 

Dirac four-component equation thus takes on the following appearance: 
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where U = ’ gives the relationship between the original and transformed spinor 

eigenfunctions. 

Foldy and Wouthuysen255 adopted such an approach and succeeded in diagonalizing the 

free-particle Dirac Hamiltonian with the help of 

 U = [( p)ß + mo + Ep] [2Ep (mo + Ep)]
-1/2      X.2 

In this definition i and ß are the four-dimensional Dirac matrices,253 and Ep and mo are constant 

matrices for (p2 + mo
2)1/2 and the electronic rest mass respectively (in a system of units in which 

c = 1). The corresponding diagonal elements in the free-particle HD’ are then H1 = H2 = -H3 = -

H4 = Ep, which is the Einstein relativistic energy for a system of rest mass mo and momentum p. 

The same one-electron term also appears in the XBPS Hamiltonian (Table I). When the 

Coulombic potential  = -Z/r is introduced, the situation becomes more complicated, but Foldy 

and Wouthuysen suggested a series of contact transformations which in principle can achieve the 

desired diagonal form of HD’ in this case as well. By carrying out a finite number of such 

transformations it is possible to obtain an approximation to the Dirac equation which is closely 

related to that used in the Breit-Pauli formalism.256 

The main interest in the FW transformations in the present context is less in explicit 

mathematical details, but rather the theoretical implications of employing such formal 

diagonalization procedures in the first place. Once such a unitary transformation is applied, the 

Dirac equation reduces to a series of four ordinary Schrödinger equations involving H1, H2 H3 

and H4, respectively, namely: 

 

 H11’ = E1’ 

 H22’ = E2’         X.3 

 H33’ = E3’ 

 H44’ = E4’ 

 

The simplest way of proceeding is thus to solve each of these Schrödinger equations separately, 

obtaining four complete sets of eigenfunctions for each component. Under the circumstances it 

would no longer be necessary to employ spinor eigenfuntions with more than a single non-zero 

component. For example, if 1’ is an eigenfunction of H1 then the spinor (1’, 0, 0, 0) is an 

eigenfunction of HD’ as well, with the same energy eigenvalue as in the ordinary Schrödinger 
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equation, H11’ = E1’. If the individual eigenfunctions for each component Hamiltonian form 

an orthonormal set, as is always possible, such a choice of spinor wave-functions with only a 

single non-zero component would be orthonormal as well. A reverse transformation then allows 

one to generate spinor eigenfunctions for the original HD operator from each of the above simpler 

spinor functions with a single non-zero component:  = U. There is thus clearly a one-to-one 

correspondence between the two sets of spinor eigenfunctions with identical eigenvalues.  

As a result there are essentially (exactly in the case of free particles) four times as many 

spinor eigenfunctions of the Dirac equation as there are simple eigenfunctions of any one of the 

above Schrödinger equations involving H1 to H4, as has been pointed out earlier by Bethe and 

Salpeter.257 The question that arises from this observation is whether the additional solutions of 

the Dirac equation are important physically. In the case of the free-particle Hamiltonian, the 

answer is clearly no, since the four diagonal Hamiltonian operators are identical except for sign. 

For each eigenfunction of H1 there is an identical one for H2, H3 and H4. The corresponding 

eigenvalues are equal for H1 and H2, and only of opposite sign for H3 and H4. It is common to 

think of the pairs of equal eigenvalues as corresponding to different spin directions of the free 

particle, but such a distinction is not essential. Instead one can have a complete set of solutions 

for both spin directions (assuming the system involved is a fermion) for each of these operators. 

This is the way the XBPS Hamiltonian is treated, for example, with all degenerate components 

being generated by the same operator. Under the circumstances it is a matter of semantics 

whether one refers to such a treatment as a one-component or a two-component method. At least 

for the free particle, half of the solutions of the Dirac equation are simply redundant, serving no 

useful purpose from a physical point of view. Moreover, the negative-energy solutions don’t 

really tell us anything new either. In summary, in the free-particle example, solution of a single 

Schrödinger equation tells us all we need to know. 

When a potential is added to the Dirac Hamiltonian there is no longer such a simple 

relationship between the positive- and negative-energy solutions. This is because the potential 

has the same sign in all four diagonal terms of HD whereas the kinetic energy terms for the first 

two components continue to differ in sign relative to the last two. Nonetheless, there is still a 

clear mathematical relationship between the two sets of spinor eigenfunctions which allows 

corresponding positive- and negative-energy solutions to be converted into another by simply 

changing the signs of E, p and the electronic charge e and interchanging the first two components 
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with the last two257.258 relative to the original solution. The new function thus corresponds to a 

system in which the electron of the original problem is replaced by its antiparticle. Dirac 

originally used this relationship to formulate his hole theory of the electron, which ultimately led 

to his prediction of the existence of the positron.l Furthermore, since the added potential only 

appears in the diagonal positions of HD, it seems likely that the interesting simplifying feature of 

the transformed free-particle Dirac equation, namely H1 = H2 and H3 = H4 in the diagonal HD’ 

matrix, is also a characteristic of the corresponding hydrogenic version. In other words, all the 

physically meaningful positive-energy solutions of the Dirac equation with a central-field 

potential can also be obtained from a single Schrödinger equation. 

The same type of analysis can be carried over to multi-component treatments of many-

particle systems, such as the Bethe-Salpeter equation for helium-like atoms.259 In this case one 

can generalize the Dirac approach to define corresponding differential equations whose solutions 

are spinors of dimension 4N, where N is the number of particles. Such matrices can also be 

diagonalized, at least in principle, and the resulting Hi diagonal elements must have 

eigenfunction sets which can be used to produce the 4N-component spinor solutions of the 

original system of coupled equations. If one continues to allow each of these Hamiltonians Hi to 

act on the entire spin space spanned by the particles, it again seems possible (and even likely) 

that all physically meaningful results for the corresponding positive energy states can be 

obtained by solving a single many-particle Schrödinger equation. Furthermore, as long as the 

original multi-component set of equations is invariant to a Lorentz transformation259.260, so must 

the corresponding diagonal (uncoupled) set as well. 

In summary, because of the form of the Dirac equation and its generalizations, it appears to 

always be possible to obtain a completely equivalent version which decouples the various 

components. This being the case, there is no reason to rule out the possibility that a 

corresponding Schrödinger equation might exist whose solution contains all the physically 

meaningful information about a given system which can be obtained from quantum mechanical 

theory. Since an analogous multi-component treatment for nuclei and elementary particles is not 

known, it therefore seems reasonable to search for a concrete form of the Schrödinger equation 

which is capable of attaining the same objective. 

Indeed, once such a form is known it is always possible to construct a multi-component 

version by writing down a diagonal matrix containing Hamiltonian operators corresponding to 
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different combinations of particles and antiparticles and subjecting it to an arbitrary unitary 

transformation. The latter complication would serve no useful purpose, however. From this point 

of view the advantage of the original Dirac multi-component formulation is clearly that it 

provides a quite satisfactory description of the desired atomic interactions which is superior to 

any Schrödinger equation yet discovered. It brings with it a large number of redundant solutions, 

however, which either apply to a different physical system than that of primary interest, or are 

simply repetitions of other useful solutions. Under the circumstances, when dealing with 

interactions for which no appropriate multi-component formulation is known, such as in the 

present set of applications, there is no compelling reason to expect that a Schrödinger-type 

approach may not offer the most straightforward means of achieving a suitably accurate 

description of the phenomena of interest.254 

 

B. THE ROLE OF TRANSLATION IN THE MULTI-COMPONENT DIRAC THEORY  

One of the mathematical characteristics of the multi-component Dirac equation103 which 

sets it apart from its non-relativistic counterparts is that it can be brought into an explicitly 

covariant form.260 The variables contained in it represent exclusively internal degrees of 

freedom, however. Implicit in this formulation is therefore the complete separation of internal 

motion from that of the center of mass. Such an arrangement for the theory seems intuitively 

obvious, but as pointed out in Chapter V.B., a mathematically sound procedure for effecting the 

desired coordinate separation is only given explicitly for a non-relativistic treatment of the 

motion of several particles. In Chapter V.F it has been argued that the failure to obtain a clean 

separation of internal and center-of-mass coordinates in the XBPS Hamiltonian leads to some 

hitherto unexpected effects for the description of short-range interactions, particularly a 

relationship between the strength of the various Breit-Pauli terms (Table I) and the magnitude of 

the translational energy. 

The question that therefore needs to be examined more carefully is whether the separation 

of internal and center-of-mass coordinates in the Dirac equation is consistent with experimental 

observations. In this context it is well to recall that the theory of special relativity4 holds that the 

distance between two objects may be measured to be different in inertial systems moving with 

non-zero relative velocity to one another.261 It is not entirely obvious how this aspect of relativity 

theory should be carried over to quantum mechanics. 
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As an example, consider the computation of the mean distance between the electron and 

proton in the hydrogenic ground state. In quantum mechanics this quantity is given as the 

expectation value <|(re-rp)|> for the corresponding eigenfunction . The distance between 

these two particles is not fixed but the phenomenon of uniform scaling261 should still be relevant 

in this determination, that is, it seems reasonable to expect that a different result should be 

obtained if the center of mass of an H atom is at rest with respect to the observer or if it is 

moving relative to him. If the total wavefunction is always written as a product of two factors 

only one of which depends on the internal coordinates, however, as is the consequence of 

separating out the center-of-mass motion, it is clear that the expectation value in question cannot 

depend on the translational state of the system. The internal part of the wavefunction is 

completely independent of the motion of the center of mass. If, on the other hand, the two types 

of motion become increasingly intertwined as the translational energy becomes large compared 

to the system’s rest energy moc
2, one can at least see a mechanism in which the uniform scaling 

expansion effects261 might evolve in a natural way from the computations. 

One might argue that it is not really necessary to obtain different results for internal 

properties of systems as a function of their translational state. Instead, one can compute the 

property for the system at rest and use the uniform scaling relationships to obtain the 

corresponding results when the system is moving relative to the observer. The situation is similar 

to that encountered in the computation of the energy lost when positronium decays, namely  

2 moec
2 in accordance with the c1assical mass-energy equivalence relation. It seems fair to say 

that such interpretations may be overly simplistic, however.  

In the case of property computations corresponding to states of high translational energy, 

this line of reasoning seems to suggest that the separation of internal and center-of-mass 

coordinates is an approximation whose .validity is lost at velocities close to the speed of light. 

An attempt to recast the XBPS Hamiltonian of Table I in terms of center-of-mass and relative 

coordinates leads to cross terms involving odd powers of both types of conjugate momenta, as 

already discussed in Chapter V.B. Although matrix elements for such terms cannot mix 

configurations of different translational momentum k, they can connect species of different 

angular momentum quantum number l. 

Since the differentiations of the center-of-mass momentum operator always lead to factors 

of |k| in the corresponding matrix element expressions, it is clear that no such mixing can occur 
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for zero translational momentum. By the same token, however, it seems reasonable to expect that 

the magnitude of such interactions increases steadily as the speed of the center of mass increases. 

This would mean in effect that different internal configurations are used to describe states of 

high translational energy than are required for the corresponding system when it is at rest with 

respect to the observer. Since the translational kinetic energy operator commutes with any 

Hamiltonian which is a function of the inter-particle distances only, none of this prevents the 

total eigenfunctions from having a well-defined translational energy. This effect is seen to arise 

naturally in the present formulation from the fact that the cross terms involving both types of 

coordinates have only vanishing matrix elements between functions of different k. 

 

C. LORENTZ INVARIANCE CONDITION FOR QUANTUM MECHANICAL TREATMENTS: 

APPLICATION OF THE BOHR CORRESPONDENCE PRINCIPLE 

 The above discussion also raises a question about the way in which the Lorentz 

invariance condition of special relativity is applied in quantum mechanics. In the classical 

theory,4 the discussion of relativistic effects is invariably tied up with the translation of various 

systems. The Lorentz invariance property of the Dirac equation260 for a particle moving in a 

central field by contrast refers to a non-translating system, i.e. only internal coordinates are 

involved.       

In quantum mechanics the equation of motion is of a different form, however, namely one 

in which the wavefunction of a system is sought rather than a fixed trajectory. If the 

corresponding Hamiltonian is given in terms of the coordinates of each particle rather than 

assuming a separation into internal and center-of-mass coordinates, the following possibility 

suggests itself. The laws of nature must be the same in all inertial systems according to the 

principle of relativity.4,6,7. In the case of a quantum mechanical formulation this condition can be 

fulfilled if the Hamiltonian operator simply has the same form for all observers. The coordinates 

on which this operator depends necessarily vary from one inertial system to another in describing 

a given system.261 

If two observers moving relative to one another start out with the same Schrödinger or 

Dirac equation (H - )  = 0, how then can they come to different conclusions about the 

properties of a system in their respective inertial systems? The answer lies in the fact that the 

units on which they express their numerical results vary from one sytem to another.261 
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What these considerations show is that the principle of relativity can be incorporated into a 

quantum mechanical theory by simply requiring that the Hamiltonian H(q.p,t) of any system 

always be expressed in terms of the coordinates of a given observer. Applying the Lorentz 

transformation to H(q,p,t)-E(t) simply gives back the same expression in terms of the coordinates 

of a different inertial system, i.e. H(q’,p’,t’) - E(t’). Under the circumstances it is not really 

necessary that the two quantities be exactly equal, i.e. that H(q,p,t)-E(t) = H(q’,p’,t’)-E(t’), in 

order to satisfy the principle of relativity. Rather it is sufficient that the form of H-E be the same 

for all observers, so that each of them can generate the same set of solutions to the corresponding 

quantum mechanical equations of motion from which the pertinent translational states 

corresponding to different perceptions/units of the same physical system can be properly 

selected. If the Hamiltonian is incorrect for any reason, there will inevitably be disagreement 

between prediction and observation on this basis, so this possibility still excludes the use of 

distinctly non-relativistic terms such as p2/2m in representing the kinetic energy. On the other 

hand, it suggests that failure to find a covariant form for H-E, i.e. one that satisfies the condition 

H(q,p,t) - E( t) = H(q’,p’,t’) - E(t’) upon application of a Lorentz transformation, does not 

constitute proof in itself that the corresponding quantum mechanical formulation is defective. 

 Since the present discussion involves a comparison of the theory of quantum mechanics 

with its classical counterpart, it is relevant to consider the implications of the Bohr 

correspondence principle124 in this regard. In accordance with this prescription, it must be 

expected that the quantum mechanical formulation reverts to the classical one in limiting 

situations in which the less general theory has established validity. One difficulty with applying 

this principle to a relativistic quantum mechanical theory is that two separate limiting processes 

are involved, as commonly achieved by setting Planck’s constant h to zero and the speed of light 

in free space c to infinity. The Breit-Pauli termsl06 are closely related to the classical magnetic 

interactions containing the vector potential A, as has been discussed in detail by Slater,262 so the 

ingredients for such a covariant limiting form are present when a Hamiltonian containing such 

interactions is employed. Because of the linearity of the Lorentz transformation, it is clearly 

essential that the r-3 dependence of the Breit-Pauli terms (see Table I) tend toward r-l as a result 

of the limiting process. Since a constant velocity is always involved in such a transformation, 

however, it is not difficult to imagine how this occurs. Under these conditions the angular 

momentum l = r x p itself varies as the first power of r, and since the spin-independent Breit-
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Pauli terms are second-order in 1 (or r • p in the case of the Darwin term), the necessary 

changeover from r-3 to r-l variation is ensured. The corresponding spin-dependent terms can be 

plausibly ignored since they have no classical analogue and can thus be assumed to vanish in the 

pertinent limiting process.  

The fact that the Breit-Pauli terms can be derived as an approximation to the Dirac 

equation,104-106 which itself is invariant to a Lorentz transformation, is perhaps the best indication 

that such a limiting relationship can be satisfied by a differential equation containing such 

momentum-dependent short-range interactions. The essential point remains, however, that it is 

not necessary that the relativistic quantum mechanical theory be Lorentz-invariant itself. As 

discussed above, the principle of relativity is automatically satisfied by employing the same 

functional form in all inertial systems for the (H-E) operator appearing in the pertinent 

Schrödinger equation. By treating the translational motion explicitly in such a formulation one 

can satisfy a more specific condition of the classical theory of special relativity, namely that 

observers in inertial systems moving with high velocity relative to one another can measure 

different properties for the same physical system (Chapter X.B).  

      There is a more fundamental problem with Einstein’s treatment4 of electromagnetic 

interactions, however. The standard relativistic treatment of electromagnetic interactions is based 

on the premise that the components of the electric E and magnetic B field vectors transform 

according to the following equations (c is the speed of light in free space, 299792458 ms-1): 

           Ex’ =  Ex                                               Bx’ =  Bx                                                                                                  

            Ey’ =  γ (Ey -  vc-1Bz)                        By’ =  γ (By +  vc-1Ez)                               (X.4)                                      

            Ez’ =  γ (Ez +  vc-1By)                       Bz’ =  γ (Bz -  vc-1Ey).    

Einstein derived this set of relations by assuming that Maxwell's equations must be invariant to a 

Lorentz transformation (LT) of spatial and time coordinates between different rest frames.  It 

was further assumed that the components of the electromagnetic force F on charged particles e 

are given in terms of the above  field components by the Lorentz Force equation: 

                                            F = e (E + c-1v × B).                                              (X.5)  

In this equation it has been generally assumed that v is the velocity of charged particles relative 

to the observer, a point which will prove worthy of further discussion subsequently.   

 There is ample evidence263 that the Lorentz Force satisfies the equation of motion 

expected from Newton's Second Law, namely:  
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  e (E + c-1v × B) = d/dt (γμv),                                                               (X.6) 

i.e. the force F equals the time rate of change for the relativistic momentum p = γμv, with  

γ = (1-v2c-2)-0.5 and μ is the rest mass of the particle/electron.  Nonetheless, as will be seen from 

the following concrete example which makes use of this equation, there is still an uncertainty in 

the definition of v therein when the observer is located in a different rest frame than that of the 

laboratory.264  

        Consider the effects of an electromagnetic field with only the two components, Ex and By, 

acting on an electron.  From the point of view of an observer located at the origin of the field, the 

electron will initially move along the x axis.  This is because the force F in eq. (X.5) only 

depends on Ex at the instant the field is applied since the value of v=0 negates any effect from the 

corresponding magnetic field component By.  This situation changes as time goes by and the 

electron is accelerated to non-zero speeds.  The v × B term in eq. (X.5) gradually produces a 

force component in the z direction, causing the electron to veer away from its initial path.  

Depending on the relative strengths of the constant values of Ex and By, the amount of deflection 

can be quite significant over time.  This situation is easily reproduced in the laboratory and there 

is no doubt that it is consistent with the Lorentz Force law. 

       Next consider the same example from the perspective of an observer co-moving with the 

electron.  Since the speed v of the electron relative to the observer is zero at all times, it follows 

according to the transformation law of eq. (X.4) as well as eq. (X.5) that the magnetic field has 

no effect.  As a result one expects that, from the perspective of this observer, the electron 

continues indefinitely along a straight line parallel to the x axis.  This predicted trajectory is 

therefore clearly distinguishable from that discussed first from the vantage point of the 

laboratory observer.   

This behavior raises the question of whether it is reasonable to expect that the electron 

would appear to follow a different path for the two observers.  No one has ever ridden along with 

an accelerated electron or other charged particle to verify that the predicted straight-line 

trajectory would actually be found by such an observer.  Since the curved path expected from the 

laboratory perspective is routinely observed, however, it would therefore seem on the contrary 

that the straight-line result is pure fiction, an artifact of a physically unrealistic theory.   

 Does this example prove that Galileo's RP does not apply to electromagnetic 

interactions?  Clearly not.  The reason is because there is another quite straightforward way to 



252 

 

satisfy both Maxwell's equations and the RP at the same time, namely to insist that all observers, 

regardless of their state of motion, see exactly the same results of any given interaction.  In 

particular, the hypothetical observer co-moving with the accelerated electron must record the 

same curved trajectory as is viewed from the laboratory perspective.   

       The measured values for the parameters of the electron's path may still differ for the two 

observers, however.  This is because the units in which they express their respective measured 

values may not be the same.  We know, for example, that the clocks they employ to measure 

elapsed times can run at different rates.265 This fact does not change the above conclusion about 

the trajectory of the electron in the above example, however.  There is no reason to doubt that all 

observers should agree that a curved path is followed as a consequence of the interaction of 

crossed electric and magnetic fields.   

      There is a detail that needs to be considered in both Maxwell's equations and the Lorentz 

Force law which is crucial for deciding how to apply the RP to electromagnetic interactions.  It is 

the interpretation of the velocity that appears in both expressions.  At some point in history, 

physicists came to the consensus that v is the velocity of the electrons or other charged particles 

relative to the observer in any given interaction.  This decision has quite important consequences 

vis-a-vis the measurement process in general.  It means that the results of any measurement are 

thought to depend on the perspective of the observer.  Measurement is subjective, in other words.   

        This was an astonishing departure from the prevailing attitude of physicists in the preceding 

centuries.  It was previously taken for granted that measurement had an absolute character and 

that all observers could agree on values such as the length and weight of an object.  A confusing 

aspect of measurement was clearly that each observer could express his measured results in a 

different set of units and therefore obtain different numerical values for the same quantity.  

However, this eventuality did not change the fact that people could always agree on which of 

two lengths or weights was larger. More quantitatively, it could safely be assumed that the ratio 

of two measured values of the same type must be independent of the choice of units.  

Measurement was both rational and objective and thus, if carried out properly, could serve as a 

fair basis for trading practices.  Yet now, physicists were claiming that quantities such as electric 

and magnetic fields vary with the state of motion of the observer. 

       There is a clear alternative interpretation of the velocities which appear in Maxwell's 

equations and the Lorentz Force law, however, one which eliminates the need to assume that 
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observers can disagree on the trajectories of particles affected by these interactions.   It is simply 

necessary to assume that the variable v in these equations is the velocity of the electron relative 

to the rest frame where the electromagnetic field originates.  This is a quantity which all 

observers can agree upon at least in principle.  Just changing the unit in which velocity 

measurements are expressed can have no effect on the measured trajectory of the particle.  In 

particular, an observer co-moving with the electron in the example of the previous section can 

therefore use Maxwell's equations and the Lorentz Force law to conclude that the path being 

followed is exactly the same as reported by his counterpart located at the origin of the 

electromagnetic field, except perhaps for a difference in the sets of physical units in which each 

expresses his results. 

      The above interpretation allows for a much less restrictive interpretation of the RP.  It is not 

necessary that the form of the physical law describing this or any other interaction be invariant to 

a particular space-time transformation in an arbitrarily chosen rest frame.  In the case of 

electromagnetic interactions, it is only necessary that the same laws, in this case Maxwell's 

equations and the Lorentz Force law, apply in any rest frame where the electron currently exists.  

Its velocity v relative to the origin of the interaction uniquely determines the magnitudes of the 

electric and magnetic fields as well as the corresponding force acting on it.  By contrast, the 

velocity of the electron relative to the observer himself plays no direct role in determining such 

quantities, thereby removing any element of subjectivity from the process. All observers, 

regardless of their own state of motion, must agree on the results of the interaction, except that 

they will generally not agree on the numerical values of their measurements because of 

differences in their respective choice of physical units.   

       It therefore suffices if the law in question faithfully predicts the results of the interaction in 

any given rest frame, regardless of the observer's current state of motion.  Phipps266 has pointed 

out that Ampère's original law of ponderomotive force action exerted by an infinitesimal element 

of neutral current 2 2I ds  upon another element 1 1I ds , has the form267,268: 
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=   −  

 
, (X.7) 

where 1 2r r r= −  is the relative position vector of the elements and ( 0 / 4  ) is a units factor 

yielding force in N for current in amperes, is symmetrical between 1 and 2 subscripts, and 

proportional to r .  Thus, it rigorously obeys Newton’s third law of equality and co-linearity of 



254 

 

action-reaction between current elements, which requires 21 12
F F= −  on a detailed element-by-

element basis.  It has nonetheless generally been rejected by physicists in favor of the Lorentz 

Force law because of its transformation properties not shared by eq. (X.7).  The latter, when 

similarly expressed, takes the form268 
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= −  +     (X.8) 

It is asymmetrical in subscripts 1 and 2, and not proportional to r , so that it disobeys Newton’s 

third law in two ways.  More details about this topic may be found in Phipps's original work.266 

The point to be emphasized in the present discussion is that there is no reason to reject eq. (X.7) 

once one agrees that the velocities of the electrons in the current elements I1 and I2 are to be 

measured relative to the rest frame in which the electromagnetic field originates.  

 

D. THE ROLE OF SHORT-RANGE INTERACTIONS IN HIGH-ENERGY PROCESSES 

Ever since the first scattering experiments on nuclei, it has been recognized that forces of 

shorter range than those of the Coulomb effect and gravitation are at work in nature. Yukawa92 

was the first to suggest that the interactions in question were exponential in character, but he 

assumed a potential which varies as r-1 as the internuclear distance approaches zero. In the XBPS 

model the short-range interactions vary as r-3 over a large range of interparticle distance, until the 

momentum-dependent damping factors begin to have a dominant influence on the theoretical 

description (Table I). Because the Lorentz transformation is linear in spatial and time 

coordinates, it is difficult to imagine an equation of motion involving such a potential which is 

invariant to such a change in variables. Nonetheless, by not assuming the usual separation in 

terms of internal and center-of-mass coordinates, it has been possible to employ such potentials 

in the XBPS model to obtain a realistic description of nuclear binding. In Chapter V. F it has 

been pointed out that the combination of short-range momentum-dependent potentials plus an 

interdependence of internal and translational motion allows a simple explanation for the fact that 

particles and antiparticles can interact strongly with another. In the inertial system in which the 

center of mass is at rest, p1 = -p2 , from which it follows that particles of equal rest mass must 

move with the same speed relative to their midpoint. This circumstance allows maximum benefit 
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to be taken of attractive short-range interactions which are momentum-dependent, whereas a 

much weaker effect is expected for two particles with greatly different rest masses. 

It would appear then that not only is it consistent with relativity theory to employ such 

short-range interactions to describe high-energy processes, but even that it is actually essential 

that this be done in order to obtain satisfactory agreement with experimental observation. The 

arguments of the last section show how the results of the corresponding Schrödinger equation 

can be interpreted in a manner consistent with the principle of relativity, even though a covariant 

form for its Hamiltonian appears to be excluded.  Furthermore, by not factoring out the center-

of-mass motion, it is possible to explain at least in principle how the properties of physical 

systems can vary with their translational state.  None of this precludes the possibility of defining 

a Schrödinger or Dirac equation which is completely independent of center-of-mass coordinates. 

Formally, one must transform to the usual system of internal and center-of-mass coordinates and 

retain only the terms of the Hamiltonian which are independent of translational variables. 

Solution of the corresponding differential equation would then only produce information about 

states of zero translational energy. It is doubtful that such a simplified operator would be 

Lorentz-invariant, but its application would have an advantage relative to Hamiltonians of the 

XBPS type employed in the present work, in which the center-of-mass and internal types of 

motion are intertwined. 

A related question to that discussed above is whether it is essential to employ a separate 

time coordinate for each particle in defining a proper equation of motion. Because of the 

assumed lack of simultaneity in different coordinate systems, it might be argued that such an 

arrangement is essential, but this view is subject to interpretation. In particular, if one assumes 

that all the particles of a given system are referenced to the position of an observer who is always 

located at the origin of the coordinate system in which the computations are carried out, it is 

permissible to employ a single temporal variable in describing the physical interactions. There is 

no need for more than a single clock with which to measure the time of events occurring in the 

same inertial system. This choice is also consistent with the assumption that each solution of the 

corresponding differential equation corresponds to a single total energy. As a result it is possible 

to describe the time-dependence of the XBPS eigenfunctions in the usual way as exp (-iEt/  ), 

where E is the total energy of the corresponding state. Since the particles move independently of 

one another, it is necessary to employ a separate set of spatial and spin coordinates for each of 
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them, but the former correspond to different length measurements in the same inertial system, 

thus requiring the use of only a single unit of distance  to determine their values experimentally.  

 

E. TRANSLATIONAL MOTION AND WAVE-PARTICLE DUALITY 

The physical model on which most of the theoretical arguments of this study have been 

based relies heavily on the existence of subatomic particles from which more complex systems 

are formed. The questioning of the creation-and-annihilation hypothesis of matter is motivated in 

large part by experience with macroscopic systems, for example, which at least give the 

appearance of decomposing into ever smaller components when subjected to large forces, rather 

than dropping out of existence entirely. Nonetheless, the theoretical framework chosen to 

provide a quantitative description of such particles is that of the Schrödinger or Dirac equations, 

in which wavefunctions are employed to compute the (average) properties of such systems. The 

concept of wave-particle duality should therefore be given careful consideration in the present 

discussion. 

 The wavefunction itself was interpreted by Born269 as having only statistical significance, 

with ||2 serving as a distribution function to be employed in computing average values. This 

identification is not in itself in conflict with the ancient philosopher's idea of an atom or particle. 

It still leaves open the possibility that particles always have a definite position in a given 

coordinate system, but emphasizes that observations of identical objects under the influence of 

the same system of forces over a long period of time are characterized by a definite statistical 

pattern. The motion of a planet in the gravitational field of a star can be charted over the course 

of centuries, for example, and from this information a distribution function can be defined which 

gives the percentage probability of finding its center of mass in a certain volume element 

independent of the actual time. Just because this distribution has a continuous form does not at 

all mean that one must ascribe delocalized characteristics to the planet. 

Yet the concept of wave-particle duality is generally taken to mean that sub-atomic 

systems such as electrons and photons cannot be regarded in this way. Experiments can be 

carried out whose interpretation is argued to be impossible without giving up a strictly localized 

description of such systems.270 Because of the fact that our view of physical reality is profoundly 

affected by the degree to which the particle model of subatomic systems succeeds in explaining 

experimental observations, it is important to give careful scrutiny to the wave-particle duality 
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interpretation. In particular one should focus on the question: does a single particle ever exist in 

more than one location at any one time? It is probably safe to conclude that Newton would have 

vigorously opposed such a suggestion. He would have attempted to settle the matter exclusively 

on the basis of indisputable observations,15 being careful in his argumentation to avoid the 

slightest dependence on the assumptions of some theoretical model.271 

To begin such a discussion it is well to return to the treatment of translational motion in 

dynamical theory. Schrödinger was led to his operator substitution hypothesis90 by studying the 

motion of a free particle, i.e. in pure translation. He employed de Broglie's ideas20 regarding the 

equivalence of certain properties of particles and waves to define a prototype differential 

equation which could be generalized to deal with more complicated phenomena requiring the use 

of a potential. Einstein also used a free particle’s motion to guide his development of the theory 

of special relativity.4 These observations suggest that the essence of the wave-particle duality 

concept can also be found in the study of translational motion. 

The free-particle wave function is exp [i (k r - t)], where |k| = |p|/   = 2 / and  = E/   

= 2 . It should be clearly understood that such a wave function is a characteristic of a single 

particle in this picture.269,270 A term such as “stream of like particles” in this connection merely 

implies that each such particle is described by the same statistical distribution. Experimentally 

one could determine the latter by subjecting one such particle to exactly the same experimental 

conditions a large number of times. The same distribution function is also relevant to the 

description of the motion of many such particles at one time, however, in which case the wave 

properties of the aggregate system can be observed directly, but this relationship can only hold if 

the particles in the aggregate system do not interact with one another. Otherwise each of their 

wavefunctions would necessarily be different than for their corresponding isolated state. There 

are limits to which it is feasible to consider a stream of electrons as free particles, entirely 

unaffected by each other, but this condition is fulfilled to a very good approximation in the 

classical electron diffraction experiment.28 One can easily distinguish between an experiment 

carried out for a single particle and one for a collection of them, but as long as the above 

condition of non-interaction is fulfilled, it is permissible to use the same statistical distribution 

function in both cases. 

Since any free particle can be treated in the same way, it is also readily understandable why 

a statistical distribution based on the above wave function appears to be a universal property of 
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pure translation. Even at relativistic speeds, the eigenfunctions of the total Hamiltonian for any 

isolated system, independent of its composition, are also eigenfunctions of the translational 

energy operator (see Chapter V.B) Thus such a relationship between the momentum and kinetic 

energy of the center of mass and the wavelength and frequency of the relevant statistical 

distribution would always be guaranteed. 

With the above line of argumentation we could summarize271 the situation, at least 

tentatively, as follows: the wave properties of a given system only arise when large numbers of 

such particles are observed under similar conditions over the entire duration of an experiment. 

By contrast, the characteristic properties of a localized system exhibit themselves even if 

attention is restricted to the behavior of a single particle. The photoelectric effect40 is a prime 

example of the latter type, and this experiment led Einstein to re-examine the long-held position 

that light is strictly a wave-like phenomenon.35 The opposite side of the coin is the diffraction 

experiment, in which interference patterns are observed. It seems unavoidable to conclude that 

such spectral images do not result from a single photon (or other particle), in agreement with the 

above principle. Yet it is exactly experiments of the latter type which have led to the conclusion 

that a single particle can also exhibit wave characteristics. 

This is the crucial contention which needs to be carefully examined. For if the wave 

properties commonly associated with particles only arise because of the collective motion of 

large numbers of them, as suggested by the above statistical argument, there is really no need to 

speak of a wave-particle duality to describe the relevant experimental findings. Instead, the de 

Broglie wavelength20 and the Bohr frequency5 can simply be characterized as statistical 

parameters needed to specify an appropriate distribution function for a large sample of 

indistinguishable particles, each of which possesses the same momentum and energy.271 

Similarly one can also understand the Heisenberg uncertainty relation238 as a purely statistical 

law, whereby the quantities p and q in this inequality are taken as rms deviations from mean 

values of complementary dynamic variables, as determined by carrying out a series of equivalent 

measurements on large representative samples of a given type of particle. 

In short, if waves are nothing but streams of individual particles, then Newton was right 

when he argued in favor of his corpuscular theory of light.6 Before taking a closer look at the key 

interference phenomena which are always cited in favor of the principle of wave-particle duality 
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and against his position, however, it is well to examine another experiment which gave a decided 

impetus to the wave theory of light during Newton’s lifetime.  

 

F. LIGHT REFRACTION  

The bending of light rays at an interface of two media of different density was one of the 

earliest phenomena to be characterized by a mathematical equation.272.273 The sine law of 

refraction was discovered by Snell several thousand years after the other two laws governing this 

process had been discovered. Newton6 attempted to explain such observations in terms of the 

particle model of light, while Huygens35 argued that they could only be understood in terms of 

wavelike properties. Newton lost the argument, but it is interesting to see why. Since the angles 

of incidence and refraction were not changed in multiple passes of light rays through the same 

media, it could be safely assumed that the energy of the hypothesized particles of light remains 

constant. The fact that the light is bent downward upon entering a medium of higher density 

indicates that the potential V acting on the particles must be attractive, i.e. it decreases after 

crossing such an interface. Combining these two facts led unmistakably to the conclusion that the 

kinetic energy T of the light particles must be greater in the denser medium. Assuming that T 

was proportional to the square of the velocity, in accordance with the then accepted dynamical 

theory, thus led to the prediction that the speed of light must be greater in water than in air, which 

is incorrect.273 Proceeding on the principle that an assumption which is contradicted by 

observation is false, it was thereupon concluded that this result refuted the particle theory of light 

once and for all. 

Examination of the above argument shows that another error of a different kind was made, 

however, which ultimately invalidates the latter conclusion. In the first place the kinetic energy 

of the photon does not satisfy the non-relativistic relation employed therein. When the correct 

formula is used, one is still led to conclude that the momentum of the photon increases in going 

into the denser medium, but since the mass of such particles cannot safely be assumed to be 

constant in a relativistic treatment, it no longer follows that the velocity of light must increase as 

well. The conclusion that light rays cannot simply be streams of photons because a purely 

mechanical treatment of the refraction phenomenon leads to a false prediction on this basis is 

therefore not justified. On the other hand, if it is assumed not only that light consist of particles 
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but also that their collective motion conforms to a definite statistical distribution, a different 

result is obtained from the refraction analysis. 

By interpreting the de Broglie20 and Bohr frequency5 relations in accordance with this 

view, one is led to the following conclusions: a) since the momentum of the photons increases 

upon entering the denser medium, the wavelength characterizing their collective motion must 

therefore decrease (p = h/), and b) since the energy of the individual particles is constant, the 

frequency associated with the statistical distribution must remain the same in both media (E=h).  

        Snell’s Law of Sines established the relationship between the angles of incidence and 

refraction of light rays as they pass between two different transparent media: 

              n1 sinΘ1 =  n2 sinΘ2,                                                                        (X.9)   

where n1 and n2 are the refractive indices of the two media. Newton argued that the light consists 

of particles that are subject to his Second Law.   It was assumed that the light rays travel in 

straight lines within each medium and therefore that there are no unbalanced forces in either 

region.  By further assuming that the light refraction is caused by a force F=dp/dt normal to the 

interface, he concluded that the momentum p of the particles in a tangential direction must be 

conserved and therefore that the following equation must be satisfied:  

                  p1 sinΘ1 =  p2 sinΘ2,                                                                        (X.10) 

which is obviously similar in form to eq. (X.9).  Comparison of the two equations thus leads to 

the following proportionality between the momentum of the particles and the index of refraction 

of the corresponding light rays: 

                   p1/p2  = n1/n2  =  sinΘ2/ sinΘ1.                                                        (X.11)  

Although eq. (X.11) only deals with momentum (a term not used in Newton’s Opticks34), it was 

used by Newton to make his famous prediction about the speed of light in water.  He concluded 

that since the index of refraction for water is greater than that for air, it must follow that the 

speed of light must be larger in water as well.  This conclusion gained increased significance at 

the time because it placed his corpuscular theory of light in direct conflict with the wave theory 

of Huygens and others on this question. 

     In the wave theory of light it was assumed that Snell’s Law of Sines implies that the speed of 

light decreases as it passes from air into water.  The change in angle could be explained by 

assuming that the distance separating spherical wave fronts decreases as the light passes into a 
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region of higher index of refraction .  According to this model, the wavelength λ = 2π/k of the 

light waves changes in direct proportion to sinΘ, with the result: 

              λ2/λ1  = k1/k2  = n1/n2  =  sinΘ2/ sinΘ1.                                                  (X.12) 

At the same time, it was assumed that the frequency ν = ω/2π is completely independent of the 

refractive index for a given medium, so that the corresponding speed of light ci must be inversely 

proportional to ni, i.e.: 

           ci= λiν = ω/ki = c/ni,                                                                                  (X.13) 

where c is the speed of light in free space (for which n=1 by definition). 

In 1850 Foucault measured the speed of light in water and it was clear that his results 

stood in irreconcilable contradiction to Newton’s prediction.  This was quite generally accepted 

as a complete victory for the proponents of the wave theory of light, but in later years more 

accurate experiments274-276 showed that its prediction in eq. (X.13) is not completely verified 

either.  Instead, the following dependence of the light speed vg on the derivative of the refractive 

index with respect to wavelength was indicated: 

vg = c/ng = c/n + (λc/n2) dn/dλ.                                                        (X.14) 

The presence of the correction term on the right-hand side of this equation has been justified277  

in terms of dispersion effects that are expected to occur when light enters a different refractive 

medium.  Application was made of Rayleigh’s theory of sound278 and its explanation of how 

beats arise when waves of slightly different wavelength are allowed to interfere.   

       It is important to examine the question of the assumed dispersion effects, as has been done in 

Ref. [271], but before doing so, it is instructive to consider how Newton could have so 

misjudged the effects of light refraction on the speed of light.  Such a discussion becomes all the 

more relevant when it is realized that 55 years after Focault’s experiments had been reported, 

Einstein40 effectively resurrected the particle theory of light by virtue of his interpretation of the 

photoelectric effect.     

      With centuries of hindsight, however, it is not difficult to find other indications that Newton 

was on the right track after all.  Primary among these is the conclusion that results when eq. 

(X.11) of the particle theory is brought into connection with eq. (X.12) of the wave theory.  As 

already discussed above, the latter predicts that the wavelength  λ of light is inversely 

proportional to the refractive index n of the medium, whereas the former concludes that the 
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momentum of the associated particles of light is directly proportional to n.  Combination of these 

two theoretical relationships leads directly to another, namely: 

            p1/p2  =  λ2/λ1 =  k1/k2 ,                                                                            (X.15) 

which in turn can be reformulated in terms of a specific proportionality constant: 

            p= h/λ = (h/2π) k.                                                                                  (X.16) 

Stark279 was apparently the first to arrive at eq. (X.16). He was influenced by a meeting in which 

Planck’s radiation law was a key topic of discussion.  The proportionality constant h in eq. 

(X.16) is the same as Planck5 used eight years earlier to introduce his quantum hypothesis and 

the corresponding relation between energy E and frequency ν:      

            E= hν = (h/2π) ω.                                                                                  (X.17) 

Its present-day value is 6.625x10-34 Js.   

      It is a matter of historical fact that the proponents of the corpuscular and wave theories of 

light did not obtain eq. (X.17) on the basis of their studies of light refraction, but that does not 

change the conclusion that this goal could readily have been achieved over 200 years earlier by 

simply combining eq. (X.11) with eq. (X.12).  The reason that Newton and Huygens did not 

make this connection is most probably because they did not recognize the validity of the other’s 

model for the composition of light and thus were not disposed to making use of any of its 

respective predictions.  The fact that eq. (X.17) can be derived in a straightforward manner from 

the two “opposing” theories of light refraction is nonetheless a key observation in theoretical 

physics.  It shows that Stark’s recognition279 of the relation between the momentum of particles 

of light and the wavelength of the corresponding radiation actually serves as an important 

confirmation of both theories, in particular that of Newton, since the latter has often been 

claimed to have been contradicted by the experimental data for light refraction. 

       None of the above changes the fact that Newton did make a critical error in predicting that 

the speed of light is greater in water than in air.  The reason was not his corpuscular theory, 

however.  Rather, it was his inability to compute the light speed in a manner which was 

consistent with his Second Law.  The decisive impulse in this direction was provided by 

Hamilton and his canonical equations of motion, published 130 years after Newton’s Opticks.  

The key equation in the present context is: 

             dE/dp = v.                                                                                            (X.18)     
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Perhaps ironically, eq. (X.18) can be derived in a straightforward manner271 on the basis of the 

Second Law and the definition of work/energy as F·dr = dp·(dr/dt).  

The first step in arriving at the correct dependence of the speed of light in refractive 

media is to apply eq. (X.18) to obtain the relation between the energy and momentum of the 

particles of light in free space.  Newton had shown in Opticks that white light is decomposed into 

its component colors when it passes through a glass prism.  He concluded that this phenomenon 

is caused by the varying accelerations experienced by the particles of light associated with 

different colors when they enter a refractive medium.  Since white light travels great distances 

from the sun without undergoing an analogous decomposition, it follows by the same reasoning 

that the speed of light has the same constant value c for all corpuscles/photons in free space.  As 

a result, the desired relation can be obtained by integration of eq. (X.18) for the special case of 

v=c while setting the constant of integration to zero, namely as: 

 E = pc.                                                                                                 (X.19) 

The same equation was used by Stark279 to derive eq. (X.16) from Planck’s radiation law.  

      The next step is to generalize eq. (X.19) for the case of photons in a medium of refractive 

index n.  Because p is proportional to n in Newton’s particle theory, it follows that p can be 

replaced by p/n without changing the original equality relationship.  Furthermore, because of its 

association with the color of the light, the energy E of the photons can reasonably be assumed to 

be unaffected as they pass between different refractive media.  Consequently, the most 

straightforward choice for the generalized version of eq. (X.19) is: 

             E = pc/n.                                                                                              (X.20) 

 

     The speed v of the photons is then obtained from eq. (X.20) as: 

             v= c/ng = dE/dp = c/n –(pc/n2)dn/dp.                                                  (X.21)        

Substitution of the p=h/λ relation of eq. (X.16) then leads directly to the observed expression for 

the velocity of light given in eq. (X.14).  The corresponding formula for the group refractive 

index ng in eq. (X.21) can be obtained directly as: 

              ng = d(pc)/dE = d(nE)/dE = n + E(dn/dE).                                         (X.22) 

It is also worth noting that Planck’s radiation law in eq. (X.17) is obtained by combining eq. 

(X.12) of the wave theory of light with eq. (X.20): 

             E/p = c/n = ω/k = λν.                                                                            (X.23)       

Substitution of the relation between momentum and wavelength in eq. (X.16) gives: 
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           E/p = Eλ/h = λν,                                                                                     (X.25) 

which upon cancellation and rearrangement yields eq. (X.17).  Planck based his discovery on a 

statistical treatment of the entropy of black-body radiation,5 but the same result is seen to be 

obtained from Newton’s corpuscular theory34 and its treatment of light refraction when used in 

conjunction with Hamilton’s canonical equations.    

In summary, when one uses the correct definition for velocity (Hamilton’s equation), 

Newton’s corpuscular theory is found to be in quantitative agreement with experiment, including 

most especially with Foucault’s determination of the speed of light in water.  Newton’s error is 

seen to be his implied assumption that the inertial mass m = p/v of the corpuscles/photons is the 

same in all media.  By contrast, the value obtained from eq. (X.20) for p and eqs. (X.14,21) for v 

is: 

             m = p/v = (nE/c)/(c/ng) = nngE/c2 = nnghν/c2.                              (X.26) 

The mass of Newton’s corpuscles increases as the square of the refractive index, which means it 

is roughly 1.7 times larger in water than in air, causing him to overestimate the corresponding 

speed of light in the former medium by this factor [note that eq. (X.26) stands in contradiction to 

Einstein’s famous E=mc2 relation,4 thereby demonstrating that the latter is not of completely 

general validity]. 

      Dicke and Wittke273 have also used the de Broglie relation to derive the sine law of refraction 

explicitly, thereby showing that wave optics and Newton's classical mechanics are consistent in 

this respect as well. From the standpoint of Newton's dispute with Huygens, however, there is an 

important distinction between regarding light as a stream of particles moving in accord with a 

particular statistical distribution law instead of as an intrinsically wavelike substance. In the first 

case, one can still speak of the individual units of light as particles which are always perfectly 

localized in space, whereas in the second, a delocalization is implied which is inconsistent with 

the concept of a particle. 

 

G. PROBABILITY ADDITION LAW AND INTERFERENCE PHENOMENA 

As remarked in Sect. X .E. one does not really come to the crux of the wave-particle 

duality question until interference phenomena are considered. The most frequently analyzed 

experiment is that performed by Young45,280 in 1802, in which light from a single source is 

allowed to pass through two narrow slits separated from one another by some distance. The 
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interference pattern which results is not the same as what is obtained by superimposing the 

results of two similar experiments in which only one of the slits is open for the same period of 

time. This result is generally interpreted as follows.281 If the light emitted from the source were 

to consist of particles which are always localized, then each of them would have to pass through 

either one hole or the other. It is safe to say that Newton would have agreed with this statement. 

Since the holes are relatively far apart, it is impossible that particles going through one of them 

would be affected by those going through the other. Experimentally one can show that the 

interference pattern does not result because of collisions between individual photons, because the 

intensity of the light can be decreased to the point that it is impossible that more than one such 

particle be in the apparatus at any one time. Dirac summarized this situation270 by saying that it is 

as if each photon “interferes with itself.” 

Since particles cannot interact with themselves but waves (or anything that is extended 

through space) can, the conclusion that light units (and everything else) somehow behave as both 

particles and waves depending on the set of governing conditions seems inescapable. For a 

stream of particles to give a different distribution on a screen depending on whether the two slits 

through which they pass are always open or whether they alternate in being open and closed in a 

complementary manner seems tantamount to ascribing some sort of intelligence to them. How 

can the photons at the source know which holes are going to be open and when? Yet the solution 

to this dilemma of attributing both wave and particle properties to matter is also not without its 

ambiguities.  

Once the decision is made that a photon (or electron) must pass through both slits282 in the 

Young experiment before reaching the screen, a simple variation presents itself. Send a single 

photon through the apparatus and replace the screen by a photographic plate.281 The experiment 

mentioned above approaches this in principle, namely by letting a maximum of one photon 

through the apparatus at any one time. The fact that the usual intensity pattern still develops after 

a sufficiently long time proves that the photons do not collide with one another, but as long as 

more than one partic1e is involved it is impossible to be certain that any one of them has passed 

through both slits on its way to the photographic plate. The lack of a suitably sensitive 

photographic plate renders such an experiment impractical,281 but its conceptualization at least 

illustrates that the principle of wave-particle duality implies a definite result of an experiment 

which has actually never been carried out. The possibility that a single photon makes more than 
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one impact on the screen of the Young apparatus, or that it somehow recombines after passing 

through each of the slits so as to make only one indentation, is sufficiently improbable as to 

warrant skepticism in the absence of a means of positively verifying its occurrence. In 

recognition of the conceptual problems inherent in its logical structure, the wave-particle duality 

principle is typically described as a paradox.283 

It will be recalled. however, that the argument against an exclusively corpuscular 

(Newtonian) description for the photons in the Young experiment rests on the conclusion that at 

the time they leave the emitting source, there is no way they could be aware of the status of the 

two slits of the apparatus. If nothing occupies the space between the source and the slits, there is 

no reason to doubt this position, but in the course of examining the creation-annihilation 

hypothesis, a different picture has emerged. Instead, it has been assumed that there is a high 

density of massless particle-antiparticle systems throughout all space. It also has been argued that 

such a model is consistent with the virtual photon formalism of quantum electrodynamics. If 

such entities need to be taken into account in the form of radiative corrections in order to obtain a 

highly accurate description of the fine structure of atomic systems, it is not obvious that their 

influence can be entirely neglected in the present context either. 

Particularly if such massless species exist in the numbers required to explain emission 

processes without invoking the creation-annihilation hypothesis, it would seem to follow that 

there is a direct line of communication between the source and the two slits of the Young 

experimental apparatus, one that could cause the photons to distribute themselves differently on 

the screen depending on the nature of the environment a relatively large distance away. The fact 

that the single-hole intensity distributions do not satisfy an additivity law282 to give the 

corresponding two-hole result is not in itself incompatible with the particle concept. Rather it 

reinforces the key assumption of the Born interpretation269 that the wavefunction in quantum 

mechanical treatments needs to be multiplied with its complex conjugate to obtain a physically 

meaningful distribution function for the system being treated. An accurate computation of this 

wave function requires a complete specification of the physical system at hand, which in the case 

of the Young experiment would mean not only the photons and the apparatus, but everything in 

between. 

In this connection it is well to recall that the interference effects under discussion have 

never been observed when photons deriving from different sources are involved.281 This implies 
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that a very delicate balance is involved which leads to a mixing of the two parts of the wave 

function corresponding to the different slits of the Young apparatus only when a perfect 

symmetry exists. From this result it is clear that an extremely small perturbation is enough to 

destroy the constructive interference pattern. Closing one of the holes in the Young experiment 

might constitute such a small perturbation, the occurrence of which if transmitted by a suitable 

medium to the source, would be sufficient to “inform” the photons located there that the 

symmetry required for the production of interference phenomena is no longer present. 

The advantage of the above interpretation is that it does not require273 a modification of the 

fundamental definitions of particles and waves to make the experimental results understandable. 

Streams of particles of the same properties obey statistical laws embodied in the de Broglie20 and 

Bohr frequency5 relations. The individual particles are localized at all times, but the quantum 

mechanical formalism is only able to provide a statistical distribution function from which 

expectation values for their various properties can be computed. For this purpose an accurate 

description of the forces acting on the individual components of the system is necessary. In 

certain instances for which the results are very sensitive to the choice of experimental conditions, 

this requirement includes taking into account neighboring systems such as massless photons 

which are always present but whose influence can usually (but not always) be safely excluded.  

 

H. THE EINSTEIN-PODOLSKY-ROSEN PARADOX 

The last topic to be considered in the present section is the Einstein-Podolsky-Rosen (EPR) 

paradox.284   Since it was first presented in 1935 there has been great interest in the question of 

what it implies about the role of quantum mechanical theory in describing general physical 

processes. The experiment on which this paradox is based is the same one with which the present 

study began, namely positronium decay. To properly appreciate the significance of the EPR 

paradox, it is important to first consider the essential features of the quantum mechanical theory 

of measurement, known as the Copenhagen interpretation.285  

The guiding principle of this formalism is that one can only predict the result of a given 

experiment in terms of a probability distribution. The corresponding quantum mechanical wave 

function describing a given state of a system can always be expanded in terms of the 

eigenfunctions of a hermitean operator P corresponding to a property which is to be measured, 

i.e.  =  
i

iic , where Pi = pii. The probability that a given eigenvalue pi will be obtained in 
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the measurement is expected to be |ci|
2 when  is normalized to unity. The most controversial 

aspect of the Copenhagen interpretation is the question of whether such a probabilistic theory can 

be considered to give a complete description of physical reality (essentially the title of the 

original EPR publication), or whether a more detailed theory exists which is capable of giving 

more definite predictions of experimental results. 

The positronium decay experiment represents a paradoxical situation vis-a-vis the 

Copenhagen interpretation because it shows that the value of a property of one of the two emitted 

photons (in the singlet decay) is always completely predictable based on knowledge of the 

outcome of the equivalent measurement carried out for the other.284 From this interpretation it 

would seem to follow that if a property is measured for which the photon wavefunction is not an 

eigenfunction of the corresponding quantum mechanical operator, the result obtained can never 

be predicted with certainty, regardless of what other information is available. Since there are a 

variety of different measurements possible whose quantum mechanical operators cannot all be 

compatible (mutually commuting), the experimental evidence indicates that at least in the form 

given above this principle is violated in practice. While one can only speculate how two particles 

can always give complementary results when subjected to the same experiment, it seems certain 

that such a mechanism does exist on the basis of the above measurements.283,284 

In a broader sense the EPR paradox suggests that particles such as electrons, which are 

taken to be perfectly indistinguishable in a quantum mechanical treatment, actually enjoy a 

unique existence. For example, in a collection of a large number of hydrogen atoms, all in the 

2P1/2 state, there may be a mechanism by which an observer can know with certainty which of 

them will undergo radiative emission at a particular time. What is clear and indisputable is that 

quantum mechanical theory as we know it is incapable of providing such information. It is 

important to note in this context, however, that there really would be no way to verify such 

theoretical predictions for the outcome of the above experiment for the simple reason that it is 

impossible to tell the individual particles apart. One cannot put a label on an individual hydrogen 

atom and then determine precisely when this particular system undergoes radiative emission. So 

in that sense it is impossible to devise a practical means of testing such a hypothetical extension 

of quantum mechanical theory. 

The positronium decay experiment described above nonetheless succeeds in providing a 

type of photon labeling which satisfies the basic condition described in the last paragraph for 
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hydrogen atoms. Accordingly, two otherwise indistinguishable objects are identified by virtue of 

their special relationship to one another. Under these circumstances it is still impossible to 

predict the outcome of every conceivable experiment on one of the two photons (i.e. that 

measured first), in accord with the Copenhagen interpretation. The knowledge of its relationship 

to the other product of a given positronium decay, however, is sufficient to allow for complete 

predictability of every complementary measurement subsequently carried out for the second 

photon. 

There is no immediate justification for extrapolating this result to the much more sweeping 

proposition that the outcome of every experiment is completely predictable according to some 

unspecified theory, but this possibility is at least left open on such a basis. The required 

extension of quantum mechanical theory to achieve this goal might still involve the wave 

function for each of a given set of indistinguishable particles. This assertion follows from the fact 

that the definition of such functions is not uniquely provided in the existing theory. Since its 

predictions are always in terms of expectation values,269 it is clear that different functions can 

give identical results for all properties. It is always possible to introduce a finite discontinuity in 

such functions which leads to no change in any of its operator expectation values. 

One of the more frequently mentioned examples of this nature involves the evaluation of 

the Darwin term for atoms when a point-charge nuclear charge distribution is assumed.286 

Because this operator is singular at the origin, the value of the wavefunction there affects its 

expectation value, contrary to all other Hamiltonian terms (for example, those shown in Table I). 

If one excludes such physically unrealistic operators from the Hamiltonian, it is possible to vary 

the value of the wavefunction at the origin over an arbitrary range of finite values without 

affecting the associated total energy expectation value. It can be argued that no property which 

can be measured in practical experiments will depend on the value of the wave function at the 

origin either, so in this sense there is no unique definition for any physically meaningful quantum 

mechanical wave function. 

In summary, there are an infinite variety of functions whose overlap with one another is 

exactly unity. This being the case, one could use this ambiguity to store any conceivable amount 

of distinctive information regarding individual particles without affecting the equality of their 

quantum mechanical expectation values in any case. Under the circumstances it seems only 

prudent to at least hold open the possibility that the result of each experiment ever to be carried 
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out upon it is uniquely specified. Presented with a set of such wavefunctions we would only 

verify that they lead to identical probability distributions, and consequently to the same 

expectation values for any conceivable observable. In other words, the very structure of quantum 

mechanical theory suggests a level of ambiguity which allows no definitive conclusion as to 

whether its probabilistic character is a signal of an intrinsic element of unpredictability of 

naturally occurring phenomena or not. 

Since a possibly higher level of theory would not be subject to verification because of the 

impossibility of labeling otherwise indistinguishable objects, it might well be argued that there is 

no point in even looking for its concretization. From a purely scientific point of view this 

position is tenable. Nonetheless, the belief that the outcome of physical experiments is often just 

a matter of probability can lead to the generalization that almost everything is simply a matter of 

chance, and as a consequence, that causality is a proven impossibility in the natural course of 

events. The EPR paradox is an indication that such a judgment is at best premature. It is 

important to know if anything happens by chance or not, even if it is clear that in many situations 

it must remain effectively impossible to predict the (conceivably) inevitable outcome of a given 

experiment. 

 

XI. CONCLUSION 

In the present investigation attention has been centered primarily on .the pervasive 

assumption in modern-day physical theories that matter can be created or destroyed by means of 

a suitable addition or loss of energy. It has been emphasized that it is impossible to distinguish 

experimentally between a particle which is unobservable in its present state and one which has 

gone out of existence entirely. The concept of all material particles being composed of atoms or 

elements which are impervious to the application of any force has played a crucial role in the 

development of the physical sciences over a period of several millenia. It has been argued in the 

present work that since the antithesis of this view, the creation-annihilation hypothesis, can never 

be proven by direct experimental observation, it is quite important to see if an alternative theory 

of physical transformations can be formulated which gives a plausible interpretation of all 

measured phenomena without giving up the principle of the indestructability of material 

elements. 
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Consideration of the decay of positronium and the subsequent production of photons, 

which has hitherto been assumed to involve the annihilation of an electron and positron, suggests 

a different explanation in terms of the formation of particle-antiparticle binary systems with 

exactly zero rest mass. In order to give quantitative substance to this alternative hypothesis, 

attention is turned to the goal of finding a suitably concrete form for the system of interactions 

which would be capable of binding an electron and positron so strongly together that the energy 

lost in the process is exactly equal to the sum of their rest masses, 2 moec
2 or 37557.73 hartree 

(1.02 MeV). Instead of simply deducing this result with the help of the Einstein mass-energy 

equivalence relation, it has been proposed to consider positronium decay as a conventional 

radiative emission process in which the binding energy of the final state is to be computed with 

standard quantum mechanical methods once the nature of the associated interaction mechanism 

is identified. 

In the course of studying other modern physics experiments on a qualitative basis it has 

been concluded that such a massless e+e- structure can plausibly be attributed to the photon itself, 

since it is known to have zero rest mass and to interact electromagnetically in a way that is at 

least consistent with a dipolar composition of this kind. Because of the well-known fact that 

photon emission processes occur at all locations in the universe, i.e. wherever a given excited 

state of a particle is found to undergo radiative decay, it follows that the proposed massless e+e- 

binary systems must exist everywhere in space with sufficiently high density in order to explain 

these phenomena without invoking the creation-annihilation hypothesis. Support for this 

assumption of ubiquitous photons with zero mass can be found in the black-body radiation 

experiment (Chapter II.D). The original quantum hypothesis of Planck holds that for every 

frequency of radiation  absorbed by a black-body at thermal equilibrium, there must be a higher 

population of photons with E = 0 than for E = h or any other allowed energy value. Since there 

are an unlimited number of such frequencies possible, it follows that the number of massless 

photons in the thermodynamical system is essentially boundless. It is then only a matter of 

theoretical interpretation whether occupation of such an E = 0 state is taken to correspond to a 

photon which has suddenly ceased to exist or one which simply defies experimental detection. 

In this view the radiative emission process is not seen as involving the creation of a photon 

with E = h, but rather as an exchange of energy between the original excited system and a 

photon in its neighborhood which initially possesses zero energy. The photon simply takes on an 
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amount of energy which is lost by the other system in a transition to one of its lower-lying states. 

Furthermore, the requirements of conservation of energy and linear momentum are shown to be 

directly responsible for the quantization of such processes, since an arbitrary exchange of energy 

would require a smaller increase in the photon’s momentum than that lost by the heavier system 

with which it interacts. Only by changing to a lower-lying internal state with nearly the same 

momentum as prior to the transition can the heavier system satisfy the E = pc relation required 

by the photon’s zero rest mass. The explanation of the Mössbauer effect is based on the same 

considerations, with the distinguishing feature that for the very large energies of nuclear 

emission processes, the two internal states of the heavier system involved in the transition are 

associated with momenta which differ far more greatly from another than those of different 

electronic states in an atomic transition. 

One of the most critical aspects of the massless photon hypothesis is its questioning of the 

off-stated belief that zero energy and/or mass for any system necessarily implies its lack of 

existence (Chapter II.C). Instead it is pointed out that the Bohr frequency and de Broglie 

relations have zero frequency and infinite wavelength as limiting values when the energy and 

momentum of a photon approach vanishing magnitudes. Before this limit can be achieved by 

systematically reducing the energy of a single photon, frequency and wavelength values must be 

reached which by virtue of the above two relations already lie outside the range of experimental 

observation. Since photons whose (finite) de Broglie wavelengths are too large to measure are 

nevertheless assumed to exist, it is not unreasonable to expect that their zero-momentum 

counterparts may also be present, despite the impossibility of observing them directly. In this 

connection a flaw is pointed out in the argument which holds that a system with zero rest mass 

must move with the speed of light based on the dependence of the relativistic mass m on 

velocity. The latter relation is satisfied for any velocity v smaller than c as long as m = 0, 

including v = 0. The ratio m0/m is not uniquely defined under these circumstances and thus may 

exceed zero, implying that -1=(1 - v2/c2)1/2 also can be non-vanishing in this limit. 

Consideration of other types of observed phenomena arising in the field of modern physics 

is found in no way to contradict the above hypothesis of ubiquitous massless photons. These 

processes include the photoelectric effect, Compton and Raman effects, Bremsstrahlung and 

electron production from photon collisions. At the same time, this line of argumentation calls 

into question standard interpretations of related elementary processes which involve the creation 
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or annihilation of individual particles. The primary example considered in this connection is that 

of the beta decay of a neutron (Chapter IV.A). By following through on the proposal that no 

material particle is ever created or destroyed in physical transformations, one is led to conclude 

that a strict elemental balance must characterize any reactive equation, exactly as is assumed in 

ordinary chemical processes. In accordance with this view a neutron must be composed of a 

proton, an electron and an antineutrino prior to undergoing beta decay, because each of these 

particles is present at the completion of the process. An analogy is made between the neutron 

(and other unstable elementary particles) and excimer systems in the field of molecular physics, 

which are well known to correspond to meta-stable excited states whose ground state potential 

energy curves are completely repulsive. The energy given off in the decay of elementary 

particles is so large compared to that found in the operation of an excimer laser that a significant 

decrease in the sum of the rest masses of the products in such reactions is observed relative to the 

mass of the original meta-stable system. Similar arguments can be given for a whole series of 

elementary particles, such as muons, pions and other heavier species, all of which are known to 

decay with relatively short lifetimes to a collection of fragments of smaller aggregate rest mass. 

In order to give quantitative substance to the above theoretical model, it is imperative that 

one clearly identify the nature of the interactions responsible for high-energy processes, 

especially the prototype example in which an electron and a positron combine to form a tightly 

bound binary complex with exactly zero rest mass. Emphasis is placed thereby on the fact that no 

corresponding state of a proton and an electron is known, i.e. the 1s1/2 state of the hydrogen atom 

is perfectly stable when left in an isolated condition, whereas that of positronium has only a short 

lifetime. Similarly, a massless p+p- binary must also be assumed to exist based on the analogous 

experimental results for the interaction of a proton and an antiproton. The term “phanton” will be 

used in the following discussion in referring to such massless particle-antiparticle binary systems 

in general, and the special name of “prophoton” has been given to the p+p- member of this 

family, to go along with the identification of its e+e- counterpart as the photon. 

The high energies associated with the formation of these two phantons suggest that similar 

short-range interactions are involved as in the binding of nuclei, in which case an exponential 

form for the corresponding potential has been deduced from scattering experiments. Because of 

the participation of electrons, positrons and photons in the electromagnetic interaction, it is 

suggested that a good starting point in the search for such a potential is the relativistic Dirac 
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equation or some approximation to it. It is noted that the Breit-Pauli reduction of this equation 

contains short-range terms varying inversely as the cube of the interparticle distance which are of 

the order of 2 (10-4-10-5 hartree) for typical electron-proton separations in an atomic system. 

The unbounded character of these terms in the limit of vanishingly small separations, particularly 

in relation to the corresponding relativistic kinetic energy, makes it clear, however, that the 

desired short-range bonding of elementary particles can only be satisfactorily described by 

interactions of this type if they are somehow modified to become considerably less attractive at 

extremely small interparticle distances. 

An exponential damping of the Breit-Pauli interactions is thus suggested (Chapter V.C).  

This  is in analogy to that proposed by Yukawa fifty years earlier for the description of nuclear 

binding, except that in that case it was applied to an r-l potential. Similar quantities of r-3 type 

present in the p • A cross terms of the Maxwell-Lorentz Hamiltonian are kept in check by the 

A•A component of a perfect square, which in turn varies as r-4. This suggests that the exponent 

of the damping function for the Breit-Pauli interactions should vary as r-l or p, and that it should 

contain a factor of the charge-to-mass ratio of a given particle multiplied by a constant of order 

2. Since the motion of charged particles is involved in such interactions, it seems reasonable to 

choose a momentum-dependent exponential damping whose argument is always negative. 

Ultimately these arguments lead to the following explicit form for the damping function: exp (-A 

2 | p q/m0|). At the same time, the unbounded correction to the Breit-Pauli kinetic energy, which 

varies as p4, is introduced via the Einstein relativistic operator (p2 + m0
2 c4)1/2 - mo c

2 (with c = -

1 in atomic units). The resulting set of interactions is subsequently referred to as the 

exponentially damped Breit-Pauli Hamiltonian and is employed in a Schrödinger equation 

(XBPS) of the standard H  = E  form. The potentially crucial advantage of this Hamiltonian 

is that it is bounded from below and thus can be treated using standard variational techniques, 

unlike the un- damped Breit-Pauli terms themselves. The explicit form of the XBPS Hamiltonian 

is given in Table I. 

The above Schrödinger equation has an interesting scaling property of relevance to the 

positronium decay process. The total energy of any state of a particle-antiparticle system with a 

given charge and rest mass is exactly M times larger than that obtained by a coordinate scaling 

for an analogous binary system with the same charge but a rest mass which is smaller by the 

same factor M. This means that the same Hamiltonian which produces the 2 moec
2 binding 
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energy assumed for the e+e- phantom/photon leads to a corresponding value for the p+p- 

prophoton system which is exactly 2mopc
2. The latter system's average interparticle separation is 

smaller by a factor of the proton-electron rest-mass ratio mop/moe than that for the e+e- photon 

system. The form of the XBPS Hamiltonian is thus seen to guarantee the condition required by 

the Einstein mass-energy equivalence relation, namely that the maximum energy lost in a 

particle-antiparticle interaction is directly proportional to the rest masses of the isolated systems 

(Chapter V.D). This condition places a restriction on the form of the exponential damping factor 

in the XBPS Hamiltonian, specifically that the momentum p be divided by the particle's rest 

mass in the corresponding argument.  

The use of the relativistic kinetic energy operator in the XBPS model raises a fundamental 

question of a different nature, however, namely how to deal with the translational motion of the 

combined system being treated (Chapter V.B). An analysis indicates that, contrary to the non-

relativistic case, a transformation to center-of-mass coordinates for such a Hamiltonian does not 

lead to a total separation of the internal and translation motion. This fact is related to the 

requirement that distances measured in an inertial system moving with constant velocity relative 

to the observer are found to be expanded. It has been argued that this phenomenon should be 

directly reflected in the corresponding expectation values of dynamical variables, specifically 

that such results must vary with the translational velocity of the system treated (Chapter X.B).  

Such findings clearly cannot result if it is simply assumed that the center-of-mass motion is 

completely separable, since properties involving only internal variables are thereby forced to be 

independent of the state of translation of the combined system. It was therefore decided to carry 

out calculations with the XBPS Hamiltonian in terms of the Cartesian coordinates of the 

constituent particles without introducing a center-of-mass transformation, so as not to prejudice 

the results of the treatment in this respect, despite the fact that this procedure brings with it 

certain computational difficulties otherwise avoided by such a change in coordinates. 

Allowing the internal and center-of-mass motion to remain coupled in the theoretical 

treatment gives insight as to how the e+ e- system can have a tightly bound ground state below 

the familiar 1s state of positronium, unlike the case for the hydrogen atom of proton-electron 

composition. The essence of this argument is contained in the observation that the pi condition 

for a binary system whose center of mass is at rest in the origin of the coordinate system implies 

that pl = -p2 or v1 = -(m2/ ml) v2. Since the mass of the proton is so much greater than that of the 
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electron, this condition requires that their respective velocities be quite different from one 

another in the hydrogen atom. This circumstance is incompatible with the need to keep the 

particles close to one another while each is moving at high speed in order to take maximum 

advantage of the short-range momentum-dependent attractive terms in the XBPS Hamiltonian 

such as the damped spin-orbit coupling (Chapter V.F). 

By contrast, the analogous condition for a phanton system leads to a perfectly correlated 

relative motion of the two particles, which lends considerable support to the proposition that 

such systems possess non-hydrogenic states of exceptionally large binding energies. As the 

translational energy increases beyond zero the correlated motion of the phantons is gradually 

disturbed, however. At first glance the smaller q/mo value of the proton relative to the electron 

appears to be inconsistent with the requirement that p+p- have a much larger binding energy than 

the corresponding e+ e- system, especially when one only considers the magnitude of their 

respective coupling constants in the short-range XBPS interactions. The same quantity also 

causes the argument of the exponential damping factors to be correspondingly smaller for the 

prophoton system, however, which in turn allows its two particles to approach each other far 

more closely than is preferable for the lighter electron-positron pair. 

A full CI treatment of the Schrödinger equation discussed above for the e+e- system 

employing various primitive Cartesian Gaussian one-particle basis sets has indicated that the 

lowest-energy state for this system possesses 0- symmetry and is symmetric with respect to the 

charge conjugation operation, which commutes with the corresponding Hamiltonian. The 

constant A in the exponential damping factors has been chosen so as to obtain the desired e+e- 

binding energy of 2 moec
2 for an optimal choice of orbital exponents in the full CI treatment 

(Sect. VI.D). The 0s
- symmetry of the e+e- ground state is also found to possess a vanishing 

expectation value for the conventional (undamped) Darwin term, as well as for the corresponding 

-function term in the spin-spin interaction. This result shows in a particularly striking manner 

that the two constituent particles must effectively avoid one another completely in order to 

achieve maximum stability. The form of this wavefunction also allows for an efficient 

minimization of the center-of-mass translational energy. The value of the damping constant A is 

found to be 1.265 using the above criterion for a 3s,2p,2d basis. As a result, the range of the 

damping interaction conforms to the expectations discussed previously, becoming significant for 

interparticle distances smaller than or equal to r = 2. In accordance with the XBPS scaling 
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property, the optimum prophoton wave function is characterized by Gaussian exponents which 

are larger by a factor of (mop/moe)
2 relative to those for e+e-, giving the desired 2mopc

2 binding 

energy relative to the separated proton and antiproton for the same choice of A as for the lighter 

phanton system. 

One drawback of this approximate treatment is that the corresponding expectation value of 

the e+e- translational energy is rather large (0.88 x 106 a. u. in the 3s.2p,2d basis, for example). It 

is clear that a much more extensive treatment with a relatively large one-particle basis is 

necessary to reduce this quantity to vanishing magnitude. A re-optimization in terms of the 

difference between the expectation values of the total and translational energies respectively 

leads to an increased value for A of 1.727, and a somewhat more compact charge distribution for 

the electron-positron pair. Moreover, corresponding results for a variational treatment of this 

energy difference yield a somewhat higher value of 1.773, suggesting that in an exact solution of 

the XBPS, only a slightly larger value for this constant is required (A  2.0). 

Because the translational energy operator T commutes with the total Hamiltonian, it is 

clear that any exact solution for such a Schrödinger equation must also be an eigenfunction of 

both operators. Hence use of the same A value must produce the desired phanton binding 

energies for the <T> = 0 solution in each of the three optimization procedures discussed above. 

Because the lowest-energy eigenfunction of H - T must not correspond to a minimal translation 

energy expectation value, it is preferable to employ only the full XBPS Hamiltonian in 

subsequent treatments involving other combinations of particles. This procedure is tantamount to 

regarding the computed variational energies as upper limits to that of the lowest translational 

state of a given system. 

The description of the decay of the neutron in the XBPS model also requires an explicit 

representation of the interaction of a third particle and its antiparticle, namely the neutrino and 

antineutrino. It is necessary, consistent with the above considerations (Chapter VI.I),  to assume 

that a corresponding phanton system of zero rest mass exists with a    composition (photrino). 

The fact that the neutrino possesses no electric charge prevents the use of the above scaling 

property of the XBPS Hamiltonian in this instance, however, because it is only valid for particles 

having the same absolute magnitude of charge as the electron. Examination of the coupling 

constants in this Hamiltionian shows that the only way that it can lead to significant interactions 

for neutrinos is if their charge-to-rest-mass ratios are different from zero. This condition can only 
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be met if the rest mass of the chargeless neutrino is itself exactly zero, something which is at 

least consistent with all experimental investigations as yet undertaken to measure this quantity. It 

is also clear that the use of the rest mass instead of the relativistic mass, m = m0, in the coupling 

constants of this Hamiltonian is essential if this possibility is to have a significant impact on the 

description of the neutrino interactions. Accordingly, the sign of the corresponding Breit-Pauli 

interactions is determined on the basis of the product of the respective q/m0 values of the 

interacting particles rather than for the product of their electric charges alone. 

Subsequent calculations for the    system have shown that the same value for the 

damping constant A which gives the desired binding energy of 2 moc
2 for the e+e- and p+p- 

phantons also works to a good approximation for   , i.e. with zero binding energy relative to the 

separated neutrino and antineutrino constituents. The agreement is particularly good if 

translational effects are considered explicitly in the optimization procedure. In addition, a 

different scaling property is found for the XBPS Hamiltonian which shows that the desired zero 

binding energy of the    system holds independently of which |q/mo| value is assumed for the 

neutrinos. This result is consistent with the existence of more than one type (flavor> of neutrino 

in nature, but it also leaves the choice of this quantity's value open for other purposes, 

particularly to satisfy the requirement of computing the measured binding energy of the neutron 

relative to its decay products at rest. 

The corresponding    total energy curve can be thought of as containing a double 

minimum at E=0, one for the tightly bound phanton system and the other for the particles 

separated to infinity. Because of the lack of a (long-range) Coulomb interaction for neutrinos 

such a theoretical energy curve climbs immediately as the particles approach each other from 

quite large distances, contrary to what occurs for the approach of a charged particle to its 

antiparticle. In the latter case the internal kinetic energy of the system varies more slowly with 

distance in this range than does the Coulomb attraction of the particles, an effect which is crucial 

to the success of the original Bohr model of the hydrogen atom. It can be argued that the failure 

of the neutrino to participate in similarly long-range attractive interactions is responsible for the 

extremely penetrating nature of its radiation, making it effectively incapable of overcoming 

centrifugal barriers separating it from other particles. 

It is possible to understand the observed lack of conventional magnetic interactions for 

neutrinos on a similar basis (Chapter VI.J). From the point of view of a charged particle, all 
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electromagnetic interactions are effectively purely Coulomb because magnetic contributions to 

the energy are always computed to be of vanishing magnitude in its own inertial system. Thus a 

non-zero qImo value is not necessarily inconsistent with the measurement of a vanishingly small 

magnetic moment for the neutrino. At the same time, it can explain why such particles undergo 

strong interactions at extremely small interparticle separations, as exemplified in the original 

Reines-Cowan antineutrino capture experiments. The fact that relatively high centrifugal barriers 

must be overcome before coming into a suitable range for which the damped Breit-Pauli terms 

can dominate is also consistent with the extremely small cross sections observed for such 

reactions. Moreover, the possibility of its participating in short-range interactions offers an 

explanation for the presence of an antineutrino in the meta-stable neutron, as required by the 

hypothesis of particle balance in all physical transformations. To obtain suitably strong binding 

with the electron, the other light component of the neutron in this view, it is necessary to assume 

that   has a positive q/mo value, i.e. opposite to that of the electron (and also to that of its 

antiparticle). 

The known q/mo value of the proton is so small as to rule out its participation in XBPS 

interactions in the range of interparticle separations typical for nuclear binding for which this 

quantity appears as a coupling constant. This circumstance practically eliminates any chance of 

such Breit-Pauli terms as the spin-spin, orbit-orbit and spin-other-orbit interactions being directly 

involved in the binding of protons, but it leaves open a distinct possibility that the spin-same-

orbit and Darwin terms with electrons and antineutrinos can affect them in a significant manner. 

One knows from observations of atomic spectra, for example, that the electron undergoes a spin-

same-orbit interaction with the nucleus which does not depend on the mass of the heavier 

particle, but rather on the square of the mass of the electron itself. Preliminary calculations with 

the XBPS model demonstrate that such a proton-electron interaction can be enormously 

attractive in the desired range of interparticle separation. The opposite effect is found for the 

proton-antineutrino spin-same-orbit interaction, but the calculations demonstrate that the most 

stable state of the p+e-   system adjusts its charge distribution to obtain a significant net binding 

between the proton and the e-   complex. In addition to this polarization effect, another dominant 

factor responsible for proton binding is its attractive Darwin term interaction with the 

antineutrino, which easily outweighs the effect of the corresponding proton-electron repulsive 

contribution. By decreasing the q/mo value of   below that of the positron, it is found that the 
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total energy of the most stable state of the p+e-   system can be adjusted to become equal to that 

known experimentally for the neutron, i.e. 28781.31 a.u. higher than that of its separated 

component particles. This occurs for a q/mo value of +0.63 a.u. for the antineutrino in the 

3s,2p,2d basis mentioned above, i.e. about two-thirds that of the electron (Chapter VII.B. A 

value of unity for this quantity gives a much lower energy for the p+e-   system, showing it to be 

bound by 62528.34 a.u. relative to its separated constituents (employing the same basis), a 

change of 91309 a.u. or 2.48 MeV, so it is clear that these results are quite sensitive to the 

numerical value chosen for this charge-to-rest-mass ratio. 

The last comparison offers a clear perception of the mechanism of proton binding in the 

present model. The e   complex can be looked upon as a clone of the prototype e+e- massless 

binary, especially when q/m0 for   is assumed to be the same as for the positron. Because of the 

nature of the coupling constants in the spin-same-orbit and Darwin terms in the XBPS 

Hamiltonian, the proton can be strongly attracted to e-  , especially if the charge-to-rest-mass 

ratio for   is relatively large. Reducing the value of this quantity below unity necessarily causes 

the stability of the e-   complex to be lessened, but at the same time it increases the magnitude of 

the net proton binding energy to this system. The symmetry of the resulting p+e-   metastable 

state is consistent with this interpretation. The proton finds itself predominantly in an s1/2 orbital, 

while the e-   species prefers the 0- character exhibited by both e+e- and    in their respective 

lowest states, giving an overall 1/2- symmetry to the resulting p+e-   wavefunction.  

There is an indication that the computed proton binding energy is overestimated in the 

computational treatment employed, since improvements in the AO basis tend to make it more 

difficult for the proton to polarize the e-   charge distribution. On this basis it can be expected 

that the q/mo value for the antineutrino needed to give the experimental neutron binding energy 

in the exact XBPS treatment is somewhat larger than found in the best calculations carried out in 

the present study. Moreover, it seems likely that as the one-particle basis becomes more flexible 

that the description of the tight-binding phanton states as well as that of the e-   complex will 

allow more effective use of the short-range Breit-Pauli attractive interactions, thereby drawing 

the two component fermions somewhat closer together in an improved level of treatment. This 

conclusion is consistent with the results of the different e+e- optimizations discussed first in 

which the influence of translational energy is explicitly taken into account. 
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The qualitative picture which emerges from these considerations is thus that the proton 

experiences a net attraction to the e-   complex primarily because the antineutrino’s charge-to-

rest-mass ratio is somewhat smaller in absolute value than that of the electron. This condition 

makes the e-   system significantly less stable than e+e- in its lowest state, but it also makes the 

former binary more attractive to protons than its phanton counterpart. This attraction is 

insufficient to produce a bound p+e-   system, however, i.e. to bind a single proton, and this 

circumstance is assumed to be responsible for the known instability of the neutron. According to 

the present model, decay of the neutron occurs via a spin-flip mechanism (Chapter VIII.B), 

whereby the predominantly singlet nature of the 0- e-   complex is suddenly destroyed. Instead, 

the spins of the proton and electron begin to alternate, causing the antineutrino to be ejected, 

always with the same spin as that of the original neutron. This course of events is consistent with 

the measured spin relationships of the emitted particles in the decay of polarized neutrons. The 

presence of a slight triplet admixture in the e-   complex is thus seen as a contributing factor to 

the finite lifetime of the neutron, and to have an important influence on the nature of weak-

interaction decays in general. At the same time, the computed strength of the electron’s attraction 

to the proton and antineutrino helps to explain why the resulting tri-atomic system only has a 

magnetic moment on the order of a nuclear Bohr magneton (Chapter VII.C). An analoguous 

situation can be found in the study of the Compton effect, for which it is found that collisions of 

photons with inner-shell electrons can only be successively described by taking the mass of the 

scattered system to be that of the entire atom to which it is bound.  

The above model for the structure of the neutron offers a basis for obtaining a quantitative 

description of the nuclear binding process. A second proton can be bound to the e-   complex by 

the same mechanism as the first, making the deuteron a stable system of p2e-   composition. The 

lowest state is found to be a closed-shell singlet, however, in disagreement with experiment. The 

situation is corrected, however, by including a δ-function potential which only affects the protons 

of the system (Chapter VII.E). It is completely similar to the corresponding spin-spin interaction 

in the XBPS Hamiltonian, except that the q/mo quantities are set equal to unity rather than to 

their normal proton values. This term greatly favors the triplet state of the deuteron, making it the 

ground state of the system (1-). This effect arises primarily from the fact that the corresponding 

interaction for the closed-shell 0- state is quite repulsive, whereas the triplet has virtually a zero 

expectation value because of the nearly perfect cancellation of the Coulomb and exchange 
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integrals for such a δ-function potential. The binding energy of the 1- p2e-   state in the best 

treatment as yet carried out is somewhat larger than the experimentally known value for the 

deuteron, but there is at least evidence that the essential nature of the Hamiltonian which governs 

the nuclear binding process is properly described by the above set of interactions. 

It should be emphasized that this result is obtained with the aid of the same two 

parameters, the damping constant A and the q/mo value for  , which are deduced from the 

previous computations in the XBPS model for the three phanton systems and the p+e-   neutron 

structure. The essential feature of this development is the hypothesis that the electron and 

antineutrino form a central potential in their preferred 0- state which is capable of strongly 

attracting a given number of protons. The proton-proton δ-function spin-dependent potential is 

closely related to the Breit-Pauli interactions, as mentioned above, but is clearly distinguished 

from its electromagnetic counterpart by virtue of the magnitude of its coupling constant. An 

equivalent antiproton-antiproton interaction must also be assumed, but a corresponding proton-

antiproton version does not appear to exist since it would destroy the otherwise perfect symmetry 

which exists between the e+e- and p+p- systems. 

The above description of the deuteron binding process can then be extended at least 

qualitatively to the structure of heavier nuclei, of which 3He and the hypothetical 4Li system have 

been explicitly treated in this work (Chapter VII.H). A key feature of this model is the 

identification of a neutron as a proton which is relatively tightly bound to an e-   unit inside the 

nucleus. There is thus a clear relationship between this proposal and the main topic considered in 

the present study, namely the questioning of 'the creation-annihilation hypothesis, particularly in 

the form first suggested by Fermi according to which the electron and antineutrino are assumed 

to not be physically present inside the bound nucleus. The exponential form of the damped Breit-

Pauli interactions allows for two regions of similar potential for protons relative to the tightly 

bound but meta-stable e-   system, which in turn allows for the existence of a pair of (mutually 

orthogonal) proton orbitals of similar energies. Hence the conventional interpretation of nuclei as 

combinations of protons and neutrons is consistent with the present model. The overall spin of 

the nucleus is determined exclusively by the proton constituents in this view, i. e. the ordinary 

proton and that of the neutron p+ e-   system. The latter conclusion rests primarily on the finding 

of a singlet structure for the e-   complex, which characteristic explains in a quite simple way 
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why the electron and antineutrino do not appear to affect the magnitude of the nuclear spin 

despite the fact that they each possess s = 1/2 themselves. 

An important consequence of the above identification is that it gives a straightforward 

explanation for the observed adherence of both types of nucleons to the (generalized) Pauli 

principle (Chapter VII.H).  In this view no separate postulate is required to explain the relevant 

experimental data, since all that is ever involved is the exchange of indistinguishable protons. 

While such an interpretation is easily reconciled with the general procedures employed in isospin 

theory, it does call into question the latter’s underlying precept, as introduced in 1932 by 

Heisenberg, namely that the proton and neutron are simply two different states of the same 

system which are characterized by the same spatial and spinwave functions. Specifically, it holds 

open the possibility that the governing Hamiltonian is completely independent of the 

hypothetical isospin coordinates. This position clearly does not diminish the practical utility of 

this theory, as applied for over a half-century in several important fields of physics, but it does 

raise questions as to whether the isospin quantities should be regarded as true constants of 

motion in the description of physical interactions.  

Once the above interpretation has been made, it is possible to understand the Aufbau 

principle for nuclei in a straightforward manner in terms of protons and neutrons, consistent with 

the shell model of nuclear structure (Chapter VII.G). The increased binding energy of successive 

protons is thereby associated with an overall contraction of the nuclear system; this occurs 

because of the increase in the number of proton-electron and proton-antineutrino attractive 

interactions resulting therefrom. The well-known volume effect observed for nuclei appears to be 

closely tied up with the fact that the electrons and antineutrinos must avoid each other to a high 

degree (in order to have a small Darwin term) in order to maximize their Breit-Pauli attraction 

for one another. In this view the proportional increase in volume with atomic number is directly 

related to the corresponding increase in the number of e-   bosonic complexes needed to form the 

required number of neutrons to bind the nucleons together. 

In addition to the above explanation for the origin of the strong and weak interactions of 

nuclear systems, the XBPS model allows for a re-interpretation of virtual processes in quantum 

electrodynamics and related theories (Chapter IX.E). Accordingly, when one speaks of virtual 

photons affecting the properties of a given system, one can describe the interactions in terms of 

the original atom or molecule combined with one or more e+e- and    phantons. In the lowest-
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order representation only the massless photon is involved, but an excited configuration in which 

the electron and positron are separated makes a contribution to the overall wave function in 

higher order. An analogy is made to CI treatments of electronic structure, in which it is routine to 

mix in configurations of relatively high energy, which one can refer to as virtual states, in order 

to obtain a more accurate description of the physical system. 

The ubiquitous presence of real photons in the universe, as assumed in the XBPS model, 

thus provides a straightforward explanation for the fact that perfect agreement with experimental 

data for an apparently isolated system cannot be obtained without making some provision for 

interactions external to it, i.e. virtual processes. In this view the results of quantum 

electrodynamics can be obtained, at least in principle, by including real e+e- binaries explicitly in 

the theoretical treatment, in which case variational methods would be applicable. Since the 

internal structure of the photon has little to do with the electromagnetic interactions responsible 

for such effects, it is reasonable to exclude such details in the theoretical treatment employed. 

Instead, low-order perturbation theory based on matrix elements between the E = 0 and E 0 e+e- 

states which are derived on the basis of certain assumptions about the nature of the photon field 

can be employed with high accuracy, as prescribed in the standard quantum-electrodynamics 

approach. 

The same type of argumentation applies to virtual pions in nuclear interactions, even 

though a first-order perturbation theory treatment is unrealistic in this instance. To make the 

analogy more concrete, it is necessary to ascribe a definite elemental composition to the pions 

(Chapter IX.A). Since it is known that + decays into µ+ and , and µ+ itself into e+,  and  , the 

particle balance hypothesis suggests that the charged pions have a tetra-atomic composition, i.e. 

they consist of a single electron and three neutrinos. The (virtual) pion cloud in nuclear structure 

theory can thus come about as the result of an interaction of a proton with three phantons, 

namely one photon and two photrinos (Chapter IX.F). An excited configuration in which the 

above particles are redistributed to form a neutron (p+e-  ) and a positive pion (e+  ) thus 

makes a significant contribution to the overall wave function of the system in a CI expansion of 

which the leading term is the proton-phantons complex. 

The form of the exponential damping factor in the XBPS Hamiltonian offers a clear 

mechanism by which such configuration mixing can occur, since it allows the proton to interact 

strongly with the lighter particles through the spin-same-orbit and Darwin terms, for which only 
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the large q/mo values of the electron and antineutrino serve as coupling constants. Because its 

orbital is effectively un-damped in such interactions, the proton is relatively free to maximize 

this effect through contraction of its charge distribution, being hampered in this respect by only 

the accompanying kinetic energy enhancement. The present calculations indicate that the binding 

energy of the bare proton to a single e+e- species is on the order of 1.0 MeV. On this basis it can 

be argued that the actual mass of the bare proton is larger by several electronic mass units than 

that measured for the proton in its natural environment. Further calculations indicate that the 

binding energy of a second proton to such an e+e- unit is significantly less than the first, which 

helps to explain why nuclei form themselves around electron-antineutrino pairs instead of such 

particle-antiparticle binary systems. 

The finding that the bare proton is strongly bound to the e+e- (and    but not p+p-) 

phantons in the XBPS calculations suggests a simple explanation for the existence of the “pion 

cloud,” as indicated by elastic electron scattering experiments in the GeV range, which show a 

definite extension of the proton’s charge distribution. Consistent with this interpretation is the 

fact that higher-energy inelastic scattering resonance continua of protons in the 2-4 GeV range 

exhibit point-charge characteristics. According to the de Broglie relation, the interparticle 

distances involved in the elastic scattering processes correspond to a range in which the proton 

can interact strongly with neighboring photons and photrinos, whereas those associated with the 

inelastic scattering processes are too small to produce similar bonding effects, with the result that 

the properties of the bare (Dirac) proton are observed under these conditions. Ultimately, it is 

simply the large mass of the proton and its consequently small q/mo ratio which in this view is 

responsible for its perception as other than a point-charge particle in low-energy scattering 

experiments. 

The proton-antiproton (annihilation) interaction can be understood on this basis as well 

(Chapter IX.G). Just as in positronium decay, it is assumed in the present model that (at least) 

two (massless) photons take up the energy given off in this process. Because the magnitude of 

the energy expended is so much greater in this case, however, the e+ and e- components of the 

interacting photons are set free. One positron and one electron form the basis for charged pion 

formation combining with a photrino and a  and   respectively to form + and -. Another  

(e+,e-) pair can also combine with a photrino to give a neutral pion. In this interpretation the 

proton and antiproton do not lose their existence in the process, but instead form a massless 
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prophoton at rest in the original center-of-mass coordinate system. The fact that the E = 0 form is 

apparently always reached in the process is consistent with the observation noted above, namely 

that only in this state can a system of zero rest mass travel with less than the speed of light. 

Intuitively, such a result seems essential in order to have the required transition from the initially 

stationary p+ and p- systems to occur with finite probability. The same argument also explains 

why all the energy of a photon is given up in the photoelectric effect and other absorption 

processes, even though the energy and momentum conservation laws do not in themselves 

require this result (see Chapter III.C). At the same time, the greater activity of pions as compared 

to muons in the prophoton formation process is attributed to the unsaturated structure of the 

latter, which can be thought of as heavy electrons with    adjuncts. At scattering energies below 

100 MeV, this distinction between muons and pions is no longer critical, which explains why the 

muons are stable with respect to pion formation under such conditions, as is observed in the 

study of cosmic rays. 

In addition to providing a theory of elementary particles which is governed by a strict 

elemental balance of protons, electrons, neutrinos and their antiparticles, the XBPS model also 

gives insight into other processes which have aroused the interest of physicists over the past 

several decades. The longitudinal polarization of electrons and neutrinos in beta decay is noted to 

follow a simple rule (Chapter VIII.C), whereby the direction of each of their momenta is 

invariably found to be (predominantly) parallel to that of its magnetic moment. In the case of 

neutrinos this conclusion is based on the signs of their respective charge-to-rest-mass ratios 

needed to obtain the observed binding energies of the neutron and its antiparticle. Heavier 

systems such as the proton and muon do not follow the above rule, but this behavior is easily 

understood on the basis of the conservation of energy and linear momentum laws. The latter 

would always have to be violated in such cases in order to allow conformance with the above 

correlation found between the respective directions of the magnetic moments and momenta of 

lighter particles. 

With these observations in mind, it can be noted that the concept of a neutron or muon as a 

“molecule” composed of certain elements, rather than as a single fundamental particle itself, 

opens up a new possibility for explaining the observed polarization effects in the decay of these 

systems. Each of the constituent particles in such a decaying system can be expected to be 

subject to its own distinct field (due to damped Breit-Pauli interactions in the present model), and 
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this circumstance could lead to correlations between the momenta and spins of such species 

similar to those observed. If the decay particles are simply created at the time of the 

decomposition of a single particle, no comparable assumption is warranted in the absence of 

external fields, which is the basis of the argument against parity conservation in such 

experiments. Thus the creation-and-annihilation hypothesis for material particles can be seen as a 

key underlying assumption in the long-accepted interpretation of the longitudinal polarization 

phenomenon accompanying these decay processes. 

Once the creation-and-annihilation hypothesis is seen to be non-essential in explaining 

other classes of observations in modern physics, however, the possibility arises that it also might 

not be essential in this area either. This observation in turn suggests that parity might well be 

conserved in all physical processes after all. Instead, the above correlation found between 

momentum and magnetic moment directions is seen to be consistent with the expected effects of 

the short-range interactions of the Breit-Pauli Hamiltonian, which would tend to force the spins 

of each of the decay particles into alignment with the respective partial fields acting on them. If 

the field gradients are always positive at the location of the particles immediately after the decay 

process begins, the latter would not only rotate so that their magnetic moments (or their 

equivalent in the case of the short-range neutrino interactions) become parallel to their respective 

fields, they would also be accelerated in that direction as well (Stern-Gerlach effect). Such an 

inertial effect for the incipient fields arising at the time of beta decay would thus explain the 

longitudinal polarization phenomenon without requiring that the Hamiltonian employed not 

commute with the parity operation. In addition, it can be noted that most (if not all) experimental 

attempts to provide evidence for parity violations in other contexts are inconclusive because they 

employ external perturbations which themselves do not commute with this operation. Typical 

examples are use of an electric field to induce a dipole moment in an atom or of a radiation field 

to demonstrate optical rotation. Since each of these fields is ungerade, it is impossible to know if 

the effect observed stems from some inherent property of the free-space Hamiltonian or from the 

effects of the applied perturbation itself. 

Recognition of the above uncertainties in the parity non-conservation argument suggests 

(Chapter IX.B) that one should re-examine the theoretical arguments which led Yang and Lee to 

propose the idea in the first place. Their solution to the - puzzle involves a clear assumption 

about the parity of the pion, namely that it is negative. One usually attempts to justify this choice 
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on the basis of experiments in which low-energy negative pions are scattered from deuterons, but 

it is well-known that no definitive conclusion based on experiment alone can be reached 

regarding the parity of any of the participants in this reaction. Instead, one ultimately uses the 

fact that a choice of negative parity for the pion would allow an assignment of positive parity to 

both the proton and neutron, which at best is only made plausible by an argument based on 

isospin theory. Nor can it be argued that only by assuming a negative pion parity can any of the 

experiments be satisfactorily interpreted which are thought to provide evidence for parity 

violations in nature. In fact, the situation is quite the opposite, namely if the parity of the pion is 

positive, there are no difficulties whatsoever in understanding why a given system might decay 

into both an even and odd number of them, as is observed for both charged and neutral kaons 

(and other systems). With this background in mind, it is interesting to note that the calculations 

of the XBPS model indicate that the parity of each pion is positive, while it is that of the neutron 

in the relevant d- scattering experiments which is negative. This finding ultimately rests on the 

fact that the phanton ground state is computed to have 0- symmetry in the present model, and the 

same result is obtained for the analogous e-   complex which is thought to be a constituent of the 

neutron. Finally, it is important to note that if parity really is conserved in all natural processes, 

as these considerations strongly suggest, then there is also no reason to doubt that both the 

charge-conjugation and the time-reversal operations are perfectly conservative, since previous 

claims to the contrary have been based on the same types of experimental evidence as discussed 

above. 

Another puzzling characteristic of the behavior of neutrinos may also be connected with 

the existence of massless phanton systems (Chapter VIII.D), namely the unexpectedly low cross 

sections observed for the reactions of solar neutrinos arriving at the earth’s surface. Under 

laboratory conditions the reaction producing the neutrinos is assumed to involve a massless    

system according to the present model. The antineutrino is used to form a neutron, while the 

neutrino is released with high energy. Because of the 106-107 °K temperature in the sun's core, 

however, a different distribution of photrino translational states is expected there than on the 

earth, in close analogy to what one knows for the black-body radiation spectra of photons under 

the same two sets of conditions. If a significant number of dissociated    species are present in 

equilibrium with their bound counterparts in the solar environment, it seems at least conceivable 

that a rather large fraction of the key fusion processes known to occur there would be induced by 
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free antineutrinos. In such reactions no neutrinos would be emitted thereby destroying the simple 

relationship which has been used in predicting the outcome of the solar neutrino measurements 

made at the earth's surface.  

The key unknown quantity in this proposal is clearly the height of the energy barrier for 

photrino dissociation, but the expected higher reactivity of free antineutrinos vis-a-vis bound    

species could also be a significant factor in reducing the fraction of neutrino-producing fusion 

processes occurring on the sun as compared to what is observed at ordinary temperatures. This 

example provides a clear illustration of how the phanton hypothesis differs from the creation-

annihilation concept. The present model assumes a well-defined structure for the    system 

normally required to cause the fusion reactions of interest to be balanced, but this leaves open the 

possibility that such a composite particle may behave differently under one set of experimental 

conditions than another. By contrast, to remain consistent with the creation-annihilation 

hypothesis, it must be assumed that the environment can have no effect of this nature, because in 

this view the neutrino and antineutrino are thought to be non-existent prior to the reaction's 

occurrence. 

The present study has also led to a reassessment of certain theoretical aspects connected with 

quantum mechanical theory in general, one of which has been alluded to in the preceding 

paragraph. To begin with, it is argued that the coupling between particles and antiparticles 

implicit in the multi-component Dirac formalism is probably not essential (Chapter X.A). 

Instead, it can be assumed from linear algebra that a unitary transformation exists which leads to 

a diagonal form for the corresponding Hamiltonian representation without affecting the constant 

energy matrix for a time-independent process. In the transformed representation the desired 

results can always be obtained through the solution of ordinary (one-component) Schrödinger 

equations. The example of the free-particle Dirac equation demonstrates that only one such 

diagonal term in the transformed Hamiltonian may actually be needed to obtain all physically 

meaningful information regarding the original system of interest. Especially since the XBPS 

Hamiltonian has a domain including all possible spin orientations of the system being treated, 

there is no reason in principle that it should not be capable of a complete description of its states. 

One can consider such a Hamiltonian as a representation of all physical interactions from 

the point of view of an observer who is at rest at the origin of the coordinate system employed. 

This interpretation necessitates the introduction of a separate spatial coordinate vector for each 
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particle under consideration but only a single time variable. Such a Hamiltonian depends only on 

the coordinates and conjugate momenta in the observer’s inertial system and otherwise contains 

only relativistic scalars such as the charges and rest masses of the particles being considered, 

while the energy operator E is that originally introduced by Schrödinger. Solution of the 

corresponding differential equation does not lead .to a single result, however, but rather an 

infinite number of eigenvalues and eigenfunctions, representing all possible degrees of 

translational motion as well as the complete set of internal states of a given system. Observers in 

inertial systems moving relative to one another simply associate a different energy and charge 

distribution with the same physical event. 

In this view, classical relativistic relationships such as time and mass dilation and length 

expansion must be used to predict which energy and wavefunction each observer will decide 

agrees best with his own perception of the same experiment. This leaves open the possibility that 

the principle of relativity can be completely satisfied (see Chapter X.C) in such a theoretical 

formulation by employing the same form for the (H-E) operator in each inertial system, without 

requiring that it be Lorentz-invariant itself. By employing the relativistic free- particle kinetic 

energy operator for each particle in the XBPS Hamiltonian, one guarantees Lorentz invariance in 

the limit of large interparticle separations, while the use of the Breit-Pauli interactions at least 

potentially accounts for the Lorentz invariance of classical electromagnetic interactions as well. 

Whether any Hamiltonian can be found which contains suitably damped short-range interactions 

of the type required to obtain a consistent representation of the strong and weak interactions 

while still having H-E remain invariant under an arbitrary Lorentz transformation is exceedingly 

doubtful, however, primarily because of the fact that only the first derivative of the time 

coordinate appears in the energy operator itself. 

The above argument indicates, however, that this circumstance may not preclude a 

satisfactory representation of high-energy phenomena as long as the principle of relativity is 

fulfilled in the proposed manner. Ultimately, one can justify this view with the aid of the Bohr 

correspondence principle. In other words, the quantum mechanical Hamiltonian only needs to 

satisfy the Lorentz invariance condition in the classical limit in which Planck’s constant 

effectively vanishes. Neither the strong nor the weak interaction can be properly formulated 

within the framework of classical physics, however, and thus the inability to describe them in a 

covariant form in no way contradicts the observation that all phenomena in the classical limit are 
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uniquely represented through the application of suitable Lorentz transformations. Once one 

leaves the classical domain, however, it is only clear that the principle of relativity itself must 

remain in force, but as the above argument shows, the quantum mechanical formulation in terms 

of the Schrödinger or related differential equations allows this condition to be satisfied without 

requiring Lorentz invariance of the associated H-E operator. 

The fact that the XBPS Hamiltonian cannot be separated into two parts which depend 

exclusively on internal and center-of-mass coordinates, respectively, means that its 

eigenfunctions cannot be factorized in the usual way. Instead, a coupling of the two types of 

motion is produced through the mixing of free-particle eigenfunctions of the same |k| but 

different angular momentum quantum number 1. Hence k is retained as a good quantum 

number, as must be the case in view of the commutation of the corresponding operator with the 

total Hamiltonian, but the internal portion of each wavefunction may change with the degree of 

translational motion. In this way the two eigenfunctions selected by observers in two different 

inertial systems moving relative to one another can correspond to different translational states 

of the same internal state without having identical properties (Chapter X.B).  

The Breit-Pauli interactions are partially responsible for the coupling of the internal and 

center-of-mass motion and the extent of such effects is seen to increase in a straightforward 

manner with the magnitude of the translational energy. The covariant formulation of the Dirac 

equation implies that a separation of the center-of-mass motion is always possible, but this has 

the consequence that internal properties such as the electron-proton separation in hydrogenic 

systems are independent of the magnitude of their translational energy, which is inconsistent 

with experimental observations. Ultimately, it can be argued that the insistence on such a 

covariant form for the Dirac theory not only is responsible for the high accuracy of its 

predictions in the field of atomic and molecular physics, but also for its well-known inability to 

account for higher-energy interactions such as occur in the study of nuclei and elementary 

particles. 

By assuming that photons and other phantons are present in large quantities 

everywhere in the universe, it is possible to return to the early view of fields in physical 

theory as arising exclusively from the interactions of particles. A picture of physical 

reality emerges which is similar to that espoused by Newton three centuries ago, as well 

as to the atomic theory of Democritus of much earlier origin. The conclusion that particle 

dynamics could not explain such properties of light as refraction at an interface of two 

media of different density can be shown to have rested on an improperly non-relativistic 

description of the motion of photons (Chapter X.F). Employing the de Broglie and Bohr 



292 

 

frequency relations leads to a different conclusion, however, namely that the wavelength 

of light must decrease upon entering the medium of higher density while the frequency 

remains the same. Consequently, it must be expected that the velocity of light decreases 

upon entering the denser medium, as actually observed, even though its momentum 

increases at the same time. 

The conclusion that photons have an intrinsic angular momentum is also shown to depend 

on the assumption that they are created at the time of emission accompanying atomic 

transitions. The present calculations indicate that the lowest massless state of the photon is a 

singlet and that the experimental finding of a non-zero spin for energetic photons simply 

verifies the fact that in electric-dipole transitions one unit of angular momentum is transferred 

from the atomic system to the photon with which it interacts. 

More generally, it is pointed out that the wavelike properties of photons and other 

material objects can only be observed when a stream of such particles is allowed to interact 

with the measuring device, even though no more than one such particle may be in the apparatus 

at any one time. In this view there is simply a connection between the temporal and spatial 

distributions of a collection of particles of the same type having the same translational energy 

and momentum, as given by the de Broglie and Bohr frequency relations. It is this systematic 

character of the motion of particles under the same conditions which produces the experimental 

results generally interpreted as being consistent with wavelike behavior.  

The Born interpretation of the absolute square of the wave function as a probability 

distribution is compatible with such a view, especially when the effects of the system’s 

translation are taken explicitly into account. The main question which has raised doubts about 

such a purely statistical interpretation has revolved around the finding that probability itself is 

non-additive in the theory, but rather only the wavefunctions which are used to compute the 

pertinent distribution function. In the Young interference experiment with coherent radiation, it 

has been consistently argued that photons at the source have no means of “knowing” whether 

one or both slits of the apparatus are open. The key observation is that the intensity distribution 

observed for the case when both slits are open is not simply obtained by adding the 

corresponding distribution which results when one of the slits is open and the other closed to 

that resulting for the complementary arrangement. It has often been argued that this result is 

only understandable if a given particle can pass through both openings on the way to the 

screen, i.e. that it possess delocalized character generally only associated with wavelike 

substances. 

By rejecting the assumption that space can be free of material particles and replacing it 
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instead with the concept of ubiquitous photons everywhere in the universe, a mechanism 

presents itself, however, which does allow particles at the source of the Young apparatus to be 

aware of the condition at the slits allowing passage to the screen beyond (Chapter X.G). As a 

consequence, the need to redefine the original meanings of particle and wave in order to explain 

the Young interference phenomenon is eliminated. Thus even the paradox of wave-particle 

duality is seen to be intimately tied up with the hypothesis that material elements can be created 

and destroyed in physical transformations. By rejecting this position and holding instead that 

indestructible elements do exist in nature, it is found that there really is no proof that massless 

particles cannot exist in sufficient density throughout the universe and thereby produce the 

results of the Young interference experiment. 

Finally, a mechanism is suggested whereby the definition of the quantum mechanical 

wavefunction can be extended to enable it to contain more information about a given system 

than could be deduced on the basis of expectation values of dynamical variables. The possible 

relevance of this subject to the understanding of the Einstein-Podolsky-Rosen paradox has been 

discussed (Chapter X.H), particularly from the point of view of whether the results of 

experiments involving individual particles might not in fact be generally predictable. In cases 

where no physical means exists to distinguish one particle from another, however, it is clear that 

even such additional theoretical information would not be sufficient to allow an assignment of 

different outcomes of experiments to specific members of the ensemble. 

In summary, the present model asserts that a consistent theory of elementary particle 

interactions can be built upon the premise that all matter ultimately is composed of electrons, 

protons, neutrinos and their antiparticles. Such a model is characterized by fundamental 

conservation laws, the most basic of which requires that the same elements are present before, 

during and after every physical process. Each of the above elements is assumed to be perfectly 

stable and to possess a point charge distribution. There is no unambiguous experimental finding 

which stands in contradiction to this view. A model based on the existence of only point 

particles as the constituents of all matter is the ultimate concretization of the theory of the Greek 

philosopher Democritus which holds that the only physical realities are “Atoms and Voids,” and 

most importantly in the present context, that the former are absolutely indestructible. A point 

particle has no volume and thus can never be divided into even more elemental parts. To the 

elemental balance principle is added the energy, linear and angular momentum conservation 

laws. Parity is assumed to commute with the corresponding Hamiltonian, similarly as do the  

charge conjugation and time reversal operations. 

On this basis, it is suggested that there may be no need to assume that particles exist which 
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are not composed of the above elements. The present model also does not make use of a number 

of theoretical quantities invented in the quantum age, such as isospin, hypercharge and the muon 

quantum number. Such a development in no way precludes the utility and relevance of these 

properties. Rather, it questions whether they are essential to the goal of understanding all 

processes involving elementary particles. In a similar vein, while the quark model in its various 

forms has been quite successful in predicting the existence of hitherto unknown elementary 

particles, as well as elucidating the symmetry relationships which exist among such systems as a 

whole, it can still be argued that such explanations may not be unique. Furthermore, there is a 

fundamental relationship connected with treating particles as basis functions for an irreducible 

representation of a group which seems questionable given the lack of experimental observations 

to support it. The classical applications of group theory in quantum mechanics, such as the 

description of angular momentum, allow for equivalent irreducible representations for which 

different basis sets are employed (for example, real and complex 12 eigenfunctions). One 

knows, for example, that the choice of such angular momentum basis functions can be 

systematically varied by changing the direction of an applied magnetic field for atomic Zeeman 

effect experiments.  

To demonstrate the analogous relationship in elementary particle physics, it is necessary 

to find different linear combinations of degenerate particles, as it were, for a particular 

irreducible representation. When the original basis functions are of opposite charge, as is the 

case for pions and kaons, for example, this would mean isolating a particle with non-integral 

electric charge, something which has never been found in any experiment to date. While it is 

easy for a theoretician to construct arguments which rationalize the failure to discover such 

hybrid charged particles in nature, it also can be argued that the real reason for this development 

is that the true elements which nature has provided us are completely immutable, regardless of 

any external force which might be applied to them. 

In the absence of the positive identification of particles with fractional electric charges, 

one can ask the question as to whether a theory which only requires the existence of known 

stable particles as the sole building blocks of nature may not ultimately be sufficient to explain 

all measureable phenomena. The present model thus envisions the universe as consisting 

exclusively of point particles joined together by forces which, with the exception of gravity, are 

not greatly different than those envisioned in the Dirac equation. In particular, the same 

Hamiltonian is used to represent the electromagnetic and weak interactions, and additional 

proton-proton interactions have been investigated, suggested to a large extent by the success of 

the nuclear shell model, which give promise of ultimately incorporating a quantitative 
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description of the strong interaction in the present model as well. The fact that the creation and 

annihilation of material particles can never be unambiguously verified by purely experimental 

means should serve as a strong impulse toward the further development of such an alternative 

theoretical model, one that avoids making the above assumption and instead requires a strict 

elemental balance in all naturally occurring processes. 
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