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Abstract 

It is pointed out that application of the Doppler effect to sound waves created by airplanes leads 

to the conclusion that when they are accelerated to the speed of sound (Mach 1), the wavelength 

decreases to zero (λ=0).  The de Broglie relation between momentum and wavelength (p=h/λ) 

which was used to predict electron diffraction therefore indicates that the momentum p of the 

carrier molecules of the waves must become unbounded (p=mv=∞) at that point.  It is argued 

that it is this singularity which is responsible for the phenomenon of sonic booms.  The 

frequency of the waves is not affected by the motion of the airplane, however, consistent with 

an argument used by Einstein in his prediction of the gravitational red shift.  A close 

relationship between this interpretation for the behavior of sound waves and the corresponding 

theory of light refraction is noted.  It is shown that in both cases Einstein’s mass-equivalence 

relation E=mc2 is violated.  
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I. Introduction 

Sonic booms occupy a special place in the history of the physical sciences.  It is a 

phenomenon which has been experienced in everyday life.  They can be heard while walking 

down the street without the aid of special equipment.  The sound barrier responsible for them 
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represented a special challenge to airplane pilots which was first overcome in a memorable 

flight by Yeager in 1947. Anyone could experience them firsthand during a supersonic flight 

of the Concorde over the Atlantic.   

Yet, no consistent explanation for their existence has ever been given by theoretical 

physicists.  It seems highly unlikely that relativity theory is required for this purpose since the 

speeds involved are much smaller than for light in free space.  They originate at relatively low 

altitudes above the Earth, so the effects of gravitational fields can safely be ignored in searching 

for an answer as well.  Maxwell’s theory of electromagnetism seems irrelevant since no 

electrical or magnetic fields appear to play any significant role.  Does the theory of quantum 

mechanics provide a possible clarification? Or does the more modern theory of quantum 

chromodynamics solve this puzzle?  The discussion below is aimed at 

removing any uncertainty about why sonic booms occur.   

 

II. Observation of Sound Waves   

When an airplane passes a certain point, it produces sound waves with a constant speed 

v which possess a wavelength λ0 and frequency ν0.  As the plane heads into the waves with 

speed w relative to their origin, the waves are compressed together, thereby resulting in a 

reduction in wavelength, as determined quantitatively by the Doppler effect, to have a value of 

λ=(1–w/v)λ0.  The frequency of the waves that reach the airplane is not affected, however, i.e. 

ν=ν0, by its motion, since the same number of wave crests is emitted from the source per unit 

of time regardless of the value of w.  The same argument about constant frequencies was given 

by Einstein [1,2] in conjunction with his prediction of the gravitational red shift for light waves 

emitted near the sun’s surface. When the airplane accelerates and the value of its speed w<v 

relative to the original source of the sound waves increases, the wavelength λ decreases in 

accord with the Doppler formula but neither the speed v nor the frequency ν of the waves 

changes as a result.   

As the value of w gets quite close to v, i.e.to Mach 1 in the scientific literature, it is clear 

from the Doppler formula that the value of the wavelength gradually approaches zero. At this 

point in the discussion, it is important to recall the Davisson-Germer electron diffraction 

experiment [3]. It was found that the result of passing 54 ev electrons through a nickel crystal 

is a wave pattern whose wavelength is quantitatively consistent with the de Broglie [4] quantum 

mechanical relation between momentum p and wavelength p=h/λ, where h=6.625x10-34 Js.  

Planck’s constant h also appears in the relation [5] between energy E and frequency ν, i.e. 
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E=hν.  Both relations are believed to be completely general, applying to both photons and 

particles with non-zero rest mass μ.  In the present case, one is dealing with what one can 

loosely describe as “air molecules” as the carrier of the sound waves instead of electrons as in 

the Davisson-Germer example. In reality, air is composed of both O2 and N2 molecules plus 

small amounts of rare gases and CO2.  In the present discussion it is permissible to treat them 

as molecules with an averaged value of μ. 

So, what happens as the airplane approaches Mach 1?  First of all, since the wavelength 

λ is close to zero, the momentum p of the carrier molecules becomes unbounded (p=∞) 

according to the de Broglie relation p=h/λ.  The value of p changes with time during 

acceleration.  As a result, a force F is generated by the motion, which in accord with Newton’s 

Second Law, is equal to the time derivative of the momentum, i.e. F=dp/dt.  The direction of 

this force is the same as that in which the airplane is headed. 

What happens to this force?  It clearly can have no effect on the molecules themselves 

since it has been generated internal to their motion.  This is consistent with the fact that the 

speed of sound remains constant throughout, i.e. dv/dt = 0.  Moreover, their energy E also does 

not change, which is consistent with the Planck relation [5] since the frequency of the sound 

waves is also not affected by the motion of the airplane. Instead, the force acts on its 

surroundings, which would account for the sonic boom phenomenon, and also on the gyrations 

experienced by the airplane in the Mach 1 range. 

Yet, if the speed of the molecules continues to have the same value v as before, how can 

the momentum p change so substantially.  This is theoretically possible from the definition of 

momentum as p=mv only if the relativistic mass m of the carrier molecules is also unbounded 

(m = μ times ∞).  It needs to be recognized, however, that this condition is inconsistent with 

Einstein’s original prediction [6]: 

   0.52 2m 1 v c μ γμ
   , (1) 

since v is finite and c is the speed of light in free space (299792458 ms-1).  It should be noted 

that eq. (1) is closely akin to Einstein’s famous mass/equivalence relation: 

 2E mc . (2) 

By squaring both sides of eq. (1) and multiplying by c4, while defining the rest energy E0 to 

have a consistent value of μc2, the result is: 

 2 2 2 2
0E p c E   (3) 
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which is another key relation in Einstein’s theory [6].  Thus, if the interpretation in terms of 

the de Broglie and Planck relations is correct, it becomes necessary in this application to 

disregard key results of Einstein’s theory of relativity.  

 

III. Mass-Energy Equivalence and Light Refraction 

There is precedent for combining relativity theory with applications of the de Broglie [4] 

and Planck [5] quantum mechanical relations.  It is found in the phenomenon of light refraction, 

which has had a great impact on the development of physical theory over a period of several 

millennia.  It is something that is easily observed with the naked eye and yet it took until the 

early 17th century before it was first possible to formulate a mathematical expression (Snell’s 

Law of Sines) that successfully described it on a quantitative basis.  Shortly thereafter, Newton 

[7] used light refraction to illustrate his Second Law and to support his corpuscular theory of 

light.  However, his views clashed with those of Huygens and other proponents of the wave 

theory of light, especially in that the two theories led to opposite predictions of the change in 

the speed of light as it enters water from air [8].   

Newton’s arguments are based on the diagram shown in Fig. 1.  He concluded that Snell’s 

Law of Sines could be explained by assuming that there is a force perpendicular to the interface 

between the two media.  On this basis, the component of momentum in the transverse direction 

should be the same in air/ free space as in water  This leads to the following equation for the 

two momentum values p1 and p2 present on either side of the interface (θ1 and θ2 are the 

respective angles of incidence and refraction): 

 1 1 2 2p sinθ p sinθ . (4) 

The index of refraction ni for a given medium is defined as the ratio of the two sine values 

indicated in Fig. 1.  Specifically, if p1=p0 is the value of the momentum of the light particles in 

free space and p2=pi is the corresponding value for the medium, the index of refraction ni is 

equal to: 

 1
i

2

sinθ
n

sinθ
 , (5) 

so that  

 i i 0p n p . (6) 

By virtue of the definition given in eq. (5), the momentum of the light particles is thus directly 

proportional to the index of refraction, i.e.: 
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 1 2

1 2

p p

n n
 . (7) 

The index of refraction is obtained experimentally by measuring the wavelength of light 

in the medium, not its momentum.  In this case, there is an inverse proportionality involved, 

however, not the direct proportionality in eq. (6), namely: 

 0
i

i

λ
λ

n
 . (8) 

If one combines eq, (7) with eq, (6), the result is:  

 i i 0 0p λ p λ , (9) 

i.e. pλ is the same for all media, which in turn is clearly consistent with the de Broglie relation 

(pλ=h) [4] discussed in Sect. II as potentially responsible for sonic booms. 
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Fig. 

1. Diagram showing the refraction of light at an interface between air and water.  The relation between angles of 

incidence θ1 and refraction θ2 in terms of the refractive indices ni (Snell’s Law of Sines) of the two media was 

viewed by Newton as a clear application of his Second Law of kinetmatics, according to which the component of 

the photon momentum pi parallel to the interface must be conserved. 

 

The Planck E=hν relation [5] is also consistent with light refraction observations.  Both 

the energy and frequency of the light waves are unchanged as they pass into another medium.  

Newton surmised that the energy was constant because the monochromatic colors of light 

emerge unchanged at the opposite end of a prism.  No interference of waves at the interface is 

grounds for believing that the frequency of the waves is also not changed.  Hence, it can be 

concluded on that basis that both light and sound waves satisfy both the quantum mechanical 

relations [4,5]. 
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The situation with the velocity of light was certainly not so clear in the 18th century, 

however.  As discussed above, Newton [7] took the view that his prediction of an increase in 

the momentum of the particles of light was a clear indication that the light speed in water was 

greater than in air.  On the other hand, Huygens and his wave theory of light concluded that the 

light speed is smaller in water because the wavelength of the light waves is less there.   

In 1834 Hamilton derived his Canonical Laws of Motion, the simplest of which is given 

below: 

 
dE

v
dp

 . (10) 

Ironically, the derivation is based on Newton’s Second Law.  Energy E is related to the applied 

force F = dp/dt on the object moving a distance Δx in the same direction: 

 
dp dx

dE Fdx dx dp vdp
dt dt

    . (11) 

For light in free space, v=c in eq. (10) for all wavelengths, so upon integration with respect to 

p, one obtains: 

 E pc . (12) 

Newton concluded in eq. (7) that p is proportional to n in refractive media, so on this basis it is 

possible to generalize eq. (12) [8-10] by replacing p with p/n: 

 
pc

E
n

 . (13) 

The true speed of light vg in the refractive medium is obtained by applying eq. (10) to the 

definition of E in eq. (13): 

 g 2
g

dn
dE c c dp

v – pc
dp n n n

   . (14) 

By applying the de Broglie p=h/λ relation [4], one obtains the dependence of the light speed 

on wavelength (ng is the group refraction index): 

 g 2
g

dn
c c dλv λc
n n n

   . (15) 

This relationship has been derived exclusively on the basis of Newton’s corpuscular theory of 

light [7].  It indicates, however, that the speed of light in water is less than in air, contrary to 

what he assumed in the 18th century.  As such, eq. (14) amounts to a correct prediction of the 

experiment carried out by Foucault in 1850 (more details of the history of physicists’ reaction 
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to the latter experiment are given elsewhere [8-10]).  Moreover, the best measurements [11-

13] that have been carried out subsequently indicate that eq. (14) is exact.  In addition, the 

observed dependence of ng on light frequency ν can be obtained as follows from eq. (13) by 

assuming the Planck energy-frequency relation E=hν: 

 
   

g g

d pc d nE Edn νdn
n c / v n n

dE dE dE dν
       . (16) 

Stark [14,15] was the first to use the p=h/λ relation with respect to light in free space, 

before de Broglie [4] generalized it to all forms of matter.  He made use of Planck’s E=hν 

relation [5] in connection with eq. (12): 

 
E hν h

p
c c λ

   . (17) 

Stark also concluded on this basis that particles of light (photons [16]) in free space have inertial 

mass since by definition, p=mv=mc in the present case: 

 2

p E h
m

v vc c


   . (18) 

For light in a refractive medium, the value of the photon’s mass changes to: 

 g

2

g

nhν
nn hνp cm

cv c
n

   . (19) 

Accordingly, the value of mc2 in this case is: 

 2
g gmc nn h nn E  . (20) 

As a result, it is clear that Einstein’s mass-energy equivalence relation of eq. (2) does not 

always hold. 

Consequently, there is no reliable deduction from relativity theory that rules out the 

situation discussed in Sect. II, namely where the particle momentum changes without the 

energy doing so as well.  If the average mass m0=μ of the air molecules changes by a factor of 

α to α m0, for example, by analogy to eq. (20), with the original energy E having a value of E0, 

it follows that: 

 2 2
0 0mc αm c αE αE   . (21) 

 

IV.  Conclusion 

When an airplane passes a given point, it generates sound waves with a definite speed 

(v).  In accord with the Doppler effect, the plane heading into the waves at speed w causes a 
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compression of their wavelength by a factor of (1- w/v). Consequently, as the plane accelerates, 

the value of the wavelength therefore steadily decreases.  One knows from experiments with 

electron diffraction that there is a quantitatively well-defined relation between the momentum 

p of the electrons and the wavelength λ of the associated waves, namely the de Broglie 

equation, p = h/λ, where h is Planck’s constant.  Applying the de Broglie relation to the case of 

a rapidly moving airplane leads to the prediction that the momentum of the particles, in this 

case primarily O2 and N2 molecules, that carry the sound waves will approach a value of infinity 

as the speed of the plane nears that of sound (v=w, Mach 1).  It then decreases from the peak 

value after Mach 1 is exceeded as the acceleration continues still further.  This result is 

therefore consistent with both the Doppler effect and the de Broglie relation.  

The value of the momentum increases over time toward Mach 1 as acceleration proceeds, 

so according to Newton’s Second Law of Kinetics, F = dp/dt, there is a force acting in the 

direction of the airplane’s motion.  The closer the speed w of the airplane approaches Mach 1, 

the greater this force.  This is an explanation for the occurrence of the sonic boom.  This force 

acts on the airplane and on the surroundings in general, but not on the carrier molecules 

themselves.  As a result, the speed of sound v itself is not affected by the momentum change, 

however.  This is consistent with the fact that the frequency of the waves is not affected by the 

airplane’s motion either.  The peaks of the sound waves still keep coming at the same rate, 

independent of the airplane’s motion.  Einstein made use of the analogous conclusion in his 

successful prediction of the gravitational red shift.  According to the other key quantum 

mechanical formula, Planck’s Radiation Law E=hν, it therefore follows that the energy of the 

sound waves remains constant even though their momentum increases toward ever larger 

values. 

The latter conclusion in not consistent with Einstein’s mass-energy equivalence relation 

(E=mc2), however.  There is precedent for this inconsistency. in the phenomenon of light 

refraction.  In that case, application of the de Broglie and Planck formulas leads to eq, (20), 

which states that the mass of the photons is given by eq. (19).  As a consequence, it is found 

that the product of m with c2 is equal to nngE, i.e. an extra factor of the product of the refractive 

index n and group refractive index ng is required to obtain the observed relationship between 

mass and energy in this case.  So it is clear that the E=mc2 formula is by no means completely 

general and can be ignored in the present case involving sound waves. 

It also is shown that the application of the two quantum mechanical formulas succeeds 

in accurately predicting the experimental value of the speed of light in water and other 
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refractive media [see eqs. (14-16)].  It is noted that this result not only serves as a verification 

of the generality of the two quantum mechanical formulas, but also of the corpuscular theory 

of light espoused by Newton in the early 18th century as well.  It is ironic that Hamilton’s 

Canonical Laws (ca. 1834), which are instrumental in the latter derivations themselves, follow 

directly from Newton’s Second Law of Kinetics. If these relationships had been acepted in 

Hamilton’s lifetime, physicists could have been spared the ubiquitous claims which continue 

to the present day, that light, contrary to what Newton assumed over three centuries ago, is not 

composed of particles/photons,  
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