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Abstract 

 One of the most characteristic aspects of Einstein’s special theory of 

relativity (SR) is its conclusion that two clocks in motion can both be running 

slower than the other from the vantage point of their respective observers.  It is 

pointed out that this symmetric view of the measurement process has never been 

confirmed experimentally.  Indeed, when investigations involving the necessary 

two-way communication between observers/detectors have been carried out, it has 

invariably been found that the rates of clocks can be unambiguously ordered on 

the basis of the following empirical formula:  τ1 γ(v10) =  τ2 γ(v20), where v10 and 

v20 are the speeds of the clocks with respect to a specific rest frame such as that of 

the earth’s midpoint   [γ (v) = (1-v2/c2)-0.5].    The general attitude toward the 

failure of SR to anticipate the objective character of the latter timing results has 

been to consider them as falling outside the stated range of applicability of the 

theory (only uniformly translating systems).  It is shown, however, that 

experiments such as the Ives-Stilwell study of the transverse Doppler effect and 

the determination of the lifetimes of rapidly moving metastable particles can also 

be explained quantitatively in terms of the above empirical formula.  A different 

approach is therefore suggested in the present work, namely to eliminate an 

undeclared assumption in Einstein’s derivation of the Lorentz transformation 
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(LT) and replace it with the condition that the above timing law be adhered to on a 

completely general basis.  The resulting theory is shown to satisfy Einstein’s two 

postulates while at the same time being consistent with the principle of complete 

objectivity in the measurement process for all physical quantities.  

Keywords: Time dilation, Lorentz transformation, objectivity of measurement, 

standard units, velocity transformation 

 

 

 

 

I. Introduction 

The time-dilation phenomenon was predicted by Einstein [1] in his 

original work on the special theory of relativity (SR).  It was a consequence of the 

Lorentz transformation (LT) which he derived in the same paper.  On this basis he 

was led to conclude that the effect is characterized by a definite symmetry 

whereby observers in relative motion would each find that it was the other’s clock 

that was running slower.  However, the symmetry could be broken under certain 

circumstances in his view.  He speculated that a clock located at the Equator 

would run slower than one at either of the Poles by virtue of the fact that it was 

undergoing constant acceleration due to the rotation of the earth about its axis.  

On this basis it was possible to distinguish between the two clocks in a way that is 

not possible when they are in uniform relative motion.  Whether this was an 

operationally meaningful distinction for the time-dilation phenomenon in general 

was left to be decided by future experiments.  In particular, Einstein pointed out 

that a transverse Doppler effect should be observed as a direct result of time 

dilation in the rest frame of a light source, and that this fact could be the basis for 

useful tests of his predictions. The development of atomic clocks has greatly 

facilitated efforts to obtain a comprehensive understanding of the effects of 

motion on the rates of clocks, but one crucial experiment of relevance to this 

general topic has yet to be carried out, as will be discussed in the following.    
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II. Quantitative Measurements of Time Dilation 

Einstein’s treatment of the transverse Doppler effect led to the following 

relation [1-3] between the emitted frequency νe of a light source moving with 

speed v relative to the observer and the corresponding measured frequency νr in 

the latter’s rest frame:  

     νr  = νe(1 – v2/c2)0.5 = γ-1νe .                                                            (1) 

Because v is always less than the speed of light in free space c (299792458 m/s), 

it follows that the observed frequency is less than the emitted value in all cases 

(γ>1).  This result is a direct consequence of the symmetric nature of the time- 

dilation phenomenon as predicted by Einstein in his 1905 paper [1].  If two 

observers exchange identical light signals, it follows from eq. (1) that each of 

them will measure a decrease in frequency (red shift).  Aside from the value of the 

emitted frequency, the only information required in the above formula is the speed 

v of the light source relative to the observer.  As such, eq. (1) is perfectly 

consistent with the general conclusion that a moving clock will always appear to 

have a lower rate than one in the rest frame of the observer. 

 Nonetheless, Einstein did not insist that this subjective view of the 

measurement process holds in all cases.  He predicted in the same paper [1], for 

example, that a clock at the Equator should run slower than one located near a 

Pole because of its greater speed of rotation about the earth’s axis. Although he 

did not give an explicit formula for the way in which clock rates vary with latitude 

on the earth’s surface, it is a simple matter to derive one based on the above 

prediction.  Accordingly, the elapsed time τ measured for a given event is 

inversely proportional to γ (v0), where v0 is the speed of the clock relative to the 

rest frame of the earth’s midpoint.  The corresponding equation for the elapsed 

times τ1 and τ2 of two clocks located at arbitrary latitudes is therefore, 

               τ1γ(v10) =  τ2γ(v20),                                                                           (2) 

where v10 and v20 are their respective speeds relative to the above reference frame.  

This result can be converted into a transverse Doppler formula analogous to eq. 

(1) by noting that measured frequencies are inversely proportional to clock rates.  

Hence, in this case the receiver and emitter light frequencies are related by:  

               νr/γ(vr0) =   νe/γ(ve0),                                                                         (3) 
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where the speeds of the two measuring devices are again determined relative to 

the earth’s midpoint.   

It is evident that the predictions of the two Doppler formulas are quite 

different from one another.  This is particularly evident for an exchange of light 

signals.  Whereas on the basis of eq. (1), both observers would measure a red 

shift, eq. (3) indicates that a blue shift will be observed in one direction and a red 

one in the other since the ratio γ(vr0)/γ(ve0) can be either greater or less than unity.  

The former situation arises when the receiver is moving faster relative to the polar 

axis than is the light source, whereas it never occurs upon application of eq. (1).  

From a practical point of view, a major distinction is that it is impossible to apply 

eq. (3) without first specifying a definite reference frame from which the 

velocities of the receiver and light source are to be measured.  In the following we 

will refer to this frame as the objective rest system (ORS) to emphasize the fact 

that it is always possible in principle to say which of the two clocks is running at 

the slower rate on this basis.  In the case of eq. (1), it is sufficient to know the 

relative speed v of the receiver and emitter, but this has the consequence that the 

measurement process becomes subjective: it is just a matter of one’s perspective 

which clock is running slower. 

Ives and Stilwell were the first to carry out tests of the transverse Doppler 

effect [4,5].    They studied the emission from excited hydrogen atoms moving in 

an evacuated tube in opposite directions at high speed in the laboratory.  Their 

results were in quantitative agreement with eq. (1) to within acceptably large error 

bars (estimated to be 10-15% [6]).  Similar results were obtained at about the 

same time by Otting [7].  The degree of accuracy in this experiment was improved 

over time, with Mandelberg and Witten [6] reporting agreement with the 

transverse Doppler formula to within about 5% in 1962.   

However, it should be noted that the above results also are in satisfactory 

agreement with the other Doppler formula given in eq. (3).  The speed of the light 

source (ve0) in the study of Ref. [6] was on the order of 0.008 c, whereas the 

laboratory spectrometer was moving at a much lower speed (vr0) relative to the 

earth’s midpoint of about 10-6 c.  Substitution of these values in eq. (3) gives a 

predicted Doppler shift of effectively the same magnitude and direction (red shift) 

as that obtained with eq. (1).  The precision of the experiments is insufficient to 
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allow for a meaningful decision as to which of the two formulas is more reliable.  

A clear distinction would be possible, however, if the conditions of the 

experiment could be changed so that vr0> ve0, i.e., so that the frequency of light 

emitted from the laboratory rest frame were to be measured with a spectrometer 

co-moving with the hydrogen atoms.  In that case one would still expect a red 

shift based on eq. (1), whereas a blue shift of the same magnitude is indicated on 

the basis of eq. (3).  It is quite understandable why such a variant of the Ives-

Stilwell experiment has not been carried out to the present day, but this fact also 

emphasizes why it is not possible to distinguish between the subjective [eq. (1)] 

and the objective [eq. (3)]  theories of the transverse Doppler effect on the basis of 

this type of investigation. 

Another approach to studying the transverse Doppler effect was made 

possible by the availability of high-speed rotors and the discovery of the 

Mössbauer effect.  Hay et al. [8] mounted a 0.86 Å 57Co x-ray source near the axis 

of an ultracentrifuge with a 57Fe absorber located close to the rim.  This 

arrangement provided not only provided for the required transverse orientation, 

but also for the critical test case in which the emitter is moving more slowly in the 

laboratory than the receiver.  Two other variants [9-10] of this experiment were 

reported shortly thereafter.  Champeney et al. summarized their results for the 

Doppler shift as follows: Δν/ν = (va
2 – vs

2)/2c2, where va and vs are the respective 

speeds of the absorber/receiver and the x-ray source relative to the axis of the 

ultracentrifuge.  First of all, it is clear that this empirical formula is in clear 

disagreement with the transverse Doppler prediction of eq. (1).  A blue shift was 

recorded for the case when the detector is mounted on the rim of the 

ultracentrifuge (va > vs), whereas only a red shift is expected on the basis of the 

latter equation.  On the other hand, the objective version of Einstein’s theory of 

the transverse Doppler effect in the form of eq. (3) is quantitatively verified by the 

observed findings.  This is seen by substituting νe = ν and νr = ν + Δν and 

expanding the γ factors in Taylor series with vr0 = va and ve0 = vs (in this case the 

rotor axis serves as the ORS relative to which both speeds are to be measured). 
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III. Sherwin’s Dual-theory Approach  

The authors of the three ultracentrifuge studies each noted that the 

observed results could be explained in terms of Einstein’s equivalence principle 

[11] and the gravitational red shift [12].  The difference in gravitational potential 

ΔΦ between two points on the rotor is computed by equating the centrifugal 

acceleration to a radial gravitational field [13].    The expected Doppler shift Δν/ν 

= -ΔΦ/c2 is then found to agree with the empirical formula cited above.  However, 

it was also claimed that the same result can be obtained directly from SR.  For 

example, Champeney et al. [10] stated that the expression for the observed 

frequency shifts “may be obtained either in terms of the time dilatation of special 

relativity or in terms of the pseudo-gravitational potential difference between 

source and absorber.”  This assessment overlooks a basic fact, however, namely 

that their results stand in contradiction to the prediction for the transverse Doppler 

effect given in Einstein’s original paper [1].  In particular, interchanging the 

positions of the light source and the absorber on the rotor leads to a reversal in the 

sign of the measured frequency shift, contrary to what one expects from eq. (1).  

The clock which experiences the greater acceleration always runs at a slower rate.  

It is not just a matter of the perspective of the observer. 

The surprising asymmetry of the transverse Doppler shifts was discussed 

in detail by Sherwin [14] shortly after the results of Hay et al. [8] had been 

published.  He pointed out that the rotor experiments were of significance because 

of the “completely unambiguous nature of the result,” and he attributed the fact 

that one clock can be uniquely identified as running slower than the other to the 

fact that they were not both in uniform translation during the course of the 

experiment.  He made a clear distinction between inertial and non-inertial systems 

in this connection, asserting that in earlier experimental verifications of time 

dilation, such as the Ives-Stilwell study [4] and the lifetime measurements of 

metastable particles [15,16], the clock rates are ambiguous because only uniform 

translation is involved.  He then raised a “fundamental question” as to why inertial 

frames are privileged above all other reference frames.   

To summarize Sherwin’s analysis, if at least one of the two clocks is under 

acceleration and is therefore in a non-inertial rest frame, one must apply the 

objective time-dilation formulas of eqs. (2-3) to predict relative rates; if, on the 
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other hand, both clocks are in uniform translation and are therefore at rest in 

inertial frames, the standard (subjective) treatment of time dilation in SR must be 

used.  In the latter case, one expects a red transverse Doppler shift in both 

directions based on eq. (1), whereas in the former, a blue shift will be observed 

from the standpoint of the clock which is more accelerated relative to some 

specific reference frame, such as that of the rotor axis in the Hay et al. 

experiments.  There is one set of rules for non-inertial systems, another for purely 

inertial ones.  

 The decision to use qualitatively distinct methods to make predictions of 

the amount of time dilation depending on the circumstances inevitably leads to 

questions about “boundary” cases:  what happens, for example, when an observer 

alternates between being in uniform translation at one moment as he makes his 

measurements to being slightly accelerated at another?  The situation can perhaps 

best be illustrated with a simple Gedanken experiment.  Consider a rocket ship 

overflying the North Pole.  A light signal is sent to it from the ground and its 

frequency is measured.  Let us assume for the sake of argument that the ship is 

slightly accelerating at this point.  According to the rules discussed above, it is 

necessary to apply the “objective” theory under these circumstances in order to 

predict the amount of the transverse Doppler shift.  To do this we need to take the 

earth’s midpoint as the reference frame (ORS) from which to compute vr0 and ve0 

in eq. (3).  Therefore, γ (ve0) = 1, whereas the γ value for the rocket can be quite 

large, say 106 in a specific case.  If the emitted frequency νe is c/500 nm, this 

means that the Doppler-shifted value on the rocket will be only c/500 fm (large 

blue shift).  However, at this precise moment, let us further assume that the rocket 

goes into cruising mode by virtue of a very slight breaking maneuver, meaning 

that the clocks onboard are suddenly in a state of uniform translation.  As a 

consequence it is now necessary to switch over to the “subjective” theory for 

purely inertial systems, i.e. eq. (1).  As a result, a large red shift is now predicted 

on the rocket (γ still has the same value as before), so that νr equals c/500 mm.  

However, application of a similarly small force can just as quickly bring the 

rocket into acceleration mode without significantly changing its velocity, in which 

case the predicted frequency is again c/500 fm, i.e. by virtue of eq. (3).  In effect, 

a hugely discontinuous change in Doppler frequency is predicted by the dual 
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theory for a thoroughly continuous and miniscule variation in the rocket’s 

velocity relative to the Pole.  Is this result at all plausible? 

There is another point to be considered as well, one of an experimental 

nature.  Sherwin bases his assertion that the SR version of time dilation in eq. (1) 

is well established on the basis of experiments [4, 15, 16] for which detection is 

made in the rest frame of the earth.  However, to confirm the “ambiguous” 

character of time dilation for inertial systems, it is necessary to carry out “reverse” 

experiments in which, for example, clocks co-moving with the high-speed 

metastable particles in Refs. [15,16] are used to measure the lifetimes of the 

identical particles at rest on the earth’s surface.  In the past it has been merely 

assumed that an increase in lifetime over the proper value would be observed in 

this case as well, but this is precisely what needs to be proven experimentally in 

order to confirm this aspect of SR.  This lack of experimental proof for the 

subjective theory of time dilation for inertial systems needs to be considered 

alongside the well-documented confirmation of the objective version of the theory 

for accelerated systems in the form of eqs. (2,3).  The possibility thus remains 

open that the symmetry ascribed to the time-dilation phenomenon by SR does not 

actually occur in practice.   

 

IV. Einstein’s Undeclared Assumption  

The preceding discussion has emphasized the failure of the symmetric 

Doppler formula of SR to anticipate the blue shift observed in the high-speed 

rotor experiments [8-10].  However, a potentially more interesting, and certainly 

more positive, fact emerges from a survey of the experimental data thus far 

obtained to study the effects of time dilation: all results for the transverse 

Doppler effect [4-10] as well as for the lifetimes of metastable particles [15,16] 

do square perfectly with the objective theory embodied in eqs. (2-3). The same 

can be said for the experiments with atomic clocks carried onboard 

circumnavigating airplanes [17].  In each instance it is only necessary to identify a 

unique reference system (ORS) from which to compute the velocities of the 

observer/receiver and the object of the timing measurements that are to be inserted 

in the appropriate formula.  In both the case of the airplane experiments and the 
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original transverse Doppler studies [4-7], the earth’s non-rotating polar axis (or 

simply its midpoint) serves this function.  In the Doppler investigations with 

ultracentrifuges, the ORS is the rotor axis.  There are no known exceptions to this 

rule and, contrary to Sherwin’s conclusion [15], there is still a good possibility 

that it will also hold for observers in uniform translation.  One only has to assume 

that application of the small forces needed to bring a given detector/receiver into a 

state of uniform translation while making its measurements has only a 

qualitatively insignificant effect on clock rates (see the example at the end of Sect. 

III).  

Given the fact that both the subjective (ambiguous) and the objective 

(unambiguous) formulations of time dilation were discussed and promoted in 

Einstein’s original work [1], it is interesting to consider how the former came to 

be favored by conventional SR.   The symmetric transverse Doppler formula of 

eq. (1) is based on the assumption of the invariance of the phase of plane waves 

under a Lorentz transformation (LT) [1,18].  A correspondingly symmetric 

formula for the variation of the lifetime τ of metastable particles with their speed v 

relative to a fixed observer is also derived in a straightforward manner from the 

LT [19]: 

  τ =τ0(1 – v2/c2)-0.5 = γτ0,                                                                    (4) 

where τ0 is the proper lifetime of the particles.   It is therefore clear that the 

subjective theory of time dilation is intimately tied up with the LT.  It is not 

possible to eliminate one without rejecting the other as well, and this explains why 

there has been insistence upon retaining the symmetric form of time dilation for 

inertial systems even though its application for accelerated Mössbauer absorbers 

in the rotor experiments has been shown to lead to false predictions.   

 It is therefore instructive to take a close look at the derivation of the LT 

given in Einstein’s paper [1], with special attention given to the question of how it 

ultimately leads to the predicted ambiguity in relative clock rates in SR.  On p. 

900 he arrives at a general form for the LT which contains a function φ that still 

needs to be defined in each of the four equations.  He states that “φ is a 

temporarily unknown function of v,” the relative speed of the two rest frames 

involved in the space-time transformation. It should be noted that he makes no 

attempt to justify this restriction on φ.  He simply states as a matter of fact that 
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such a function needs to be specified before the final form of the LT can be 

realized, and implies that there is no other choice but to assume that it can only 

depend on v.  This assumption has been used in many subsequent discussions 

(see, for example, Refs. [3, 20-25]) of the foundations of SR, always accepting 

without question Einstein’s assertion that φ must be at most a function of the 

relative speed v of the two rest frames. It should also be noted that the same 

function (denoted as ε) had been mentioned in the earlier work of Lorentz [26], 

although he did not make any restrictions with regard to its dependence on other 

variables at that time [23]. 

When one considers the possibility of choosing a different function to 

define the desired space-time transformation than Einstein did, two questions 

arise.  First, on what other variables might the function φ reasonably depend than 

just the relative speed v?  The answer to this question is best reserved until the 

second one is answered, namely what criterion should be used to distinguish 

between different choices for φ?  In the latter case, it is clear that one should base 

such a decision on experimental data.  This brings us back to eq. (2) and the 

objective formulation of time dilation.  This equation gives us a relationship 

between clock readings t and t’ that have been obtained in the two rest frames 

being considered.  We assume that a reference frame (ORS [27]) has been 

designated from which to compute the speeds of the two clocks that are referred to 

in eq. (2).  In order to make easy connection with Einstein’s formulas in his 

original work, it is helpful to make the following definition: 

t’ = γ (v0)t/γ (v0’) = Q-1t,                                                                    (5) 

where v0 and v0’ are the respective speeds of the two clocks relative to the ORS.  

At this point it is already clear that a different set of physical transformation 

equations must result than the LT because a simple proportionality is assumed 

between the two clock readings, with no involvement of any spatial coordinates.  

It should be emphasized that this relationship is not based on some theoretical 

assumption, but rather is taken over directly from the experimental data discussed 

in the previous sections from different time-dilation studies.   

We can combine this equation with the corresponding expression from the 

LT in order to fix the value of Einstein’s “unknown function” φ: 

                 t’ = φγ(t – xv/c2)  = Q-1t,                                                              (6) 
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where x is the position of the object of the measurement along the axis parallel to 

the relative velocity v of the two rest frames (the same definitions for coordinate 

axes are used as in Einstein’s original work, but the notation is changed to 

conform to present-day conventions [18-20]; v>0 corresponds to motion of the 

primed rest frame in the +x direction while its unprimed counterpart remains 

stationary).  Upon solving for φ, we obtain: 

                φ =  η(Qγ)-1,                                                                                  (7) 

where η = (1- xv/c2t)-1.   According to the coordinate definitions, the ratio x/t is 

just ux, the x-component of the velocity of the object of measurement.  This is the 

answer to the first of the two questions above; in the present formulation, φ is a 

function of both the relative speed v of the two rest frames and also the object’s 

speed component ux in the same direction.  The remaining three transformation 

equations are obtained by substituting the above value for φ in Einstein’s other 

three general equations: 

              x’ = ηQ-1(x – vt) 

              y’ = η(Qγ)-1y                                                                                    (8) 

  z’=   η(Qγ)-1z. 

The original LT [1] has much simpler relations for the coordinates in the 

transverse directions, namely y’=y and z’=z.  This is because Einstein’s 

assumption that φ can only be a function of v leads in a straightforward manner to 

the conclusion that φ = 1.  Goldstein [28] has argued that such a simple form for 

the equations for these coordinates is essential because they correspond to 

directions perpendicular to the relative velocity, but again there is no a priori 

justification for such a conclusion, just an intuitive feeling that this should be so.  

The corresponding relations for these coordinates in eq. (8) indicate instead that 

there can be a difference in normalization between the respective primed and 

unprimed variables, but at least that there is no mixing between the two 

perpendicular directions.   

Division of eq. (8) by the time variables in eq. (6) leads directly to the 

same relativistic velocity transformation (VT) as Einstein obtained in his original 

work [1]: 

                       ux’ = (1 – vux/c2)-1(ux - v) = η(ux - v)  

                       uy’ = (1 – vux/c2)-1 uy/γ = ηγ-1uy                                            (9)                                                       
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                       uz’ = (1 – vux/c2)-1 uz/γ = ηγ-1uz . 

In these equations the analogous definitions for the various velocity components 

of the object of the measurement are used as for ux above: ux’ = x’/t’, etc.  Indeed, 

any choice for φ in the general LT must lead to the VT because this function 

appears on the right-hand side of each of the former equations and thus is 

cancelled out when the relations for x’, y’ and z’ are divided by the corresponding 

equation for t’.  This is a quite significant result because it is the VT that is 

actually verified in the Fresnel light drag and aberration of starlight from the 

zenith observations [29, 30], and also Thomas spin precession [31].   It is 

sometimes claimed [32] that the latter effects are direct confirmations of 

Einstein’s LT, but this view overlooks the fact that any choice for φ in the 

generalized LT, including most specifically that of eq. (7), accomplishes the same 

result.   

 The underlying reason for this state of affairs is that the only information 

that is used by Einstein [1] to that point in his derivation is his second postulate, 

the constancy of the speed of light in free space.  It is only when more than merely 

relationships between the object’s velocity components is required that one even 

has to start thinking about the extra degree of freedom that the function φ (or ε in 

Lorentz’s original work [26]) represents.  It also should be clear that the only 

definitive means of determining a unique value for this “unknown” function is on 

the basis of experimental data.  In retrospect, it is understandable that Einstein 

decided that the way out of this dilemma was to make an additional assumption 

about the functional dependence that could reasonably be expected for φ.   Since 

he had already decided that a clock at the Equator must run slower than its 

counterpart at one of the Poles [1], it is nonetheless surprising that he didn’t call 

upon this conclusion in reaching his goal of a space-time transformation with no 

free parameters.  The result would have been an objective theory of measurement 

in general, and of time dilation in particular, that would have quantitatively 

anticipated the results of the rotor experiments that were carried out over a half-

century later.  

 The VT of eq. (9) involves limiting values of the ratios of infinitesimal 

quantities.  This suggests a different approach to the definition of the origins of 

coordinate systems than Einstein used.  One can define a differential form of  
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eq. (7), namely 

                       dt’ = Q-1dt,                                                                                  (10) 

which can be used on an instantaneous basis, and then multiply the VT with it to 

obtain  a differential form for the corresponding spatial coordinates analogous to 

eq. (8):                                                                                    

                       dx’ = ηQ-1(dx – vdt) 

                       dy’ = η(Qγ)-1dy                                                                            (11) 

           dz’=  η(Qγ)-1dz. 

There is no need to assume that the spatial axes for the primed and unprimed 

systems coincide exactly when t = t’ = 0, contrary to what is conventionally done 

with the LT.  The quantities γ and η as well as the relative speed v are all defined 

for a particular point of time in eq. (11).  They do not have to be constant at the 

time application is to be made.  There is no need for the clocks in the two rest 

frames to be synchronized, only that their rates adhere to the proportionality 

specified by the parameter Q at the time of measurement.  Once two clocks are 

running at strictly proportional rates, it is always possible to adjust their readings 

so that they coincide exactly so long as this ratio does not change.  Relativity 

enters into the process of synchronization only when the speed of light needs to be 

used to compute differences in the time of the actual event and the respective 

arrival times of the corresponding information to the two observers and their 

clocks.  The salient point is that quantities such as frequencies and lifetimes 

involve differences in clock readings and are completely independent of the time 

of day in which they are made. 

 There are significant distinctions between the two Lorentz space-time 

transformations discussed above, despite the fact that they both satisfy Einstein’s 

second postulate of the constancy of the speed of light in free space.  The most 

important of these is the objective character of eqs. (6,8) and (10,11) as opposed 

to the well-known subjective approach to measurement that is inherent in 

Einstein’s LT.  According to the latter, there are circumstances in which observers 

can legitimately disagree as to which of two clock rates is slower.  This possibility 

is excluded in the former version, which will be referred to as the objective 

Lorentz transformation (OLT) in the following discussion.  This difference shows 

up in the way time dilation is described in the two theories, namely in the 
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symmetric form of eq. (4) derived from the LT as opposed to the inverse 

proportionality of eq. (2) in the OLT.  There is also an operational distinction in 

the way they are used. The LT version only requires knowledge of the relative 

speed v of the two rest frames and thus can be applied without having any further 

information concerning the whereabouts of the two clocks in the universe.  By 

contrast, the OLT formula given in eq. (2) needs a specific reference frame [27] 

from which to compute the speeds that are to be inserted in the two γ quantities 

before it can be successfully applied.  The symmetric time-dilation formulas of 

eqs. (1,4) can be shown to be simply special cases of eqs. (2,3) once this is 

realized.  We will return to this point in the next section.   

 Another key distinction lies in the fact that, as already mentioned, the 

space-time mixing in the LT that has been the subject of so much discussion is 

completely absent in eqs. (6, 10) of the OLT.  Instead, a strict proportionality 

between the timing measurements made with clocks in different rest frames is 

assumed.  This relationship is of great practical consequence in the design of the 

Global Positioning System (GPS).  The frequency of the atomic clock carried on 

the satellite in a circular orbit is “pre-corrected” so that it will be the same as that 

of an identical clock on the earth’s surface.  The formula used to determine the 

amount of the correction is based on eq. (2), using the speed of the satellite 

relative to the earth’s center to compute the required γ factor. 

 Another major distinction shows up in the Lorentz invariance equation: 

               x’2 + y’2 + z’2 – c2t’2= φ2(x2 +  y2 +  z2 – c2t2).                               (12) 

The LT simply has φ = 1 and thus the invariance equation exhibits perfect 

symmetry between the primed and unprimed variables.  The analogous expression 

for the OLT on the other hand has a distinctly asymmetric appearance.  In the 

general case symmetry merely requires that the analogous inverse relationship be 

satisfied: 

                x2 +  y2 +  z2 – c2t2= φ’2 (x’2 +  y’2 +  z’2 – c2t’2).                            (13) 

In this case φ’ is obtained by interchanging the primed and unprimed variables in 

φ and changing the sign of the relative speed v therein (the same operation leads 

to the inverse equations for the OLT, also as for the LT).  In the usual way, by 
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carrying out the transformation successively in the forward and reverse directions, 

one is the led to the condition: φφ’ = 1.  The quantity η’ is defined accordingly as   

 (1+ x’v/c2t’)-1 = (1+ ux’v/c2)-1.  The above condition therefore becomes  

     φφ’ =ηη’/QQ’γ2 = 1.                                                                      (14) 

Substitution of the definitions of η and η’ shows that their product is equal to γ2. 

and QQ’=1 because of the requirement that the two conversion factors must be 

the reciprocal of one another in an objective formulation.  This point will also be 

discussed in more detail in the next section.  As with the space-time mixing 

characteristic of the LT, there has never been an experimental confirmation of 

Lorentz invariance, so its violation in the OLT does not conflict in any way with 

the latter’s use as the relativistic space-time transformation. 

 It is also interesting to consider Einstein’s argument against absolute 

remote simultaneity [1] by comparing with the objective formulation based on eq. 

(2).  The basic idea can be simply formulated in terms of light pulses on an 

airplane that traverse equal distances (D) but in opposite directions (+x and –x).  

Let us assume that the airplane is moving at speed v along the + x axis relative to 

an observer on the ground.  Einstein’s point was that the distance travelled would 

also be D but that the speed of the pulses relative to the observer would be 

different, unlike the case for a local observer on the airplane.  He therefore 

concluded that the pulses would arrive simultaneously for the latter, but at 

different times for the former.  This conclusion contradicts the VT, however, 

according to which both observers must measure the light speed to have the same 

value c in both directions [33].  That is of course the great mystery of his second 

postulate, that “c+v” somehow is the same as “c-v,” but that is what is found 

when these values are substituted in eq. (9).  If the clocks on the airplane run Q 

times slower than those on the ground, as assumed in eqs. (5,6) of the OLT, that 

only changes the values for the elapsed times of the light pulse traversals for the 

two observers.  Each one still finds that the times for the forward and backward 

pulses are equal and hence that the events are simultaneous for both [33].  The LT 

leads to a different conclusion because it assumes that the spatial and temporal 

variables are mixed [i.e., by setting φ = 1 in eq. (6)], so that the times for the 

forward and backward pulses would not be equal in this case.  
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An even easier way to see that the LT is not a physically valid 

transformation is to compare its two predictions of remote non-simultaneity and 

time dilation.  On the one hand, it is concluded that time differences ΔT and ΔT' 

measured for the same two events on clocks in two different rest frames must 

always be strictly proportional to one another, i.e. ΔT'= XΔT.  On the other hand, 

because of the prediction of remote non-simultaneity, it must follow that ΔT = 0 

(condition of simultaneity) on one clock and yet ΔT'≠0 on the other.  It is evident 

that the proportionality inherent in the time-dilation relationship rules out the 

existence of remote non-simultaneity, in clear contradiction to the expectations  

based on the LT.  

 It can also be argued that absolute remote simultaneity plays a critical role 

in the GPS procedure [34,35].  After all, it would be pointless to compare clock 

readings on the satellite with those on the ground (even after the rate on the 

satellite had been corrected to be the same as for clocks on the ground) if the time 

of emission of a radar signal were not simultaneous in the two rest frames.  One 

can argue that the accuracy of the GPS procedure is not sufficient to distinguish 

between the OLT and LT in this respect, but at least this discussion makes clear 

that there is empirical evidence in favor of absolute remote simultaneity and that 

the OLT provides theoretical justification for it.  The OLT has also been referred 

to as the GPS-LT because of its relevance to the operation of the Global 

Positioning System [36,37]. 

 

V. Rational Units and the Relativity Principle  

 The use of a rational system of units in physical theories is based on the 

principle that different observers must always agree on the relative amounts of 

any given quantity.  It is assumed that the only way two observers can 

legitimately disagree on the numerical value of a measurement is because they use 

different units to express their results.  In that case it is always possible to use a 

“conversion factor” that allows one to change from one unit to another.  The 

symmetry principle of SR precludes such an arrangement because it holds that 

observers in relative motion will each find that it is the other’s standard clock that 

is running slower or the other’s meter stick that is shorter.  As discussed in Sect. 
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II, experimental confirmation of this prediction is surprisingly non-existent, 

however, despite frequent assertions to the contrary [14].  Indeed, every 

observation of time-dilation phenomena as yet reported can be quantitatively 

explained by assuming that there is complete objectivity in all physical 

measurements, specifically in terms of eqs. (2, 6).    

It is therefore important to carefully consider the feasibility of employing a 

system of rational units in describing the results of measurements for which the 

observer and the object of the investigation are moving at high speed relative to 

one another.  The Ives-Stillwell experiment [4] provides a useful example.  There 

are two rest frames of interest, the laboratory L in which the spectrometer is at 

rest, and that of the rapidly moving hydrogen atoms H emitting the radiation.  A 

red shift is observed due to the time-dilation effect in the rest frame H.  A simple 

way to express this result is to assume that the unit of time in H is larger than in L 

by a factor of γ, i.e. it is γ s in H and 1 s in L [38].  The observer at rest in H 

measures the period of the (standard) radiation to be T in his units (γ s).  Since the 

observer in L employs a smaller time unit, he must use a “conversion factor” of γ 

to obtain the corresponding value of the period measured in his rest frame.  He 

therefore multiplies T with γ to make his prediction and obtains the observed 

result of γ T in his units (s).    The two numerical values are different as a result, 

even though the actual period of the radiation is the same for both.  Moreover, the 

same factor can be used for any measured elapsed time in H to convert the result 

to the corresponding value observed in L.   

The problem with a subjective theory of measurement arises when one 

attempts to reverse the process, i.e. to predict the elapsed time observed in H for 

an event that has occurred in L.  The reason is because the conversion factor in 

this direction is assumed to be the same as in the original case.  The symmetry 

principle of SR demands this.  Thus if L reports a period of γ T in his units (s), the 

same as above, H must multiply this value by γ because SR holds that he will 

observe L’s clock to run slower by this amount.   He therefore obtains a result of 

γ2 T in his units in this case, not the original value of T, even though we are 

dealing with exactly the same amount of time in L in both cases.     

It is obvious from the above example that any attempt to introduce the 

concept of a rational set of units into SR ultimately leads to nonsense.  This result 
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is inescapable because of the subjective character of the theory.  It’s as if two 

observers decide to use km (A) and m (B) to express their respective length 

measurements, but to use the same conversion factor in comparing their results.  

Observer A reports a value of 1 km and B converts it to 1000 m in his units.  But 

then A takes B’s result of 1000 m and converts it to 1000000 km to convert it 

back to his units.  The absurdity of this approach is self-evident and this explains 

why one rarely sees the question of conversions between different units even 

discussed in SR, much less analyzed in a comprehensive manner.  The argument 

that measurement does not have to be objective in an a priori sense is certainly 

well taken as a general premise, but there should at least be some concrete 

experimental evidence that definitively rules out this possibility before the idea is 

rejected on a definitive basis. 

There is a source of confusion that needs to be dealt with when attempting 

to reduce the discussion of comparative measurement to easily intuitive concepts, 

however.  In the Ives-Stillwell example discussed above, it needs to be 

emphasized that both observers are under the distinct impression that they are 

expressing their measurements in the same standard unit (1 s).  This is because 

there is no way that they can deduce any change in the rates of local clocks in 

their respective rest frames since they all change in a completely uniform manner 

as they are accelerated.  Any observation to the contrary would be inconsistent 

with the Relativity Principle.  One has to make comparisons with the rates of 

clocks that are moving with respect to them in order to detect any changes, and 

then the obvious assumption is that it is the clocks in the “other” rest frames 

whose rates have changed, not those in their own rest frame. 

Nevertheless, this state of affairs does not preclude the use of standard 

units in an objective version of relativity theory.   In the case of the Ives-Stilwell 

experiment discussed above, one must begin by assuming that the observers in 

rest frames L and H each think their standard unit is 1 s.  In order to compare their 

respective elapsed-time measurements, it is simply necessary that they use the 

appropriate conversion factor in each case.  The relation in eq. (2), or more 

directly its simpler form in eq. (6), is the basis for making this determination.  The 

conversion factor is Q in one direction, but application of simple algebra shows 

that it is the reciprocal, Q’ = 1/Q, in the other.   
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In the Ives-Stilwell experiment, both observers measure the period of the 

radiation in their own rest frame to have the same value of T s.  One knows, 

however, that clocks in H run γ times slower than their identical counterparts in L.  

The conversion factor for L is therefore equal to γ, whereas the corresponding 

value for the observer in H is 1/γ.  This explains why the laboratory observer 

records a red shift for radiation emitted from H.  He finds that the period of the 

incoming radiation is γ T s in his units, i.e. longer than the standard value.  When 

he sends radiation from an identical source to H, the observer there measures a 

shorter value (blue shift) of T/γ s in his system of units.  There is no disagreement 

between the two observers as to which period of radiation is shorter, namely that 

emitted from the hydrogen atoms at rest in H.  They simply disagree with regard 

to the respective numerical values in their own system of units.  Accordingly, the 

observer in L finds that the radiation coming from H has a period of γ T s as 

compared to the locally measured value from the identical source of T s.  At the 

same time, H finds that the period of the standard radiation in his rest frame is T s, 

whereas that coming from L has a period of T/γ s in his units.  The ratio of the two 

measured values is clearly the same in both rest frames (γ T vs. T in L and T vs. 

T/γ in H), so the objectivity principle is satisfied quantitatively.  More to the 

point, the absolute values of the two frequencies/periods of the radiation are the 

same for both observers once the distinction in their respective units is taken into 

account. As a consequence, the observer in H sees a blue shift for radiation 

emitted from the rest frame of L, while his counterpart in L necessarily observes a 

red shift for the reverse process.  The latter experiment was actually carried out by 

Ives and Stilwell [4,5] and others [6,7], but the other, in which the observer is co-

moving with the fast-moving hydrogen atoms in the laboratory, has not.   

On the other hand, the empirical formula reported for the frequency shifts 

in the rotor experiments [8-10] indicates explicitly that a blue shift is measured by 

one observer (the one located at the rim of the ultracentrifuge and thus moving 

faster) and a red one by the other who is located closer to the rotor axis.  The 

measurement process is clearly objective in this case and its results can be 

described in a transparent manner in terms of the difference in units employed by 

the respective observers. 
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The above analysis can easily be extended to other physical properties.  

The early experiments of Bücherer [39] confirmed Einstein’s prediction [1] that 

the inertial mass mi of a particle increases in direct proportion to γ (v), that is, with 

the same functional dependence as the lifetimes of muons [15,16].  The 

measurements were always made from the vantage point of a laboratory observer, 

however, so there is again no confirmation that the symmetry principle of SR 

holds for this property either.  The experience with the Doppler measurements 

with ultracentrifuges [8-10] indicates instead that there is no ambiguity [14] 

concerning the relative masses of two particles.  As a consequence, one can 

anticipate that an analogous relation to eq. (2) holds for the measured values of 

inertial masses, namely: 

               mi1 γ(v10) =  mi2 γ(v20).                                                                     (15) 

Qualitatively, this means that a mass at the rim of the ultracentrifuge is greater 

than one closer to the axis.  As a consequence, an observer at the rim would find 

that the inertial mass of an identical particle near the axis is smaller than that (the 

so-called proper mass) measured in his rest frame.  This conclusion follows 

directly from the general assumption that measurement is always an objective 

process.  There is never any ambiguity about which quantity is larger or smaller in 

a direct comparison according to this view, which finds experimental verification 

in the aforementioned experiments with ultracentrifuges.  One simply needs a 

conversion factor to go from the results obtained by one observer to those of 

another.  To help simplify matters, this factor (Q) is exactly the same as defined 

above for elapsed times in eq. (6), namely as a ratio of the two γ factors in eq. (2), 

whereby the same reference system is to be used to compute the relative speeds 

v10 and v20 as before.  In short, in the notation of eq. (6), 

                   mi’ = Q-1 mi.                                                                                  (16) 

 Not all physical quantities have different values for observers in different 

rest frames, however.  The prime example is the velocity u.  Einstein’s second 

postulate demands that observers all use the same unit of velocity.  Otherwise, 

they would measure different numerical values for the light speed c even though 

its absolute value is the same for everyone.  One consequence of this fact is that 

the measured values of both energy E and momentum p also have the same 
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conversion factor for different observers as for inertial mass in eq. (16) since E = 

mic2 and p =miu.   

The conversion factor for distance measurements r can also be deduced 

from the definition of velocity: 

               u’ = dr’/dt’ = dr/dt = u.                                                                      (17) 

Because of eq. (6) it therefore follows that 

dr’ = Q-1 dr,                                                                                             (18) 

i.e., distance measurements have the same conversion factor as elapsed times in 

the objective version of relativity theory.  This relation is clearly consistent with 

the modern definition of the meter as the distance travelled by a light pulse in 1/c 

s.  If the unit of time increases because of time dilation in a given rest frame, it 

follows that the distance travelled by the light in the above elapsed time must also 

increase by the same factor.  The increase is the same in all directions because of 

the vector relationship in eq. (18), and thus the conclusion in the objective theory 

is that time dilation is accompanied by isotropic length expansion.  This result 

again stands in clear contradiction to the corresponding prediction of SR, which 

states that length contraction generally accompanies time dilation.  Moreover, 

according to SR the effect is anisotropic, having its maximum along the direction 

of the relative velocity of the two inertial frames but showing no difference in a 

perpendicular direction (Fitzgerald-Lorentz contraction [1]).   

The conclusion of isotropic length expansion follows in a straightforward 

manner from a Gedanken experiment.  First, assume two observers are initially at 

rest in the same inertial system.  They measure the length of a metal rod at rest in 

this rest frame to have a value of D m.  This is done in each case by determining 

that the elapsed time required by a light pulse to traverse the length of the rod to 

be D/c s.  The metal rod and one of the observers (O2) are then accelerated until 

they reach a state of uniform translation with speed v relative to the other observer 

(O1) who is left behind.  Observer O2 again measures the length of the rod and, 

consistent with the Relativity Principle, finds the same results as before (D m and 

D/c s).  Because of time dilation, however, let us further assume that O1’s clock 

runs Q=γ times faster than O2’s.  He therefore measures the elapsed time for the 

light pulse to traverse the metal rod to have a larger value than before (γ D/c s) 

when it was not moving relative to him.  The value of the speed of light is still c 
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for O1, however, and so according to the definition of the meter he now measures 

the length of the metal rod to also be larger, namely γ D m.  How does one explain 

the difference in O1’s measured values?  He has not changed his velocity and thus 

his clock should still be running at the same rate during both measurements.  

Einstein’s light speed law continues to hold for him as well.  The only possibility 

left open is that the length of the rod has actually increased as it was transported 

to a different inertial system.  The measurement process is entirely independent of 

the orientation of the metal rod to O1, so it is also clear that his value for the 

length of the rod in the same in all directions.  In short, he has measured isotropic 

length expansion of the metal rod at the same time as he notes that the rate of O2’s 

clock has decreased as a result of the time dilation in its new rest frame. 

The theory can be formulated quite simply [40] in terms of the three units 

of the mks system, the meter, the kilogram and the second.  As discussed above, 

the magnitude of each of them increases by the same factor Q as the various 

standards of measurement move between inertial systems.  The variation in the 

units of all other physical quantities can be deduced in terms of their respective 

composition in terms of these three.  For example, the units of velocity and force 

F = dp/dt do not change at all (Q0).  The unit of angular momentum is Js or 

m2kg/s and thus varies as Q2.  The latter result leads to a prediction regarding the 

quantum mechanical energy-frequency relationship since Planck’s constant h has 

units of angular momentum.  Since energy varies as Q but frequency (as the 

inverse of the radiation period) as Q-1, it follows that their ratio must vary as Q2, 

consistent with the above result.  Thus, a study of the photoelectric effect based on 

the hydrogen-atom radiation in the Ives-Stillwell experiment is predicted to give a 

value for the energy/frequency ratio of γ2h Js, and hence with slightly greater 

kinetic energy for the ejected electrons than is the case when the radiation is 

emitted from the same source at rest in the laboratory. 

The role of physical units in an objective theory leads to a somewhat 

different formulation of the Relativity Principle than is commonly given in SR: 

The laws of physics are the same in every inertial system, but the standard units in 

which they are expressed generally differ.  This is because of the effects of 

acceleration on these quantities when the observer’s state of motion changes.  

Since the laws in question are equations involving various physical quantities, it is 
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obvious that their validity is not affected by any consistent change in units.  

Observers in different rest frames will generally disagree on the values of the 

individual quantities that appear in these equations, but the laws themselves are 

satisfied for each of them.   

As discussed above, such a simple approach to relativistic invariance 

cannot be used in SR because of the subjective character of the theory.  Einstein 

therefore took a different approach by demanding that the laws of physics be 

invariant to the LT connecting any pair of inertial systems [1].  The result is an 

aesthetically pleasing mathematical structure in which terms such as covariance, 

four-vectors, Minkowski diagrams and Lorentz groups play an essential role.  

Nonetheless, the ultimate criterion for judging the validity of a theory is its 

capacity to predict and otherwise explain the results of experiment.  The 

requirement of Lorentz invariance leads to quite specific relationships between 

measureable quantities that are often difficult to confirm empirically.  This is why 

the transverse Doppler investigations that have been carried out over the years are 

of such great importance.  In this case Einstein based his predictions on the 

condition that the phase of an electromagnetic wave must be invariant to an LT.  

The result for observation of radiation in the transverse direction is eq. (1), with 

its unequivocal prediction that the ratio of the receiver frequency to that emitted 

by the light source must always be equal to 1/γ (v), independent of whether the 

former is moving faster or slower in the laboratory.  The results of the 

ultracentrifuge experiments are not consistent with this prediction, however, since 

they show that the above frequency ratio can have any value.  In particular, as 

Sherwin [14] clearly pointed out, there is no question that it is the clock that is 

moving faster in the laboratory that runs with a slower rate, contrary to what is 

claimed in eq. (1).   

The derivation of the general Doppler formula in the objective formulation 

of the theory starts out by recognizing that the period T of the radiation at the light 

source is measured in local units.  The conversion factor Q given by eq. (6) is thus 

needed to change over to the unit of time employed by the clocks in the laboratory 

rest frame.  Aside from this, one must recognize that the measured frequency also 

depends on the traditional (non-relativistic) Doppler effect that takes account of 

the motion of the light source either toward or way from the observer.  The 
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pertinent factor for the corresponding period of the radiation is (1 – v cos χ /c) 

[41], where v is the speed of the source relative to the observer and χ is the angle 

of approach (χ = 0 is for motion directly toward the observer).  Note that the 

above factor is symmetric with respect to exchanging the rest frames of the light 

source and observer.  The combined formula including the effect of the different 

clock rates is not, however, because of the reciprocal relationship between the 

respective conversion factors (QQ’=1): 

         T’ =  Q-1 T (1 – v cos χ /c),                                                                   (19) 

where T’ is the value measured by the observer.   

The corresponding formula for wavelengths λ and λ’ is obtained by using 

the formula for the phase velocity of light in free space (λT-1 = λ’T’-1 = c).  The 

resulting equation agrees with the results of both the Ives-Stilwell and the 

ultracentrifuge transverse (χ = π/2) Doppler experiments, unlike the case for eq. 

(1) of SR.  It is also possible to generalize the above relation to include the effect 

of the gravitational red shift when the light source and observer are located at 

different altitudes.  This change only requires a second conversion factor which 

then needs to be multiplied with Q.  More details about the computation of the 

gravitational scale factors for the units of physical properties in the general case 

may be found in Refs. [40,42].  

 

VI. Conclusion  
One of the most striking aspects of Einstein’s SR theory is its prediction 

that time dilation is a symmetric phenomenon, whereby two observers in relative 

motion will each find that it is the other’s clock that has a reduced rate.   

However, a survey of the literature reveals that this claim has never been 

confirmed experimentally, despite frequent assertions to the contrary.  For this 

purpose it is clearly necessary to carry out a two-way experiment.  For example, 

the transverse Doppler studies of Ives and Stilwell were carried out with a fast-

moving light source and a spectrometer that is at rest in the laboratory, but not the 

other way around.  The analogous situation holds for the lifetime measurements of 

meta-stable particles.  The possibility thus remains open that if the observer were 

moving faster with respect to the laboratory than the radiation source, a frequency 

shift in the opposite direction would be measured in the transverse Doppler 
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experiment; similarly, the lifetimes of particles on the earth’s surface might be 

found to be shorter than their proper values if the measurements were carried out 

by an observer in a rocket ship.    

 An attempt to fill this information gap was made in 1960 in the form of 

transverse Doppler experiments in which a Mössbauer x-ray source and absorber 

were mounted on an ultracentrifuge.  The actual arrangement used by Hay et al. 

has the absorber near the rim of the rotor axis and thus moving faster in the 

laboratory than the light source.  The results were in direct contradiction to the 

predictions of SR.  The empirical formula obtained shows unequivocally that the 

measurement process is objective and that the sign of the Doppler shift does 

change when the positions of the absorber and source are reversed on the 

ultracentrifuge.  The rate of a given clock decreases with its speed relative to the 

rotor axis.  It is not a matter of the perspective of the observer as to which clock is 

running slower.  Sherwin theorized that the problem with SR is that it is only valid 

for uniform translation and thus is not applicable to the ultracentrifuge experiment 

because the absorber was under constant acceleration during the measurement 

process. This argument became considerably less convincing after the timing 

results for atomic clocks on circumnavigating airplanes became known ten years 

later.   Exactly the same relationship between the rates of the clocks and their 

speed relative to a reference system (the earth’s midpoint) was found as in the 

ultracentrifuge experiments.  In this case the degree of acceleration for the 

onboard clocks is not significantly greater than for laboratory clocks at rest on the 

earth’s surface.   The question thus arises as to whether it is reasonable to expect 

that the symmetric/subjective character of time dilation predicted by SR suddenly 

becomes inoperative because of the application of a small force to the clocks 

being compared.   

 In the present work another approach has been taken to resolving the 

conflict between theory and experiment with regard to time dilation.  It is pointed 

out that Einstein made a critical unsubstantiated assumption in his derivation of 

the LT, namely by claiming that a scaling parameter could only be a function of 

the relative speed v of the two rest frames involved.  This condition is easily 

shown to be responsible for the subjective character of SR.  The empirical data 

from time-dilation studies indicate that the rates of clocks in different rest frames 
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are strictly proportional to one another, and that their ratios can be evaluated 

quantitatively on the basis of their respective speeds relative to a specific 

reference frame. Einstein’s two postulates regarding the Relativity Principle and 

the speed of light are still satisfied upon making this change in the derivation, and 

the result is a different version of relativity theory in which the fundamental 

objectivity of the measurement process is directly incorporated.  Differences in 

the numerical values of physical properties obtained by two observers in relative 

motion are quantitatively explained on the basis of their use of a different system 

of units.  The laws of physics are the same in all inertial rest frames, in accordance 

with the Relativity Principle, and the conversion factors for the units of all other 

physical properties are seen to be directly related to the aforementioned clock-rate 

ratios.  The latter can be computed on the basis of the general time-dilation 

relationship in eq. (2) or by direct measurement on the basis of the transverse 

Doppler effect or the lifetimes of meta-stable particles.  Perhaps the best evidence 

for the viability of the objective version of relativity theory discussed in the 

present work is the fact that the above principles find everyday application in the 

GPS methodology, specifically through the proportionality assumed between the 

rates of clocks on the earth’s surface and those located on the participating 

satellites.  The resulting theory [43] is consistent with the principle of absolute 

remote simultaneity, which, just as the objectivity of measurement, has never been 

contradicted in actual experiments.  It also does not have to attribute special 

significance to inertial systems and is instead applicable on an instantaneous basis 

to rest frames of all kinds, thereby greatly extending its range of applicability over 

the subjective version of relativity theory Einstein introduced over a century ago. 

 

 

 

 

 

 

 

 

 



27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

 

1) A. Einstein, Ann. Physik 17, 891 (1905). 
2) J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New 

York, 1963), p. 364. 
3) C. M. Will, Phys. Rev. D 45, 403 (1992). 
4) W. H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 28, 215 (1938).  
5) W. H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 31, 369 (1941). 
6) H. I. Mandleberg and L. Witten, J. Opt. Soc. Am. 52, 529 (1962). 
7) G. Otting, Physik. Z. 40, 681 (1939). 
8) H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, Phys. Rev. 

Letters 4, 165 (1960). 
9) W. Kündig, Phys. Rev. 129, 2371 (1963). 
10) D. C. Champeney, G. R. Isaak, and A. M. Khan, Nature 198, 1186 (1963). 
11) A. Einstein, Jahrb. Radioakt. u. Elektronik 4, 411 (1907). 
12) A. Einstein, Ann. Physik 35, 898 (1911). 
13) R. D. Sard, Relativistic Mechanics (W. A. Benjamin, New York, 1970), p. 

319. 
14) C. W. Sherwin, Phys. Rev. 120, 17 (1960). 
15) B. Rossi and D. B. Hall, Phys. Rev. 59, 223 (1941). 
16) R. Durbin, H. A. Loar, and W. W. Havens, Phys. Rev. 88, 179 (1952). 
17) J. C. Hafele and R. E. Keating, Science 177, 166 (1972). 
18) J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New 

York, London, 1963), p. 363. 
19) J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New 

York, 1963), p. 359. 
20) J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New 

York, 1963), p. 355. 



28 

 

21) W. Pauli, Theory of Relativity, translated by G. Feld (Pergamon Press, 
New York, 1958), pp. 13, 72. 

22) R. D. Sard, Relativistic Mechanics (W. A. Benjamin, New York, 1970), p. 
62. 

23) A. Pais, ‘Subtle is the Lord…’ The Science and Life of Albert Einstein 
(Oxford University Press, Oxford, 1982), p. 125. 

24) R. Mansouri and R. U. Sexl, Gen. Relativ. Gravit. 8, 497 (1977).   
25) W. Rindler, Essential Relativity (Springer-Verlag, New York, 1977), p. 32. 
26) H. A. Lorentz, Versl. K. Ak. Amsterdam 10, 793 (1902); Collected Papers, 

Vol. 5, p. 139. 
27) R. J. Buenker, Apeiron 17, 99 (2010). 
28) H. Goldstein, Classical Mechanics (Addison-Wesley, London, 1950), p. 

193. 
29) R. D. Sard, Relativistic Mechanics (W. A. Benjamin, New York, 1970), p. 

108. 
30) A. Pais, ‘Subtle is the Lord…’ The Science and Life of Albert Einstein 

(Oxford University Press, Oxford, 1982), p. 118. 
31) L. H. Thomas, Nature 117, 514 (1926); Phil. Mag. 3, 1 (1927). 
32) C. W. Kilmister, Special Theory of Relativity (Pergamon Press, Oxford, 

1970), pp. 34-39. 
33) R. J. Buenker, Apeiron 15, 254 (2008). 
34) T. Van Flandern, in: Open Questions in Relativistic Physics, ed. F. Selleri  

(Apeiron, Montreal, 1998), p. 81. 
35) C. M. Will, Was Einstein Right? (Basic Books Inc., U.S, 1993), p. 272. 
36) R. J. Buenker, Astrophys. Aerospace Technol. 3 (2), 1-5 (2015). 
37) R. J. Buenker, J. Applied and Fundmental Sci. 2 (1), 1 (2016). 
38) R. D. Sard, Relativistic Mechanics (W. A. Benjamin, New York, 1970), p. 

95. 
39) A . H. Bücherer, Physik. Z. 9, 755 (1908). 
40) R. J. Buenker, Apeiron 15, 382 (2008). 
41) W. Rindler, Essential Relativity (Springer-Verlag, New York, 1977), p. 55. 
42) R. J. Buenker, Relativity Contradictions Unveiled: Kinematics, Gravity 

and Light Refraction, Apeiron, Montreal, 2014, pp. 113-120. 
43) R. J. Buenker, Relativity Contradictions Unveiled: Kinematics, Gravity 

and Light Refraction, Apeiron, Montreal, 2014, pp. 1-81. 
 

 
(August 27, 2017) 


	x’2 + y’2 + z’2 – c2t’2= φ2(x2 +  y2 +  z2 – c2t2).                               (12)
	x2 +  y2 +  z2 – c2t2= φ’2 (x’2 +  y’2 +  z’2 – c2t’2).                            (13)

