Energieoptimierung von Clustern
und
Spinodale Entmischung in Fluiden

Dissertation
zur Erlangung der Doktorwürde
im Fachbereich Mathematik und Naturwissenschaften
(Fachrichtung Physik)
der Bergischen Universität

vorgelegt von

HENDRIK KABREDE
aus Münster

Wuppertal im Juni 2004

WUB-DIS 2004-05
Vorbemerkung

Die vorliegende Arbeit gliedert sich in zwei Abschnitte

- globale Energieminimierung atomarer und molekularer Cluster
- spinodale Entmischung in einfachen Fluiden

In beiden Fällen liegen den Wechselwirkungen der Teilchen phänomenologische Kraftfelder zugrunde. Im ersten Fall handelt es sich um eine statische Anwendung von molecular modeling; im zweiten Fall um eine dynamische Anwendung. Gemeinsames Motiv ist die Untersuchung von räumlichen Dichteschwankungen in atomaren und molekularen Systemen. Im ersten Fall wiederum ist die Stabilität von Interesse; im zweiten Fall steht das Wachstum im Vordergrund.
Inhaltsverzeichnis

1 Energieoptimierte Cluster ... 9

2 Strategien zur globalen Energieminimierung 17
 2.1 Genetische Algorithmen .. 17
 2.2 Simulated Annealing .. 19
 2.3 Diffusionsgleichungs-Methode .. 21
 2.4 Monte Carlo Basin-Hopping .. 23

3 Ein neuer genetischer Algorithmus ... 26
 3.1 Detaillierte Vorstellung der Algorithmen 26
 3.1.1 Natriumchlorid-Cluster ... 26
 3.1.2 Wasser-Cluster .. 33
 3.2 Leistungstest und Leistungsvergleich 35
 3.3 Vergleich mit anderen Algorithmen 40

4 Cluster niedriger Energie .. 44
 4.1 Natriumchlorid-Cluster ... 44
 4.2 Wasser-Cluster .. 50

5 Zusammenfassung — Clusteroptimierung 65

6 Dynamik der Phasenseparation .. 66

7 Die Molekulardynamik-Methode ... 73
 7.1 NVT-Simulationen .. 73
 7.2 Starre Moleküle .. 77
 7.3 Vielteilchensysteme .. 81
 7.4 Auswertung der Simulationen .. 84

8 Theorie der Phasenseparation .. 90
 8.1 Anfangsstadium der spinodalen Entmischung 90
 8.2 Diffusive Systeme .. 92
 8.3 Kinetische Systeme .. 93
9 Molekulardynamik Experimente
 9.1 Spinodale Entmischung in Lennard-Jones-Fluiden 96
 9.2 Spinodale Entmischung von Wasser . 105

10 Zusammenfassung — Spinodale Entmischung 114
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel des Bildes</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Freie Energie verschiedener Minima eines Clusters</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Glättung einer Funktion mit der Diffusionsgleichungsmethode</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Flussdiagramm der genetischen Algorithmen</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Skalierung der Fitness</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Dynamische Anpassung der Anwendungswahrscheinlichkeit der genetischen Operatoren</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Vergleich verschiedener Varianten des genetischen Algorithmus I</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Vergleich verschiedener Varianten des genetischen Algorithmus II</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Durchschnittliche Anwendungswahrscheinlichkeit der genetischen Operatoren</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Vergleich verschiedener Algorithmen: Natriumchlorid</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Vergleich verschiedener Algorithmen: Wasser</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Natriumchlorid-Cluster-Minima aus 2-50 Ionen</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Natriumchlorid-Cluster-Minima aus 52-100 Ionen</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Energie der Natriumchlorid-Cluster</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Wasser-Cluster im SPC/E-Modell</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Wasser-Cluster im TIP3P-Modell</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Wasser-Cluster im TIP4P-Modell</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Anzahl und Abstand der O-O-Nachbarn</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Anzahl und Abstand der O-H-Brücken</td>
<td>57</td>
</tr>
<tr>
<td>4.9</td>
<td>Energie der Wasser-Cluster</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>Energie der Wasser-Cluster nach Anteilen</td>
<td>60</td>
</tr>
<tr>
<td>4.11</td>
<td>Volumen und Solvatationsenergie der Wasser-Cluster</td>
<td>61</td>
</tr>
<tr>
<td>6.1</td>
<td>Phasendiagramm eines Einkomponentensystems</td>
<td>67</td>
</tr>
<tr>
<td>6.2</td>
<td>Begrenzungslinien des Phasenkoexistenzgebietes</td>
<td>68</td>
</tr>
<tr>
<td>6.3</td>
<td>Phasendiagramm von Wasser</td>
<td>70</td>
</tr>
<tr>
<td>7.1</td>
<td>Energieerhaltung des Velocity-Verlet-Algorithmus</td>
<td>75</td>
</tr>
</tbody>
</table>
ABBILDUNGSVERZEICHNIS

7.2 Energieerhaltung des Molekulardynamik-Algorithmus für molekulare Systeme .. 80
7.3 Zeit je Molekulardynamik-Schritt: sequenziell ... 82
7.4 Zeit je Molekulardynamik-Schritt: parallel .. 83
7.5 Streuung an einer Kugel ... 87

9.1 Wahrscheinlichkeitsverteilung der Dichte im Lennard-Jones-System 97
9.2 Strukturfunktion des Lennard-Jones-Systems zu verschiedenen Zeitpunkten 98
9.3 Verstärkungsfaktor im Lennard-Jones-System ... 99
9.4 Maximum der Strukturfunktion als Funktion der Zeit im Lennard-Jones-System ... 101
9.5 Skalenverhalten der Strukturfunktion im Lennard-Jones-System 102
9.6 Räumliche Darstellung der Entmischung im Lennard-Jones-System I 103
9.7 Räumliche Darstellung der Entmischung im Lennard-Jones-System II 104
9.8 Wahrscheinlichkeitsverteilung der Dichte im Wasser-System 105
9.9 Strukturfunktion des Wasser-Systems zu verschiedenen Zeitpunkten 106
9.10 Verstärkungsfaktor im Wassersystem .. 107
9.11 Maximum der Strukturfunktion als Funktion der Zeit im Wasser-System 109
9.12 Skalierungsverhalten der Strukturfunktion im Wasser-System 110
9.13 Räumliche Darstellung der Entmischung im Wasser-System I 111
9.14 Räumliche Darstellung der Entmischung im Wasser-System II 112
Tabellenverzeichnis

3.1 Genetische Operatoren im Natriumchorid-Algorithmus 30
3.2 Genetische Operatoren im Wasser-Algorithmus 34
4.1 Wassermodell-Parameter für SPC/E, TIP3P und TIP4P 51
Kapitel 1

Einleitung – Energieoptimierte atomare und molekulare Cluster

Es ist allgemein bekannt, wie sich Atome bzw. Moleküle in Kristallen anordnen. Aber wie ordnet sich eine geringe Zahl an Atomen (Molekülen) an? Wie entwickelt sich Ordnung in diesen Clustern mit wachsender Zahl an Konstituenten und wie kommt die Ordnung im Festkörper schließlich zustande? Diese Fragen führen zu der Aufgabe, die freie Energie F der Cluster global zu minimieren. Die freie Energie eines Clusters aus N Konstituenten in einem Minimum der potenziellen Energie U_{j} ist:

$$F_{j} = U_{j} + \sum_{i} \frac{\hbar \omega_{ij}}{2} + k_{B} T \sum_{i} \ln \left[1 - \exp \left(- \frac{\hbar \omega_{ij}}{k_{B} T} \right) \right]$$

(1.1)

Die Zahl der Schwingungsfrequenzen ω_{ij} entspricht der Anzahl der Freiheitsgrade des Clusters: $6N - 6$. Die Temperatur ist mit T bezeichnet; das Plancksche Wirkungsquantum mit $\hbar = \hbar/2\pi$; die Boltzmannkonstante mit k_{B}.

1Bei diesen Problemen ist die Teilchenzahl N, die Temperatur T und das Volumen V vorgegeben. Das dazugehörige thermodynamische Potenzial, das im Gleichgewicht minimal sein muss, ist die freie Energie $F(N, T, V)$. Würde der Druck P vorgegeben, so wäre es die freie Enthalpie $G(N, T, P) = F + PV$, die minimiert werden müsste.

2Das SPC/E-Potenzial oder Simple Point Charge/Extended-Potenzial ist ein häufig verwendetes, empirisches Wasserpotenzial. Es ist in Kapitel 4.2 genauer erläutert.
Die potenzielle Energie eines Clusters beschreibt die Wechselwirkung der Atome oder Moleküle untereinander. Eine häufig gemachte Annahme, um die potenzielle Energie eines Vielteilchensystems beschreiben zu können, ist, dass man sie durch eine Summe von Paar-Termen, die die Wechselwirkungen jeweils zweier Konstituenten beschreiben, ausdrücken kann. Ein typisches Modellpotenzial, wie das am häufigsten benutzte Lennard-Jones-Potenzial\(^3\), umfasst die beiden führenden Beiträge der Wechselwirkung: die van der Waals Anziehung resultierend aus der Polarisierbarkeit der Elektronenhüllen und die Abstoßung aufgrund der Kernladungen sowie der Austauschwechselwirkung, die ein Durchdringen der Elektronenhüllen verhindert.

Die globale Minimierung der potenziellen Energie eines Clusters aus vielen Konstituenten ist ein schwieriges Problem. Die potenzielle Energie ist im allgemeinen eine äußerst komplexe Funktion der Clusterkoordinaten. Die Energiehyperfläche der potenziellen Energie

\(^3\)Sir John Edward Lennard-Jones (1894-1954) verfasste grundlegende Arbeiten zur Molekülorbital-Theorie und führte die Linear Combination of Atomic Orbitals (LCAO) Methode ein.

Abbildung 1.1: Die freie Energie \(F\) verschiedener lokaler Minima eines Wasser-Clusters aus sechs Molekülen nach Glg. 1.1. Es wurden nur intramolekulare Schwingungsmoden berücksichtigt.

²Das Lennard-Jones-Potenzial weist bei $N=13$ etwa 10^3 lokale Minima auf; bei $N=100$ sind es bereits etwa 10^{140}

⁶Nicholas Metropolis veröffentlichte 1953 eine Methode zur Durchmusterung des Phasenraumes eines Systems, mit der eine Boltzmann-Verteilungsfunktion erhalten werden kann.

7Der Name Monte Carlo-Methode geht auf Neumann, Ulam und Metropolis zurück. Er wurde wegen des großen Einsatzes von Zufallszahlen gewählt. Die erste Anwendung des Monte Carlo-Prinzips ist jedoch viel älter — das Nadelproblem von Buffon (18. Jahrhundert), der im Prinzip mit einer experimentellen Monte Carlo-Integration die Zahl π bestimmte.

\(^9\)In diese Rechnungen fließen nur Naturkonstanten ein.

10Diese Idee ist auch im Zusammenhang mit künstlicher Intelligenz von Bedeutung. In Gödel, Escher, Bach wird Reaktion über das eigene Handeln als wesentlich für Intelligenz angesehen [25]. In diesem Sinne macht die (Selbst-)Steuerung der Suche durch den Algorithmus diesen zu einem intelligenten Algorithmus.
Literaturverzeichnis

Kapitel 2

Strategien zur globalen Energieminimierung atomarer und molekularer Cluster

2.1 Genetische Algorithmen

Genetische Algorithmen\(^1\) beruhen auf einer Metapher zur Evolution [2]. Sie bestehen aus: einer chromosomalen Darstellung des Lösungsraumes des Problems; der Möglichkeit eine Startgeneration von Lösungen zu erzeugen; einer Beurteilungsfunktion, die die Rolle der Umwelt übernimmt und die Lösungen anhand ihrer fitness bewertet; Genetischen Operatoren, die aus den Chromosomen der Elternlösungen die Chromosomen der Kinderlösungen erzeugen sowie einigen Parametern, die den Algorithmus betreffen, wie z.B. die Populationsgröße der Lösungen. Die Lösungen eines Energieoptimierungsproblems sind die Menge

\(^1\)Als Vater der genetischen Algorithmen gilt John Holland, der die Adaption um 1965 erfolgreich in die Informatik eingeführte.
aller erlaubten Anordnungen der Konstituenten des Clusters (disjunkte Positionen) in einem beschränkten Volumen.

\footnote{Eine Zeichenkette von Zahlen in binärer Darstellung wird als Bitstring bezeichnet.}

\footnote{Aufgrund dieses Schritts sprechen einige Autoren auch von memetischen Algorithmen: Ein genetischer Algorithmus, der eine nicht-genetische Suche zur Verbesserung der Gene benutzt [3].}
2.2 Simulated Annealing

Simulated Annealing\footnote{Diese Anwendung der bereits bekannten Monte Carlo-Methode auf Optimierungsprobleme geht auf Scott Kirkpatrick und Mitarbeiter zurück (1983).} ist eine Methode, die aus der statistischen Physik abgeleitet wurde\cite{Kirkpatrick83}. Die zugrundeliegende Idee ist es ein System von Teilchen quasistationär abzukühlen, weil nahe des Temperaturnullpunktes die Wahrscheinlichkeit, dass sich das System in seinem Grundzustand befindet, am größten ist. Im kanonischen Ensemble ist die Wahrscheinlichkeit π, dass das System, welches im Gleichgewicht mit der vorgegebenen Temperatur T ist, sich im Zustand s befindet:

$$\pi_T(s) = \frac{\exp\left(-\frac{E(s)}{k_BT}\right)}{Z},$$

(2.1)

Die Anwendung von Simulated Annealing auf das globale Optimierungsproblem für atomare oder molekulare Cluster stellt sich als wenig befriedigend heraus. Das Hauptproblem sind die hohen Potenzialbarrieren zwischen den einzelnen lokalen Minima. Der Algorithmus braucht, je näher man dem Temperaturnullpunkt kommt, exponentiell längere Zeit,
um das System in das thermische Gleichgewicht zu bringen. Eine wesentliche Verbesserung der Simulated Annealing-Methode setzt an dieser Schwachstelle an. Eine zentrale Forderung der statistischen Physik ist:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T A[\tilde{r}(t)^N, \tilde{p}(t)^N] dt = \int d\tilde{r}^N dp^N A[\tilde{r}^N, \tilde{p}^N] \rho_{eq}[\tilde{r}^N, \tilde{p}^N]$$ \hspace{1cm} (2.2)

In dieser Gleichung sind $\tilde{r}(t)^0, \tilde{p}(t)^0$ die Trajektorien der Orte \tilde{r} und Impulse \tilde{p} eines N-Teilchensystems einer Molekulardynamik-Simulation. A ist eine zu messende Größe des Systems wie z.B. die potenzielle Energie und ρ_{eq} ist die Phasenraumdichte im Gleichgewicht. Für das kanonische Ensemble ist die Phasenraumdichte im Gleichgewicht gerade $\pi_T(s)$. Während einer Simulation hat das System zu jedem Zeitpunkt wohldefinierte Werte der Koordinaten und Impulse der N-Teilchen, deshalb ist die Phasenraumdichte einer solchen Simulation:

$$\rho_{MD}(\tilde{r}^N, \tilde{p}^N, t) = \delta[\tilde{r}^N - \tilde{r}(t)^N] \delta[\tilde{p}^N - \tilde{p}(t)^N]$$ \hspace{1cm} (2.3)

$$\frac{\partial}{\partial t} \rho(r, p, t) + \nabla \cdot (v \rho(r, p, t)) = 0 \text{ mit } v = (\dot{r}_1, \dot{r}_2, \ldots \dot{r}_N, \dot{p}_1, \dot{p}_2, \ldots \dot{p}_N)$$ \hspace{1cm} (2.4)

Aus dieser Gleichung lässt sich die zeitliche Entwicklung der Phasenraumdichte bestimmen. Die Startwerte für die Phasenraumdichten der einzelnen Teilchen wählt man, innerhalb sinnvoller Grenzen, zufällig. Ähnlich wie beim Simulated Annealing wird nun durch Abkühlen des Systems die Wahrscheinlichkeit, dass sich das System im globalen Minimum der potenziellen Energie befindet, immer größer. Der Vorteil dieser Methode liegt darin, dass praktisch eine Vielzahl von Simulationen gleichzeitig ablaufen. Eine hiermit verwandte Methode ist das Gaussian Density Annealing (GDA) [10]. Bei dieser Methode wird nicht die zeitliche Entwicklung der Phasenraumdichte berechnet, um zu einer Gleichgewichtsphasenraumdichte zu gelangen, sondern eine Startdichte bei unendlich großer Temperatur angenommen (dies entspricht $1/k_B T = \beta = 0$) und deren Entwicklung mit sinkender Temperatur ($\beta \to \infty$) berechnet. Mit den beiden vorgenannten Methoden GPP und GDA wurden Lennard-Jones-Cluster mit bis zu 55 Atomen und (NaCl)$_N$ sowie (NaCl)$_N$Na\(^\oplus\) mit bis zu 12 Ionenpaaren ($N = 12$) global optimiert.

\(^6\)Douglas Rayner Hartree (1897-1958) entwickelte unter anderem wichtige numerische Methoden zur Integration von Differenzialgleichungen zur Berechnung atomarer Wellenfunktionen.
2.3 Diffusionsgleichungs-Methode

Betrachtet wird die Transformation einer Funktion nach:

\[f^{[1]}(x) = f(x) + \beta f''(x) = \left(1 + \beta \frac{d^2}{dx^2} \right) f(x) \]

(2.5)

Hier ist \(\beta \) eine kleine positive Konstante.

Abbildung 2.1: Beispiel für die Transformation einer Funktion nach Glg. 2.5. Die Funktion ist \(f(x) = x^4 + ax^3 + bx^2 \), mit \(a = 2 \), \(b = 0.9 \) und \(\beta = 0.02 \). Man beachte, dass die Funktion nach der Transformation nur noch ein Minimum aufweist, während sie vorher zwei Minima hatte.
Die Funktion wird durch Hintereinanderausführung dieser Transformation am besten
geglättet, wenn \(\beta \) gegen Null und die Anzahl der Hintereinanderausführungen \(N \) gegen
\(\infty \) strebt. Ersetzt man \(\beta \) durch \(t/N \) mit einem Parameter \(t > 0 \) erhält man:

\[
F(x, t) := \lim_{N \to \infty} \left(1 + \beta \frac{d^2}{dx^2} \right)^N f(x) = \exp \left(t \frac{d^2}{dx^2} \right) f(x) = Tf(x) \tag{2.6}
\]

Die auf diese Weise definierte Funktion \(F(x, t) \) hat die wichtige Eigenschaft, dass sie, für
die Fälle in denen die Reihe in 2.6 konvergiert, die Diffusionsgleichung

\[
\frac{\partial^2 F}{\partial x^2} = \frac{\partial F}{\partial t} \tag{2.7}
\]

mit der Anfangsbedingung \(F(x, 0) = f(x) \) erfüllt. Der Parameter \(t \), der die Häufigkeit der
Hintereinanderausführung der Transformation 2.5 angab, übernimmt nun die Rolle der
Zeit.

Das zugrundeliegende Bild der Diffusionsgleichungs-Methode ist, dass eine Anfangskon-
zentration mit der Verteilung \(f(x) \), in diesem Beispiel die potenzielle Energie, in einem
Medium diffundierte. Nach einer langen Zeit \(t \) ist die Konzentration so weit verteilt, dass
sie nur noch schwach variiert, bevor sie bei \(t \to \infty \) in eine Konstante übergeht.

Die Anwendung dieser Methode auf die Suche nach dem globalen Minimum einer Funk-
tion beginnt mit der Lösung der Diffusionsgleichung für diese Funktion oder mit der
Anwendung des Operators \(T \) für hinreichend lange Zeiten \(t = t_\infty \). Danach wird das
übriggebliebene Minimum der deformierten Funktion lokalisiert. Im Anschluss wird die
Deformation der Funktion schrittweise umgekehrt, und dabei die Position des zuvor ge-
fundenen Minimums verfolgt. Ist die undeformierte Funktion wiederhergestellt, so ist die
Position des Minimums bekannt, das bei der Deformation zuletzt verschwindet und das
hoffentlich auch das globale Minimum der Funktion ist.

Die konkrete Lösung eines Problems, z.B. das Auffinden der globalen Minima von Lennard-
Jones-Clustern verschiedener Größen, steht unter anderem vor einer großen Herausforde-
rung: der Lösung der Diffusionsgleichung. Die analytische Lösung der Diffusionsgleichung
für ein Paar-Potenzial wie das Lennard-Jones-Potenzial kann man angeben, indem man
die Diffusionsgleichung mit einer allgemeinen Methode, wie z.B. dem Fourier-Poisson-
Integral\(^7\) löst. Die Potenzialfunktion wird durch eine Summe von Funktionen ausgedrückt,
die eine analytische Darstellung der Lösung der Diffusionsgleichung erlauben. Für Paar-
Potenziale bieten sich dafür Gaußfunktionen an.

Im Fall von Lennard-Jones-Clustern wurden mit dieser Methode die globalen Minima
von Clustern mit 5-7, 11, 13-15, 33 sowie 55 Teilchen gefunden. Fehlgeschlagen ist in
derselben Arbeit [12] jedoch die globale Minimierung von Clustern, die aus 8, 9, 10, 12, 19
Teilchen bestehen. In einer anderen Arbeit werden mit der Diffusionsgleichungs-Methode

\(^7\) Diese Methode beruht auf der Anwendung der Separation der Variablen und des Superpositionsprin-
zip. Man sucht sogenannte formale Lösungen, d.h. Lösungen in Form von unendlichen Reihen, in denen
dezes Glied Lösung der Differenzialgleichung ist und die die Randwerte bzw. Anfangsbedingungen erfüllt
2.4. MONTE CARLO BASIN-HOPPING

2.4 Monte Carlo Basin-Hopping

Die Hyperfläche der potenziellen Energie der Cluster wird nach:

\[\bar{E}(X) = \min\{E(X)\} \quad (2.8) \]

Neben der globalen Minimierung von Lennard-Jones-Clustern [15], bei der unter anderem zum erstenmal das schwierig zu findende tetraedrische globale Minimum des 98er-Clusters gefunden wurde [16], sowie der Untersuchung von \((\text{NaCl})_N\text{Cl}^{2-}\)- und Wasser-Clustern wurden insbesondere Morse-Cluster\(^8\) grundsätzlich mit Monte Carlo Basin-Hopping

\(^8\)Das MCY-Potenzial ist ein Paar-Potenzial mit vier Wechselwirkungszentren. Die Parameter wurden durch einen Anpassung von ab initio Rechnungen eines Dimers an einfache Potenzialfunktionen erhalten.

\(^9\)Die Konstituenten der Morse-Cluster wechselwirken durch das Morse-Potenzial: \(U_M(p, r) = [\exp(p(1 - r)) - 1]^2 - 1 \). Dieses Potenzial wird zur Simulation von bindenden Wechselwirkungen, wie z.B. bei Alkalimetall-Clustern, benutzt.
Literaturverzeichnis

Kapitel 3

Ein neuer genetischer Algorithmus zur Cluster-Minimierung*

3.1 Detaillierte Vorstellung der neu entwickelten genetischen Algorithmen

Im Folgenden werden die in dieser Arbeit entwickelten genetischen Algorithmen für die Suche nach den globalen Minima von Natriumchlorid- und Wasser-Clustern vorgestellt. Die Abb. 3.1 zeigt das Flussdiagramm der Algorithmen. Die lokale Minimierung, die in beiden Algorithmen benötigt wird, wird mit einem conjugate gradient Algorithmus durchgeführt [1].

3.1.1 Natriumchlorid-Cluster

Startgeneration

Eine Startgeneration, die aus einer bestimmten Anzahl an Clustern N_{pop} (hier 10) besteht, wird erzeugt. Die kartesischen Koordinaten der einzelnen Cluster-Ionen werden zufällig in einem Kubus mit der Seitenlänge $L = 3N^{1/3}$ ausgewählt. N ist die Zahl der Ionen aus denen ein Cluster besteht.

Festlegen der Cluster-Fitness

In diesem Algorithmus bestimmt die Cluster-Fitness die Wahrscheinlichkeit ob ein Cluster für die Erzeugung eines neuen Clusters ausgewählt wird. Die originale Fitness p_i ist definiert als (s. [3]):

$$p_i := f_i / \sum_{i=1}^{N_{pop}} f_i$$ \hspace{1cm} (3.1)

*Dieses Kapitel folgt Referenz [2].
Hier ist f_i die potenzielle Energie des Clusters i, falls diese negativ ist; ansonsten ist f_i Null. Diese originale Fitness wird wie in Abb. 3.2 illustriert skaliert, also:

$$p'_i = ap_i + b$$ \hspace{1cm} (3.2)

Hier ist p'_i ist die skalierte Fitness, a und b sind die Skalierungsparameter. Die Skalierungsparameter genügen den folgenden Bedingungen: der Mittelwert der originalen Fitness soll erhalten bleiben

$$p_{av} = \frac{1}{N_{pop}} \sum_{i=1}^{N_{pop}} p_i$$ \hspace{1cm} (3.3)

Also gilt $p'_{av} = p_{av}$ und natürlich $p'_i \geq 0$. Wenn die Bedingung $p_{min} \geq (p_{max} - \lambda p_{av})/(1 - \lambda)$ erfüllt ist, können a und b so gewählt werden, dass $p'_{max} = \lambda p_{av}$ ist. Der Parameter λ ist die durchschnittliche Häufigkeit mit der der beste Cluster zur Reproduktion ausgewählt werden soll. Für kleine Populationen mit weniger als 20 Individuen haben sich Werte für λ von 1.2 bis 2 bewährt. (In dem Beispiel in Abb. 3.2 ist $\lambda = 2$.) Die Skalierungsparameter ergeben sich zu

$$a = \frac{p_{av}(\lambda - 1)}{p_{max} - p_{av}}$$

$$b = \frac{p_{av}(p_{max} - \lambda p_{av})}{(p_{max} - p_{av})}$$ \hspace{1cm} (3.4)

falls die obige Bedingung für p_{min} erfüllt ist. Wenn dies nicht der Fall ist, kann nur soweit wie möglich skaliert werden mit $p'_{min} = 0$ anstelle von $p'_{max} = \lambda p_{av}$. Dann gilt:

$$a = \frac{p_{av}}{p_{av} - p_{min}}$$

$$b = -p_{av} p_{min}/(p_{av} - p_{min})$$ \hspace{1cm} (3.5)

Mutation Ein kleiner Teil der Cluster aus denen eine Generation besteht wird mutiert. Dieser Teil ist durch die Mutationsrate gegeben, die üblicherweise kleiner als 10% ist. Ein Cluster wird mutiert, indem jede seiner kartesischen Koordinaten um eine willkürliche Distanz, deren Länge entweder gleichmäßig- oder gaußverteilt ist, verschoben wird. Die Analyse des Algorithmus wird zeigen, dass Mutation in einem Algorithmus der geometrischen Operatoren mit einem Zufallselement benutzt, nicht zwingend benötigt wird. Die Operatoren 2-4, 6 und 7 in Tab. 3.1 enthalten ein Zufallselement. Mit diesen Operatoren lässt sich ein erfolgreicher genetischer Algorithmus ohne Mutation aufbauen, während dies mit den Operatoren 1 und 5 alleine nicht möglich ist.

Erzeugen einer Kindergeneration

In diesem Algorithmus werden sieben genetische Operatoren (s. Tab. 3.1) mit variabler erfolgsorientierter Anwendungswahrscheinlichkeit verwendet. Wie die Anwendungswahrscheinlichkeit zustandekommt wird weiter unten erläutert. Basierend auf
Abbildung 3.2: Oben: Die normale Skalierung der originalen Fitness \(p_i \). Die Bedingung \(p_{\min} \geq (p_{\max} - \lambda p_{av})/(1 - \lambda) \) ist in diesem Fall erfüllt (\(\lambda = 2 \)). Die originale Fitness kann wie gewünscht skaliert werden, bis \(p'_{\max} = \lambda p_{av} \) gilt, ohne dass \(p'_{\min} \) negativ wird. Unten: Die Skalierung wenn die obige Bedingung nicht erfüllt ist. In diesem Falle wäre \(p'_{\min} \) negativ.
KAPITEL 3. EIN NEUER GENETISCHER ALGORITHMUS

Genetische Operatoren

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel:</th>
<th>2→1</th>
<th>1</th>
<th>Die Koordinaten des neuen Clusters sind das arithmetische Mittel der entsprechenden Koordinaten der beiden Vorgängercluster.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Drehung I:</td>
<td>1→1</td>
<td>1</td>
<td>Die Ionen werden nach dem Winkel, den ihr Ursprungsvektor mit der z-Achse einschließt, sortiert. Die erste Hälfte der Ionen wird um einen willkürlichen Winkel um die z-Achse gedreht.</td>
</tr>
<tr>
<td>3</td>
<td>Drehung II:</td>
<td>1→1</td>
<td>1</td>
<td>Die Ionen werden nach der Länge ihres Ursprungsvektors sortiert. Die erste Hälfte der Ionen wird um einen willkürlichen Winkel um den Ursprung gedreht.</td>
</tr>
<tr>
<td>4</td>
<td>Spiegelung:</td>
<td>1→2</td>
<td>2</td>
<td>Die Ionen werden nach ihrer z-Koordinate sortiert. Die erste Hälfte der Ionen wird an der y-z-Ebene und für den zweiten neuen Cluster an der x-z-Ebene gespiegelt.</td>
</tr>
<tr>
<td>5</td>
<td>Kreuzung I:</td>
<td>2→2</td>
<td>2</td>
<td>Zwei Chromosomen, die linearen Arrays die die Ionenkoordinaten enthalten, werden in der Mitte durchgeschnitten und über Kreuz wieder zusammengefügt.</td>
</tr>
<tr>
<td>6</td>
<td>Kreuzung II:</td>
<td>2→2</td>
<td>2</td>
<td>Die Ionen werden nach der Länge ihres Ursprungsvektors sortiert. Danach wird der Operator Kreuzung I angewandt.</td>
</tr>
<tr>
<td>7</td>
<td>Kreuzung III:</td>
<td>2→2</td>
<td>2</td>
<td>Die Ionen werden nach dem Winkel, den ihr Ursprungsvektor mit der z-Achse einschließt, sortiert. Danach wird der Operator Kreuzung I angewandt.</td>
</tr>
</tbody>
</table>

Vor jeder Operation wird der Koordinatenursprung in den Schwerpunkt des Clusters verschoben.

Tabelle 3.1: Die sieben genetischen Operatoren, die im Algorithmus für die globale Minimierung der potenziellen Energie von Natriumchlorid-Clustern verwendet werden. Der erste und der fünfte Operator sind traditionelle Operatoren, d.h. diese Operatoren wirken direkt auf die linearen Arrays, die die Koordinaten enthalten. Die übrigen Operatoren sind geometrische Operatoren — sie wirken auf die Struktur der Cluster.
der Anwendungswahrscheinlichkeit der genetischen Operatoren wird einOperator
Zunächst wird eine Zufallszahl \(\xi \) zwischen 0 und 1 erzeugt. Dann wird die Anwen-
dungswahrscheinlichkeit \(p_{op} \) der Operatoren aufsummiert, solange \(\xi \leq \sum_{i=1}^{j} p_{op} \) ist.
Zu dem so ausgewählten Operator \(j \) wird nun eine passende Anzahl von Clustern mit
derselben Methode anhand ihrer Fitness ausgewählt. Anwenden des ausgewählten
Operators auf die Erbinformation, die kartesischen Koordinaten, der ausgewählten
Elterncluster erzeugt Cluster mit Teilen ihrer Erbinformation — die Kinderclus-
ter. Die neuen Cluster werden nun lokal minimiert, falls ihre potenzielle Energie
unterhalb einer gewissen Schwelle liegt. Diese Schwelle ist ein Parameter des Algo-
rithmus, der auf 85% der Energie des besten bisher gefundenen Clusters festgelegt
wurde (A:= \(E \leq 0.85 E_{opt} \); s. Abb. 3.1). Insgesamt werden nach diesem Schema:
Operatorauswahl, Elternclusterselektion, Operatoranwendung, mögliche lokale Mi-
nimierung; eine volle Population von Kinderclustern erzeugt (B:= Anzahl neuer
Cluster < \(N_{pop} \)).

Auswahl der nächsten Generation

Die Anzahl an Clustern \(N_{pop} \) aus denen eine Generation besteht ist konstant. Die
neue Generation setzt sich aus den neuen Clustern, deren Energie höchstens 50%
der Energie des besten bisher gefundenen Clusters beträgt, und dem besten bisher
gefundenen Cluster zusammen. Damit die neue Generation wieder aus \(N_{pop} \) Clustern
besteht, werden noch eine entsprechende Anzahl willkürlich bestimmter Cluster aus
der alten Generation hinzugefügt.

Anpassen der Anwendungswahrscheinlichkeit der Operatoren

Zu Beginn der Suche ist die Anwendungswahrscheinlichkeit aller 7 Operatoren gleich,
also 1/7 (ca. 14.3%). Während der Suche nach dem globalen Minimum wird diese
Wahrscheinlichkeit dynamisch an den Erfolg der Operatoren angepasst. Ein Ope-
rator wird als erfolgreich betrachtet, wenn er ein tiefliegendes Minimum
findet, welches eine geringere Energie als die Schwellenergie für die lokale Minimierung
(\(E \leq 0.85 E_{opt} \)) hat und dessen Energie nicht mit einer der Ausgangsenergien sei-
ner Elterncluster übereinstimmt. Abb. 3.3 skizziert diesen Anpassungsprozess der
Anwendungswahrscheinlichkeit. Zuerst ist die Situation zu Beginn der Suche ge-
zeigt. Alle Operatoren haben die gleiche Anwendungswahrscheinlichkeit. Es wird
eine Operatorliste geführt in der jeder Operator mehrmals, in diesem Beispiel 4 mal,
aufsteht. Ist ein Operator erfolgreich, wie in Schritt 2 gezeigt, so wird die Anwen-
dungswahrscheinlichkeit dieses Operators, in diesem Beispiel um 2%, erhöht und die
Anwendungswahrscheinlichkeit des Operators, der an der ersten Stelle auf der Liste
steht, entsprechend erniedrigt. Auf der Operatorliste ersetzt der erfolgreiche Ope-
rator den Operator, der bisher den ersten Listenplatz einnahm. Im dritten Schritt
wird die Ringliste, um eine Stelle weitergedreht, so dass nun Operator 2 an erster
Stelle geführt wird und der zuletzt erfolgreiche Operatoriste den letzten Listenplatz
einnimmt. Im Anschluss geht der Anpassungsprozess der Anwendungswahrschein-
lichkeit der Operatoren an ihren Erfolg bei der Suche mit dem nächsten Sucherfolg
KAPITEL 3. EIN NEUER GENETISCHER ALGORITHMUS

Schritt I

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

Anwendungswahrscheinlichkeit der Operatoren zu Beginn (in %)

| 1 | 2 | 3 | ⋮ | 7 | 1 | 2 | 3 | ⋮ | 7 | 1 | 2 | 3 | ⋮ | 7 |

Operatorenliste zu Beginn

z.B. Operator 5 war erfolgreich

Schritt II

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>16.3</td>
<td>14.3</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

Anwendungswahrscheinlichkeit der Operatoren (in %)

| 5 | 2 | 3 | ⋮ | 7 | 1 | 2 | 3 | ⋮ | 7 | 1 | 2 | 3 | ⋮ | 7 |

Operatorenliste

Schritt III

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>16.3</td>
<td>14.3</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

Anwendungswahrscheinlichkeit der Operatoren (in %)

| 2 | 3 | ⋮ | 7 | 1 | 2 | 3 | ⋮ | 7 | 1 | 2 | 3 | ⋮ | 7 | 5 |

Operatorenliste

Abbildung 3.3: Illustration zur dynamischen Anpassung der Anwendungswahrscheinlichkeit der Operatoren. Eine genauere Erklärung findet sich im Text.

Feststellen des besten bisher gefundenen Clusters

An dieser Stelle kann der Fortgang der Suche kontrolliert werden. Der beste bisher gefundene Cluster wird bestimmt und gespeichert. Dies ist auch der richtige Zeitpunkt für die Ausgabe und das Abspeichern tiefliegender Minima oder nützlicher statistischer Informationen über die Suche.

Ergebnis

3.1.2 Wasser-Cluster

Startgeneration

Die Startgeneration besteht, wie bei dem vorherigen Algorithmus, aus typischerweise 10 Clustern, deren kartesische Koordinaten in einer kubischen Box zufällig verteilt werden.

Festlegen der Cluster-Fitness

Die Cluster-Fitness wird nach derselben Methode wie im vorherigen Algorithmus bestimmt. In diesem Algorithmus wird die Fitness ebenfalls bei der Weitergabe der Erbinformation und zusätzlich bei der Zusammenstellung der nächsten Generation benutzt.

Mutation

Die Mutation wird nun komplett den genetischen Operatoren überlassen. Die Operatoren 1-4 (s. Tab. 3.2) beinhalten willkürliche Entscheidungen. Explizite Mutation entfällt in diesem Algorithmus.
Genetische Operatoren

1 Kreuzung I: 2→2 In einem Cluster wird ein Molekül willkürlich ausgewählt. In dem anderen Cluster wird ein Molekül mit einem ähnlich langen Ursprungsvektor ausgewählt. Beide Cluster werden so gedreht, dass das ausgewählte Molekül auf der z-Achse liegt. Die beiden Arrays, in denen die Molekülkoordinaten gespeichert sind, werden nach der z-Koordinate der Moleküle geordnet. Im Anschluss werden die beiden Arrays nach einem willkürlich ausgewählten Molekül gekreuzt.

2 Kreuzung II: 2→2 Der Operator ist ähnlich wie Operator Kreuzung I, aber nach der Drehung der Cluster werden die Arrays nach der Länge der Ursprungsvektoren der Moleküle geordnet. Anschließend werden die beiden Arrays wie zuvor gekreuzt.

3 Kreuzung III: 2→2 Die beiden Arrays, welche die Molekülkoordinaten enthalten, werden nach der z-Koordinate der Moleküle geordnet. Nach einem willkürlich ausgewählten Molekül werden die Winkelkoordinaten der Moleküle gekreuzt.

4 Spiegelung: 1→2 Die beiden Arrays, welche die Molekülkoordinaten enthalten, werden nach der z-Koordinate der Moleküle geordnet. Ein Kindcluster entsteht, indem eine zufällige Anzahl an Molekülen an der y-z-Ebene gespiegelt wird, ein zweiter, indem diese Moleküle an der x-z-Ebene gespiegelt werden.

5 arithmetisches Mittel: 2→2 Die Koordinaten der Sauerstoffatome der beiden neuen Cluster sind das arithmetische Mittel der Sauerstoffkoordinaten der beiden Elterncluster. Die Winkelkoordinaten der beiden Cluster bleiben erhalten.

Vor jeder Operation wird der Koordinatenursprung in den Schwerpunkt des Clusters verschoben.

Tabelle 3.2: Die fünf genetischen Operatoren, die im Algorithmus für die globale Minimierung der potenziellen Energie von Wasser-Clustern verwendet werden. Operator 3 wirkt nur auf die Winkelkoordinaten der Moleküle, während Operator 5 nur auf die Schwerpunktkoordinaten der Moleküle wirkt.
3.2. LEISTUNGSTEST UND LEISTUNGSVERGLEICH

Erzeugen einer Kindergeneration

Eine Kindergeneration wird auch in diesem Algorithmus nach dem schon bekannten Schema: Operatorauswahl, Elternclusterselektion, Operatoranwendung, mögliche lokale Optimierung; erzeugt (B bleibt wie im vorherigen Algorithmus). Die Bedingung A für die lokale Minimierung lautet: $E \leq 0.4 \cdot E_{opt}$. Die Schwelle für die lokale Minimierung hängt mit der Effizienz der genetischen Operatoren zusammen. Die genetischen Operatoren erzeugen molekulare Cluster mit einer potenziellen Energie, die im Mittel höher ist als die der entsprechenden Ionen-Cluster. Aus diesem Grund ist die Schwelle für die lokale Minimierung in diesem Algorithmus höher.

Auswahl der nächsten Generation

Anpassen der Anwendungswahrscheinlichkeit der Operatoren

Die Methode zur Anpassung der Anwendungswahrscheinlichkeit ist die gleiche wie im vorherigen Algorithmus. Weil 5 genetische Operatoren benutzt werden, ist die anfängliche Anwendungswahrscheinlichkeit jedes Operators 20%. Ein Operator wird als erfolgreich bezeichnet, wenn er einen Cluster mit einer geringeren Energie als sein(e) Elterncluster erzeugt hat (nach der möglichen lokalen Minimierung). Die Anwendungswahrscheinlichkeit wird bei jedem Erfolg um 1% erhöht bzw. erniedrigt. Die minimale Anwendungswahrscheinlichkeit wird auf 5% festgesetzt.

Feststellen des besten bisher gefundenen Clusters

Der erste Cluster auf der Liste der 100 besten bisher gefundenen Cluster ist der beste bisher gefundenen Cluster. Wie im vorherigen Algorithmus ist dies das Ende eines Fortpflanzungszyklus.

Ergebnis

Die Abbruchbedingung C, die an dieser Stelle kontrolliert wird bevor die Suche mit dem nächsten Zyklus fortgesetzt wird, ist ob sich die Liste der besten 100 bisher gefundenen Cluster während der letzten, typischerweise 100 Generationen, verändert hat. Blieb die sortierte Liste während dieser Zeit unverändert, wird die Suche abgebrochen und der beste bisher gefundene Cluster ist das vermutlich globale Minimum.

3.2 Leistungstest und Leistungsvergleich der genetischen Algorithmen

Die Abbildungen 3.4 und 3.5 fassen zahlreiche Leistungstests an dem Algorithmus für Natriumchlorid zusammen. Der Referenzalgorithmus, der bei der Suche nach dem globa-
KAPITEL 3. EIN NEUER GENETISCHER ALGORITHMUS

Abbildung 3.4: Vergleich zehn verschiedener Varianten des Referenzalgorithmus. Abgebildet ist die mittlere Laufzeit der Algorithmen (linke Achse, durchgezogene Balken) und die Häufigkeit, mit der sie das vermutlich globale Minimum des Clusters mit 76 Ionen bei 500 unabhängigen Versuchen finden (rechte Achse, gestrichelte Balken).

len Minimum eines 78-Ionen-Clusters (Abb. 3.4) und eines 96-Ionen-Clusters (Abb. 3.5) verwendet wird, benutzt die dynamische Anpassung der Anwendungswahrscheinlichkeit der Operatoren (s. Kap. 3.1.1), die Populationsgröße N_{pop} ist 10, die Mutationsrate ist 2% und alle neuen Cluster, deren potenzielle Energie $0.85 E_{opt}$ nicht übersteigt, werden lokal minimiert. Dieser Referenzalgorithmus wird mit Algorithmen verglichen, die nur auf einen Operator zurückgreifen, die eine feste Anwendungswahrscheinlichkeit der Operatoren benutzen, die unterschiedliche Populationsgrößen haben, die unterschiedlichen Mutationsraten haben und die andere Schwellenenergien für die lokale Minimierung benutzen. Der statistische Fehler in Abbildung 3.4 beträgt auf der Zeitskala etwa 2.7% sowie bei der Anzahl an Treffern etwa 10%. Die beiden genetischen Algorithmen op5 und op6 in Abbildung 3.4 benutzen nur den genetischen Operator 5 bzw. 6 (s. Tab. 3.1). Der genetische Algorithmus fst benutzt alle genetischen Operatoren mit fester Anwendungswahrscheinlichkeit. Diese ist die Wahrscheinlichkeit, die der Referenzalgorithmus am Ende seiner Suche für einen Cluster gleicher Größe im Mittel erhält.

Die Abbildung 3.6 zeigt ein Beispiel für die Anwendungswahrscheinlichkeit am Ende einer
3.2. LEISTUNGSTEST UND LEISTUNGSVERGLEICH

Suche nach dem globalen Minimum. Die genetischen Algorithmen p6 bis p12 entsprechen dem Referenzalgorithmus mit einer Populationsgröße von 6 bis 12 Clustern. Die übrigen drei genetischen Algorithmen mu5, mu2 und mu0 haben gegenüber dem Referenzalgorithmus eine veränderte Mutationsrate von jeweils 5%, 2% und 0%. In Abbildung 3.5 hat der genetische Algorithmus mi75 die beiden schwachen Algorithmen op5 und op6 ersetzt. Dieser Algorithmus minimiert alle neuen Cluster, falls ihre potenzielle Energie 0.75 E_{opt} nicht übersteigt. Der Referenzalgorithmus ist in den Abbildungen 3.4 und 3.5 unter dem Namen p10 und mu2 zu finden.

Die beiden genetischen Algorithmen op5 und op6, die nur einen genetischen Operator benutzen, sind offenbar ungeeignet für die Suche nach globalen Minima, obwohl der Operator, den sie benutzen, jeweils einer der beiden erfolgreichsten Operatoren ist. Deshalb ersetzt der Algorithmus mi75 diese beiden Algorithmen im Fall des 96-Ionen-Clusters (Abbildung 3.5). Man sieht, dass die zusätzliche Minimierung energetisch ungünstiger Cluster zwar die Häufigkeit der Treffer steigert, aber in noch stärkerem Maße die mittlere Suchzeit erhöht. In den Abbildungen 3.4 und 3.5 kann man sehen, dass die Erniedrigung
KAPITEL 3. EIN NEUER GENETISCHER ALGORITHMUS

Abbildung 3.6: Die durchschnittliche Anwendungswahrscheinlichkeit der genetischen Operatoren (s. Tab. 3.1) am Ende einer Suche. Aufgetragen ist der Durchschnittswert über 100 voneinander unabhängige Suchen für Cluster, die aus 80 Ionen bestehen. Der Durchschnittswert variiert nur schwach mit der Clustergöße, während die Anwendungswahrscheinlichkeit bei den einzelnen Versuchen, über die gemittelt wurde, stark fluktuiert.

Wie erwähnt zeigt Abbildung 3.6 die Verteilung der Anwendungswahrscheinlichkeit auf die 7 benutzten Operatoren am Ende einer globalen Energieminimierung. Die Wahrscheinlichkeit wurde über 100 verschiedene globale Minimierungen gemittelt. Der Durchschnittswert der Wahrscheinlichkeit variiert nur schwach mit der Clustergröße. Bei den einzelnen Versuchen fluktuiert sie jedoch stark. Erstaunlich ist die hohe Anwendungswahrschein-
3.2. LEISTUNGSTEST UND LEISTUNGSVERGLEICH

3.3 Vergleich mit anderen genetischen Algorithmen

3.3. VERGLEICH MIT ANDEREN ALGORITHMEN

Generation ihre Elterncluster, falls ihre potenzielle Energie um mindestens einen Betrag \(\Delta E \) tiefer ist als die Energie der Elterncluster. Mit einer geringen Mutationsrate werden danach einzelne Cluster mutiert.

Niesse und Mayne [10], die den ersten genetischen Algorithmus für die Suche nach globalen Minima von molekularen Clustern ebenfalls auf der Basis des genetischen Algorithmus von

Der in dieser Arbeit entwickelte genetische Algorithmus für Wasser-Cluster beruht ebenfalls, wie bereits bei der detaillierten Diskussion anhand des Flussdiagramms ersichtlich, auf dem genetischen Algorithmus für Natriumchlorid-Cluster. Für Wasser-Cluster haben sich fünf genetische Operatoren als zweckmäßig herausgestellt (s. Tabelle 3.2). Während die Populationsgröße beibehalten werden kann muss die Erfolgsbedingung für die genetischen Operatoren, die Grenze für die lokale Minimierung, die Auswahl der Cluster für die nächste Generation und die Bedingung für den Abbruch der Suche modifiziert werden. Wiederum wurde ein einfacher aber sehr effektiver selbststeuernder genetischer Algorithmus zur globalen Energieminimierung, in diesem Fall von Wasser-Clustern, erhalten.
Literaturverzeichnis

Kapitel 4

Cluster niedriger Energie

4.1 Natriumchlorid-Cluster*

Ein einfaches und häufig benutztes Paar-Potenzial für Alkalihalogenid-Cluster ist das Coulomb+Born-Meyer-Potenzial.

\[V_{ij} = \frac{q_i q_j}{r_{ij}} + A_{ij} \exp \left(-\frac{r_{ij}}{\rho} \right) \] (4.1)

Hier ist \(q_i \) die Ladung des Ions \(i \) und \(r_{ij} \) ist der Abstand zwischen Ion \(i \) und \(j \). Tosi und Fumi [2] passten die Parameter \(A_{ij} \) (\(A_{++,} A_{--}, A_{+-} = A_{-+} \)) und \(\rho \) an experimentelle Kristalldaten an. In dieser Arbeit wird das Potenzial mit diesen Parametern benutzt, um die potenzielle Energie neutraler Natriumchlorid-Cluster zu berechnen. Zieht man die Polarisation der einzelnen Cluster-Ionen in Betracht, wie im Schalenmodell von Rittner [3], ist die Berechnung der potenziellen Energie aufwändiger. Hier wird das Schalenmodell nicht benutzt. Die gefundenen Anordnungen werden jedoch mit den Anordnungen verglichen, die mithilfe des Schalenmodells gefunden wurden.

Zwischen den besonders stabilen neutralen Clustern und Clustern mit einem überschüssigen Ion besteht ein enger Zusammenhang [4]. Wird ein Ion aus der Mitte der Grundfläche

*Dieses Kapitel folgt Referenz [1].
4.1. NATRIUMCHLORID-CLUSTER

Abbildung 4.2: Die vermutlich globalen Minima neutraler Natriumchlorid-Cluster, die aus 52-100 Ionen bestehen. Die potenzielle Energie ist in eV angegeben.

Na\(^{\ddagger}\)- und Cl\(^{-}\)-Ionen haben verschiedene Ionenradien, die durch die Parameter des Born-Meyer-Potenzials (A\(_{++}\), A\(_{-}\) und A\(_{+-}\)) berücksichtigt werden. Die Winkel im N=4 Cluster sind nicht 90° sondern 88.3 bzw. 91.7°. In dem 6-Ionen-Cluster sind die Winkel nicht 120° sondern im Fall des Na-Cl-Na-Winkels ein wenig größer und im Fall des Cl-Na-Cl-Winkels ein wenig kleiner. Auch wenn in diesen einfachen ebenen Clustern die nächsten Nachbarabstände noch alle identisch sind, gilt dies nicht für die größeren Cluster, insbesondere auch nicht für die kubischen Cluster. Übereinstimmend mit ab initio Rechnungen [6] findet man, dass der Abstand der Eck-Ionen zu ihren nächsten Nachbarn in einem kubischen Cluster kleiner als der Mittelwert aller nächsten Nachbarabstände ist. Der Abstand der Ionen...
Abbildung 4.3: Die Energie der vermutlich globalen Minima je Cluster-Ion, aufgetragen gegen die Anzahl der Cluster-Ionen. Die gestrichelte Linie ist ein Fit der Daten im Bereich von $50 \leq N \leq 100$ an Gleichung 4.2. Der Einsatz zeigt die Differenz zwischen den Cluster-Energien und der Anpassungskurve im Detail.

4.1. NATRIUMCHLORID-CLUSTER

sind die besonders stabilen Cluster kubisch mit möglichst gleichen Seitenlängen. Damit haben sie ein günstiges Verhältnis von Oberflächen- und Volumenenergie \((N = 30, 32, 36, 40, 48, 60, 64, 72, 80, 96)\).

Ochsenfeld und Ahlrichs haben ab initio Rechnungen an Clustern, die aus 2-6, 8, 9, 12, 15, 18 und 32 Ionenpaaren bestehen, durchgeführt [6]. Insgesamt betrachtet erhalten sie ähnliche Anordnungen wie sie in dieser Arbeit gefunden werden. Bei den kleinsten untersuchten Clustern liefern die unterschiedlichen Methoden verschiedene lokale aber gleiche globale Minima. Die Energieunterschiede zwischen den lokalen Minima einzelner Cluster, insbesondere der kleineren Cluster, stimmen bei beiden Methoden nicht überein. Die Cluster, deren globale Minimumsanordnung hier ein Zylinder mit hexagonaler Grundfläche ist, haben in den ab initio Rechnungen eine kubische globale Minimumsanordnung. Die zylindrische Anordnung der Ionen ist bei diesen Clustern die zweittiefste lokale Minimumsanordnung.

4.2 Wasser-Cluster

Zwei der ebenen starren Wassermodule, die hier benutzt werden, SPC/E [14] und TIP3P [15], sind 3-Zentren-Modelle, das andere, TIP4P [15], ist ein 4-Zentren-Modell\(^1\). Die potenzielle Energie der Wasser-Cluster in diesen Modellen ist eine Summe von Coulomb- und Lennard-Jones-Termen:

\[
\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left\{ \frac{A}{r_{O_iO_j}^{12}} - \frac{C}{r_{O_iO_j}^6} + \sum_{k_i=1}^{3} \sum_{k_j=1}^{3} \frac{q_{k_i} q_{k_j}}{r_{k_ik_j}} \right\} .
\]

(4.3)

Hier bezeichnen \(i \) und \(j \) die Moleküle. Die Lennard-Jones-Wechselwirkungszentren sind in allen drei Modellen die Sauerstoffatome, bezeichnet mit \(O_i, O_j \). \(A \) und \(C \) sind die Lennard-Jones-Parameter. Die Coulombwechselwirkung wird durch die Ladungen \(q_i, q_j \)

\(^{1}\)TIPS: Transferable Intermolecular Potential Function
4.2. WASSER-CLUSTER

Wassermodell-Parameter

<table>
<thead>
<tr>
<th>model</th>
<th>r_{OH}/Å</th>
<th>Φ/deg</th>
<th>A/kJ mol$^{-1}$</th>
<th>C/kJ mol$^{-1}$</th>
<th>q_o/e</th>
<th>r_{OM}/Å</th>
<th>q_M/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC/E</td>
<td>1.0</td>
<td>109.47</td>
<td>2633.24</td>
<td>2616.91</td>
<td>-0.8476</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TIP3P</td>
<td>0.9572</td>
<td>104.52</td>
<td>2436.72</td>
<td>2491.15</td>
<td>-0.834</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TIP4P</td>
<td>0.9572</td>
<td>104.52</td>
<td>2512.08</td>
<td>2553.95</td>
<td>–</td>
<td>0.15</td>
<td>-1.04</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Die Modell-Parameter der verwendeten starren Wassermodelle.

Beschrieben. Sie sind im Fall des SPC/E-Modells und des TIP3P-Modells auf den Atomplätzen lokalisiert, wohingegen im TIP4P-Modell die Ladung, die der Sauerstoff trägt, zu einem vierten Zentrum in Richtung des Molekülschwerpunkts verschoben ist. Die Modellparameter sind in Tabelle 4.1 zusammengefasst.

Die Anordnungen, in denen die potenzielle Energie vermutlich das globale Minimum hat, sind in den Abbildungen 4.4–4.6 gezeigt.

Die Cluster der Größe $N = 13 – 15$ haben in allen drei Modell-Potenzialen gleiche globale Minimumsanordnungen. Die Anordnung des 13er-Clusters basiert auf der Käfig-

In Abb. 4.8 ist der mittlere Wasserstoffbrückenbindungs-Abstand und die durchschnittliche Anzahl an Wasserstoffbrückenbindungen pro Molekül aufgetragen. Die Fehlerbalken zeigen die kürzesten und die längsten Wasserstoffbrückenbindungen. In einem tetraedrischen Netzwerk gibt es zwei Wasserstoffbrückenbindungen pro Molekül. Die Anzahl der Wasserstoffbrückenbindungen als Funktion der Molekülanzahl je Cluster ist in allen drei
Abbildung 4.7: Die durchschnittlichen Abstände der nächsten O-O-Nachbarn und die Anzahl nächster O-O-Nachbarn der vermutlich globalen Minimumsanordnungen der Wassermoleküle im a) SPC/E-, b) TIP3P- und c) TIP4P-Potenzial. Die Fehlerbalken zeigen den kleinsten bzw. den größten O-O-Abstand im Cluster.
Abbildung 4.8: Die durchschnittliche Wasserstoffbrückenbindungslänge und die Wasserstoffbrückenanzahl in den vermutlich globalen Minimumsanordnungen der Cluster im a) SPC/E-, b) TIP3P- und c) TIP4P-Modell. Die Fehlerbalken zeigen die kleinste bzw. die größte Bindungslänge im Cluster.
Modellen ähnlich. Bis auf drei TIP3P-Cluster ist die Anzahl an Wasserstoffbrückenbindungen gleich der Anzahl an O-O-Nachbarn. Diese Cluster sind dieselben TIP3P-Cluster, die einen ungewöhnlich langen O-O-Abstand aufweisen \((N = 17, 19, 20)\).

Eine weitere nützliche Größe ist \(\mu^2/V\), die ein Maß für die Solvationsenergie des Cluster
Abbildung 4.9: Die vermutlich globale Minimumsenergie pro Molekül E/N als Funktion der Clustergröße N für das a) SPC/E-, b) TIP3P- und c) TIP4P-Modell-Potenzial. In jedem Teil der Abbildung zeigt die gestrichelte Linie eine Anpassung im Bereich $10 \leq N \leq 25$ an Gleichung 4.2. Die Einsätze zeigen jeweils die Differenz zwischen E/N und der Anpassungskurve.
Abbildung 4.10: Die gesamte potenzielle Energie der Cluster pro Molekül sowie separat der Coulomb-Anteil und der Lennard-Jones-Anteil aus denen sich die Energie zusammensetzt für das a) SPC/E-, b) TIP3P- und c) TIP4P-Modell.
Abbildung 4.11: Das Volumen der Cluster pro Molekül sowie die Größe μ^2/V, die, wie im Text erklärt, ein Maß für die Solvatationsenergie der Cluster in Wasser ist, für das a) SPC/E-, b) TIP3P- und c) TIP4P-Modell.
is [27]. In einem einfachen Modell wird ein Punktdipol in eine kugelförmige Kavität mit Radius a in einem unendlich ausgedehnten polarisierbaren Medium (Dielektrizitätskonstante ε) eingebracht. Die resultierende Änderung der Gesamtenergie des Systems ist:

$$
\Delta E = \frac{\varepsilon - 1}{2\varepsilon - 1} \frac{\mu^2}{a^3}
$$

In diesem Sinne ist μ^2/V ein Maß für die Energie (oder sogar freie Energie) der Solvatation eines Moleküls. Nach dieser Idee kann man μ^2/V nehmen, um die relative Stabilität der Cluster in einem flüssigen Medium als Funktion der Anzahl an Konstituenten des Clusters zu bestimmen. Den größten Einfluss hat das Dipolmoment, da es quadratisch beiträgt und sich mit der Clustergröße je nach der Geometrie der Molekulanordnung dramatisch ändert. Die regelmäßig aufgebauten Cluster mit 8, 12, 18, 20, 24 (SPC/E); 8, 12, 18, 24 (TIP3P); und 8, 12, 16, 20, 24 (TIP4P) Molekülen haben ein verschwindendes Dipolmoment und haben daher eine geringe Solvatationsenergie. Andererseits haben einige kleinere sowie die amorphen Cluster ein nicht verschwindendes Dipolmoment und sind daher besonders stabil in Lösung. Ein anderes Maß für die Clusterstabilität ist sicherlich die Zahl an offenen Wasserstoffbrückenbindungen, die man anhand von Abbildung 4.8 ersehen kann. Diese Zahl variiert aber nur sehr schwach mit der Anzahl an Konstituenten der Cluster, so dass der größere Effekt, wenn man Cluster verschiedener Größen miteinander vergleicht, von μ^2/V kommen sollte.
Literaturverzeichnis

Kapitel 5

Zusammenfassung — Clusteroptimierung

Kapitel 6

Einleitung – Dynamik der Phasenseparation

Die Abb. 6.1 zeigt beispielhaft das Phasendiagramm eines Einkomponentensystems. Wenn das Volumen oder die Temperatur konstant gehalten wird, ergeben sich die gezeigten Projektionen. Die gestrichelten Bereiche in der \(P-V\)-Projektion, in der die Isothermen waagerecht verlaufen, sind Koexistenzgebiete, in denen die feste und flüssige Phase, bzw. die flüssige und gasförmige Phase, koexistieren. In Abb. 6.2 ist das Gas-Flüssigkeits-Koexistenzgebiet noch einmal in der \(T-\rho\)-Projektion gezeigt. Die Begrenzungslinie des Gas-Flüssigkeits-Koexistenzgebietes heißt Binodale. Die Binodale verbindet die Punkte miteinander, bei denen die koexistierenden Phasen bei gleicher Temperatur gleiche chemische Potenziale haben. Innerhalb dieses Bereichs gibt es noch einen zweiten Bereich, der

\(^1\) Ein System ist ein mit Materie gefüllter Behälter, der als ausreichend groß angesehen werden kann, dass Randeffekte vernachlässigbar sind und das System als unendlich ausgedehnt gelten kann.

\(^2\) Die Strukturfunktion ist die Fourier-Transformierte der Paarkorrelationsfunktion, welche die Wahrscheinlichkeit in einem gewissen Abstand von einem Teilchen ein weiteres Teilchen zu finden beschreibt.
Abbildung 6.1: P-T- und P-V-Projektionen des Phasendiagramms eines Einkomponentensystems (entnommen aus Ref. [1]).

Durch die Spinodale begrenzt wird. Die Spinodale begrenzt das Gebiet innerhalb dessen

$$
\frac{\partial^2 F}{\partial N^2} \bigg|_{T, V} \quad \text{bzw.} \quad \frac{\partial \mu}{\partial N} \bigg|_{T, V} \leq 0
$$

ist. Am kritischen Punkt berühren sich die Binodale und die Spinodale (s. Abb. 6.2). Das System ist bezüglich seines Aggregatzustandes außerhalb der Binodalen stabil (Region I); im Gebiet zwischen der Binodalen und der Spinodalen meta-stabil (Region II) und innerhalb der Spinodalen instabil (Region III). Binäre Flüssigkeiten zeigen ein entsprechendes Verhalten bei der Entmischung. Der kritische Punkt bezüglich der Entmischung kann, wie bei Einkomponentensystemen, oberhalb des Koexistenzgebietes sein oder, wie im später folgenden experimentellen Beispiel, unterhalb des Koexistenzgebietes sein.

Das Phasendiagramm eines Lennard-Jones-Systems gleicht dem in Abb. 6.1 gezeigten Phasendiagramm eines Einkomponentensystems. Der kritische Punkt des Lennard-Jones-Systems liegt bei einer Dichte von 0.35 und einer Temperatur von ca. 1.34 (in Lennard-Jones-Einheiten). Das Phasendiagramm von Wasser (s. Abb. 6.3) ist wesentlich komplexer. Allerdings ist das Gas-Flüssigkeits-Koexistenzgebiet, die Spinodale sowie der Verlauf der freien Energie ähnlich wie in Abb. 6.2 gezeigt. Der kritische Punkt von Wasser liegt bei etwa 650 Kelvin und einer Dichte von 0.3 g/cm3 (experimentell). Im SPC/E-Modell wird für den kritischen Punkt $T_c=652$ Kelvin und $\rho_c=0.326$ g/cm3 berechnet [4].

Wird eine überkritische einkomponentige Flüssigkeit schlagartig auf eine Temperatur abgekühlt, bei der sie instabil gegen den Gas-Flüssigkeits-Phasenübergang ist, findet die Phasentrennung durch spinodale Entmischung statt [5]. Fluktuationen der Dichte mit

\footnote{Je nach der langreichweitigen Korrektur für das Potenzial verschiebt sich dieser Wert zwischen 1.1 und 1.35 [3].}

einer Wellenlänge, die größer als eine gewisse kritische Wellenlänge sind, wachsen exponentiell mit einem wellenlängenabhängigen Verstärkungsfaktor. Es bilden sich Bereiche unterschiedlicher Dichte aus. Im späteren Stadium der Entmischung wachsen die Bereiche unterschiedlicher Dichte mit einem Potenzgesetz an. Wird das System auf eine Temperatur abgekühlt, bei der es meta-stabil ist, findet die Phasentrennung durch Keimbildung statt. Hierbei muss sich zuerst ein Keim bilden, bevor die Phasentrennung stattfinden kann. Im Gegensatz dazu findet die Phasentrennung bei der spinodalen Entmischung spontan überall im System statt. In beiden Fällen entmischt sich das System vollständig, bis die Oberflächenenergie im System minimal ist.

KAPITEL 6. DYNAMIK DER PHASENSEPARATION

Abbildung 6.3: Das Phasendiagramm von Wasser (entnommen aus Ref. [15]). Am kritischen Punkt hat Wasser eine Dichte von 0.3 g/cm³.

Im folgenden Kapitel wird die Molekulardynamik-Methode vorgestellt. In ihm werden zunächst die Grundlagen für NVT-Simulatoren erklärt. Danach werden die für diese Arbeit wesentlichen Techniken zur Behandlung von Systemen mit großer Teilchenzahl
Literaturverzeichnis

Kapitel 7

Die Molekulardynamik-Methode

In Molekulardynamik-Simulationen werden die Newtonschen Bewegungsgleichungen einer Menge von Teilchen numerisch gelöst [1]. Die Kraft, die auf ein Teilchen wirkt, wird aus einer Potenzialfunktion, die das Teilchen an alle übrigen koppelt, berechnet.

\[m \frac{d\vec{v}}{dt} = -\frac{dU}{d\vec{r}} \]

(7.1)

In einer häufig gemachten Annahme besteht die Potenzialfunktion nur aus Paar-Termen, die jeweils zwei Teilchen aneinander koppelt\(^1\). Das Ziel der Methode ist die Durchmes- terung des Phasenraumes der Teilchen, um die thermodynamischen Größen des Systems, wie beispielsweise Druck, Temperatur aber auch den Selbstdiffusionskoeffizienten oder die Wärmeleitfähigkeit, zu berechnen. Diese Ergebnisse werden dann mit dem Experiment oder einer Theorie verglichen, um die Eigenschaften des Systems anhand der Wechselwirkungen seiner Bestandteile untereinander zu verstehen und dann gezielt zu beeinflussen, bzw. die Vorhersagen einer Theorie zu überprüfen. In dieser Arbeit werden Molekulardynamik-Simulationen zur Untersuchung der spinodalen Entmischung einer einkomponentigen Flüssigkeit eingesetzt. Die speziellen Anforderungen an die Simulation sind dabei, dass die Anzahl \(N\) der Teilchen, aus denen das System besteht, die Temperatur \(T\), bei der die Simulation durchgeführt wird, sowie das betrachtete Volumen \(V\), in dem sich die Teilchen befinden, vorgegeben wird. Es werden also \(NVT\)-Simulationen durchgeführt. Weiterhin ist eine große Anzahl an Teilchen zur Analyse der spinodalen Entmischung zweckmäßig. Diese Anzahl ist so groß, dass die Simulation auf einem Parallelrechner durchgeführt werden muss. In diesem Kapitel werden die einzelnen Aspekte der benötigten Simulationstechniken näher erläutert.

7.1 \(NVT\)-Simulationen

Damit Molekulardynamik-Simulationen durchgeführt werden können, muss zuerst das Potenzial der Teilchen festgelegt werden. Dazu ist es notwendig sich die Geometrie zu

\(^1\)Paar-Potentiale wurden bereits im ersten Teil der Arbeit verwendet(s. Kap. 1).
überlegen, in der simuliert werden soll. Die Simulation soll Volumeneigenschaften wider-
spiegeln. Das Simulationsvolumen, das man Simulationsschachtel nennt, wird festgehalten. Diese Simulationsschachtel hat keine festen Wände, weil das zu Randeffekten führt (selbst bei einer Million Teilchen sind immer noch 6% der Teilchen an der Oberfläche einer ku-
bischen Simulationsschachtel). Es werden periodische Randbedingungen verwendet. Die Replikas der Simulationsschachtel füllen den Raum aus (deshalb sind nur raumausfüllende Geometrien für diese Art der Randbedingung als Simulationsschachtel zulässig). Tritt ein Teilchen aus einer Simulationsschachtel aus, betritt dasselbe Teilchen die Simulati-
onsschachtel an der gegenüberliegenden Seite. Zur Berechnung der Teilchenabstände wird noch die *minimum image convention* eingeführt: Zur Abstandsberechnung wird immer das
nachstgelegene Bildteilchen verwendet. Die Reichweite des Potenzials ist somit begrenzt (bei einer kubischen Simulationsschachtel auf maximal die Hälfte der Schachtellänge). Der Einfluss der Wechselwirkungen jenseits dieses Abschneideradius, der häufig auch klei-
er gewählt wird, wird durch Kontinuumskorrekturen angenähert, die gegebenenfalls zum Potenzial hinzuaddiert werden.

Die Methode zur Lösung der Newtonschen Bewegungsgleichungen in Molekular-dynamik-
Simulationen, die Einfachheit, Effektivität und Stabilität wohl am besten miteinander
verbindet, und deshalb häufig verwendet wird, ist der Verlet-Algorithmus. Addieren der Taylorentwicklungen:

\[
\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t) + \frac{1}{2} \Delta t^2 \vec{a}(t) + O(\Delta t^3) + O(\Delta t^4)
\]

\[
\vec{r}(t - \Delta t) = \vec{r}(t) - \Delta t \vec{v}(t) + \frac{1}{2} \Delta t^2 \vec{a}(t) - O(\Delta t^3) + O(\Delta t^4)
\]

liefert:

\[
\vec{r}(t + \Delta t) = 2\vec{r}(t) - \vec{r}(t - \Delta t) + \Delta t^2 \vec{a}(t) + O(\Delta t^4) \quad (7.2)
\]

Neben den Positionen werden auch die Geschwindigkeiten der Teilchen, z.B. zur Berech-
nung der kinetischen Energie, benötigt.

\[
\vec{v} = \frac{1}{2\Delta t} (\vec{r}(t + \Delta t) - \vec{r}(t - \Delta t)) + O(\Delta t^3) \quad (7.3)
\]

Es haben sich verschiedene Arten der Implementation dieser Gleichungen, z.B. Leap-Frog
und Velocity-Verlet, etabliert, die alle gleiche Trajektorien produzieren. In dieser Arbeit
wird der Velocity-Verlet-Algorithmus verwendet.

\[
\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t) + \frac{1}{2} \Delta t^2 \vec{a}(t) \quad (7.4)
\]

\[
\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{1}{2} \Delta t \left(\vec{a}(t) + \vec{a}(t + \Delta t) \right) \quad (7.5)
\]

Der Vorteil dieses Algorithmus ist, dass Positionen und Geschwindigkeiten zur gleichen Zeit bekannt sind und lediglich \(\vec{r}, \vec{v}, \vec{a}\) abgespeichert werden müssen.
Die Integration der Bewegungsgleichungen mit den verschiedenen Implementationen des Verlet-Algorithmus weist eine gute Energieerhaltung auf (vgl. die Diskussion am Ende dieses und des darauffolgenden Unterkapitels). In dieser Simulation soll aber statt der Energie die Temperatur kontrolliert werden. Die Temperatur des Systems wird mit dem Gleichverteilungssatz, der besagt, dass auf jeden Freiheitsgrad, der quadratisch in die Energie eingehrt, im Mittel $1/2k_B T$ entfällt, berechnet. Werden Punktteilchen simuliert hat das System $3N$ Freiheitsgrade für die 3 Komponenten der Geschwindigkeitsvektoren. In Simulationen von Systemen mit ausgedehnten Teilchen kommen $3N$ weitere Freiheitsgrade für die Rotation und gegebenenfalls weitere für innere Freiheitsgrade hinzu. Die Temperatur des Systems wird durch die kinetische Energie bestimmt. Eine naheliegende Art die Temperatur zu kontrollieren ist es die Geschwindigkeiten der Teilchen, bei ausgedehnten Teilchen zusätzlich die Winkelgeschwindigkeiten der Teilchen, mit dem Faktor $\sqrt{T_{soli}/T_{ist}}$ durchzumultiplizieren. Eleganter ist die Einbindung der Geschwindigkeitsska-

Abbildung 7.1: Energieerhaltung des im Text beschriebenen Velocity-Verlet-Algorithmus. Simuliert wurde ein Lennard-Jones-System mit 3.000 Teilchen bei einer Dichte von 0.7 und einer Temperatur von anfanglich 1.0. Der Zeitschritt ist 0.01. Links ist die kumulierte relative Schwankung $\sigma(E)/<E>$, $\sigma = \sqrt{<E^2> - <E>^2}$, und rechts die relative Abweichung vom Mittelwert über der Anzahl der Molekularodynamik-Schritte aufgetragen.
lierung in die Bewegungsgleichungen. Die Skalierung der Geschwindigkeiten führt formal zu einer zusätzlichen Beschleunigung.

\[\ddot{r} = \frac{1}{m} \vec{F} - \zeta \dot{r} \quad (7.6) \]

Beim Berendsen Thermostat wird von der Idee ausgegangen, dass das System Wärme mit seiner Umgebung austauscht. Man erhält eine exponentielle Temperaturanpassung mit der Relaxationszeit \(\tau_t \), wenn man:

\[\zeta = \frac{1}{2 \tau_t} \left(1 - \frac{T_{\text{coll}}}{T_{\text{int}}} \right) \quad (7.7) \]

wählt. Wird in der Gleichung für die Avancierung der Positionen (Gl. 7.4) die Beschleunigung durch Glg. 7.6 ersetzt, erhält man:

\[\ddot{r}(t + \Delta t) = \ddot{r}(t) + \Delta t \dot{v}(t) + \frac{1}{2} \Delta t^2 \left(\frac{1}{m} \vec{F}(t) - \zeta(t) \dot{r}(t) \right) \quad (7.8) \]

Der Term in \(\zeta \) kann vernachlässigt werden, wenn angenommen wird, dass \(\zeta \) von derselben Großenordnung wie \(\Delta t \) ist. Damit erhält man wieder Glg. 7.4 für die Avancierung der Positionen. In der Gleichung für die Geschwindigkeiten (Glg. 7.5) wird ebenfalls die Beschleunigung durch Glg. 7.6 ersetzt:

\[\ddot{v}(t + \Delta t) = \ddot{v}(t) + \frac{1}{2} \Delta t \left(\frac{1}{m} \vec{F}(t) - \zeta(t) \dot{r}(t) \right) \]

\[+ \frac{1}{m} \vec{F}(t + \Delta t) - \zeta(t + \Delta t) \dot{r}(t + \Delta t) \quad (7.9) \]

Dieser Ausdruck lässt sich vereinfachen, wenn die Entwicklung \(\zeta(t + \Delta t) = \zeta(t) + \mathcal{O}(\Delta t) \) benutzt wird und wieder Terme in \(\mathcal{O}(\Delta t^3) \) vernachlässigt werden. So gelangt man zu einer Gleichung für die Geschwindigkeiten, die nur einen zusätzlichen Summanden für den Thermostaten hat:

\[\ddot{v}(t + \Delta t) = \ddot{v}(t) - \Delta t \zeta(t) \dot{v}(t) + \frac{1}{2} \Delta t \left(\ddot{a}(t) + \ddot{a}(t + \Delta t) \right) \quad (7.10) \]

Die Abb. 7.1 illustriert die Energieerhaltung des Velocity-Verlet-Algorithmus bei einem Zeitschritt von 0.01. Die dicht liegenden Punkte markieren die relative Schwankung (links) und die verstreuten Punkte markieren die momentane Abweichung vom kumulativen Mittelwert (rechts). Die Energieerhaltung des Algorithmus ist ausgezeichnet. Eine systematische Abweichung in der Energie kann nicht beobachtet werden. Wie bei Verlet-Algorithmen üblich lässt eine Vergrößerung des Zeitschrittes, um beispielsweise einen Faktor drei, den Algorithmus instabil werden.
7.2 Starre Moleküle

Für die Molekulardynamik-Simulation eines molekularen Systems wie Wasser muss neben der Translationsbewegung der Molekülschwerpunkte die Rotation der Moleküle um ihre Schwerpunkte berechnet werden. Innere Freiheitsgrade werden in der vorliegenden Arbeit nicht berücksichtigt; die Moleküle sind starr. Die Rotationsbewegung wird vom Drehmoment bestimmt:

\[
\vec{\tau}_i = \sum_a (\vec{r}_{ia} - \vec{r}_i) \times \vec{f}_{ia} = \sum_a \vec{d}_{ia} \times \vec{f}_{ia}
\]
(7.11)

Hier ist \(\vec{\tau}_i\) das Drehmoment auf das Molekül \(i\), \(\vec{d}_{ia}\) ist der Ortsvektor des Teilchens \(a\) im Molekül \(i\) relativ zum Schwerpunkt des Moleküls. Der Zusammenhang zwischen einem Vektor im körperfesten \(\vec{e}^b\) und im raumfesten Koordinatensystem \(\vec{e}^s\) wird durch eine Drehmatrix \(\mathbf{A}\) vermittelt.

\[
\vec{r}^b = \mathbf{A} \vec{r}^s
\]
(7.12)

Die zeitliche Entwicklung eines Vektors im raumfesten Koordinatensystem ist durch

\[
\dot{\vec{L}}^s = \dot{\vec{L}}^b + \vec{\omega}^s \times \vec{L}^s
\]
(7.13)

gegeben. Da die Differenziation auf der rechten Seite von Glg. 7.13 im körperfesten Koordinatensystem durchgeführt wird, kann die Glg. auch auf die Achsen des körperfesten Koordinatensystems projiziert werden:

\[
\vec{r}^b = \dot{\vec{L}}^b + \vec{\omega}^b \times \vec{L}^b
\]
(7.14)

Das körperfeste Koordinatensystem soll durch die drei Hauptträgheitsachsen gehen damit: \(L_i = I_{ii} \omega_i\), mit \(i = x, y, z\), gilt (Der Fall linearer Moleküle mit zwei Hauptträgheitsachsen wird hier nicht behandelt). Es gelten die Eulerschen Bewegungsgleichungen für die Komponenten der Winkelbeschleunigung:

\[
\dot{\omega}_x^b = \frac{I_y^y}{I_{xx}} \dot{\omega}_y^b \omega_z^b
\]

\[
\dot{\omega}_y^b = \frac{I_z^z}{I_{yy}} \dot{\omega}_z^b \omega_x^b
\]
(7.15)

\[
\dot{\omega}_z^b = \frac{I_x^x}{I_{zz}} \dot{\omega}_x^b \omega_y^b
\]

Es fehlt noch eine Beschreibung der Drehung der einzelnen Moleküle. In der Mechanik werden zur Beschreibung der Drehung des starren Körpers üblicherweise Euler-Winkel verwendet. Die Winkelgeschwindigkeit im körperfesten Koordinatensystem als Funktion
KAPITEL 7. DIE MOLEKULARDYNAMIK-METHODE

der Euler-Winkel ist:

\[
\begin{align*}
\omega_x^b &= \dot{\Phi} \sin \Theta \sin \Psi + \dot{\Theta} \cos \Psi \\
\omega_y^b &= \Phi \sin \Theta \cos \Psi - \dot{\Theta} \sin \Psi \\
\omega_z^b &= \dot{\Phi} \cos \Theta + \dot{\Psi}
\end{align*}
\]
(7.16)

Die Determinante der Matrix in dieser Gleichung verschwindet, falls \(\sin \Theta = 0 \) ist. Dies bedeutet, dass die numerische Lösung der Umkehr-Glu. für \(\Phi, \Theta, \Psi \) instabil wird, wenn \(\Theta \) in der Nähe von 0 oder \(\pi \) ist. Eine Möglichkeit diese Schwierigkeit zu umgehen ist zwei raumfeste Koordinatensysteme für jedes Molekül einzuführen. Wann immer der Winkel \(\Theta = 0 \) oder \(\pi \) bei einem Molekül erreicht wird, wird in das jeweils andere Koordinatensystem umgeschaltet. Eleganter ist es Quaternionen zu benutzen [2]. Die einzelnen Komponenten der Quaternionen \(q_a \ (a = 0, 1, 2, 3) \) definiert man am einfachsten zu:

\[
\begin{align*}
q_0 &= \cos \frac{\Theta}{2} \cos \frac{\Phi + \Psi}{2} \\
qu_1 &= \sin \frac{\Theta}{2} \cos \frac{\Phi - \Psi}{2} \\
qu_2 &= \sin \frac{\Theta}{2} \sin \frac{\Phi - \Psi}{2} \\
qu_3 &= \cos \frac{\Theta}{2} \sin \frac{\Phi + \Psi}{2}
\end{align*}
\]
(7.17)

Zusätzlich wird noch die Zwangsbedingung

\[
q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1
\]
(7.18)

benötigt. Mit den Quaternionen kann die Drehmatrix ausgedrückt werden, mit der ein Vektor aus dem raumfesten ins körperfeste Koordinatensystem umgerechnet wird. Die singularitätsfreien Bewegungsgleichungen der Quaternionen lauten:

\[
\begin{align*}
\dot{q}_0 &= \frac{1}{2} \left(-q_1 \omega_x^b - q_2 \omega_y^b - q_3 \omega_z^b \right) \\
\dot{q}_1 &= \frac{1}{2} \left(q_0 \omega_x^b - q_3 \omega_y^b + q_2 \omega_z^b \right) \\
\dot{q}_2 &= \frac{1}{2} \left(q_3 \omega_x^b + q_0 \omega_y^b - q_1 \omega_z^b \right) \\
\dot{q}_3 &= \frac{1}{2} \left(-q_2 \omega_x^b + q_1 \omega_y^b + q_0 \omega_z^b \right)
\end{align*}
\]
(7.19)
7.2. STARRE MOLEKÜLE

Die zweiten Ableitungen der Quaternionen lassen sich nach einiger Algebra recht einfach ausdrücken:

\[\ddot{q}_0 = \frac{1}{2} \left(-q_1 \dot{\omega}_y^b - q_2 \dot{\omega}_y^b - q_3 \dot{\omega}_z^b \right) - q_0 s \]
\[\ddot{q}_1 = \frac{1}{2} \left(q_0 \dot{\omega}_x^b + q_3 \dot{\omega}_y^b - q_1 \dot{\omega}_z^b \right) - q_1 s \]
\[\ddot{q}_2 = \frac{1}{2} \left(q_3 \dot{\omega}_x^b + q_0 \dot{\omega}_y^b - q_3 \dot{\omega}_y^b \right) - q_2 s \]
\[\ddot{q}_3 = \frac{1}{2} \left(-q_2 \dot{\omega}_y^b + q_1 \dot{\omega}_y^b + q_0 \dot{\omega}_z^b \right) - q_3 s \]
(7.20)

In dieser Gleichung ist \(s = q_0^2 + q_1^2 + q_2^2 + q_3^2 \). Die Lösung der Bewegungsgleichungen kann in einer Velocity-Verlet ähnlichen Art erfolgen [4]. Die Zwangsbedingungen für die Quaternionen werden durch eine Zwangskraft in das Integrationsschema aufgenommen:

\[q_a(t + \Delta t) = q_a(t) + \dot{q}_a(t) \Delta t + \frac{1}{2} \Delta t^2 \ddot{q}_a + \frac{1}{2} \Delta t^2 f_a(\Delta t) \]
(7.21)

Die Zwangskraft hat die Form: \(f_a = -2 \Lambda q_a \). Die Zwangsbedingung aus Glg. 7.18 sowie die daraus resultierende Zwangsbedingung: \(q_0 \dot{q}_0 + q_1 \dot{q}_1 + q_2 \dot{q}_2 + q_3 \dot{q}_3 = 0 \) führen auf eine explizite Form für den Koeffizienten \(\Lambda \):

\[\Delta t^2 \Lambda = 1 - s_1 \Delta t^2 - \sqrt{1 - s_1 \Delta t^2 - s_2 \Delta t^3 - (s_3 - s_1^2) \Delta t^4 / 4} \]
(7.22)

In dieser Gleichung bedeuten \(s_1 = \dot{q}_a(t) \ddot{q}_a(t), \ s_2 = \dot{q}_a(t) \ddot{q}_a(t), \ s_3 = \dddot{q}_a(t) \ddot{q}_a(t) \); über doppelt auftretende Indices wird summiert. Für kleine \(\Delta t \) gilt: \(\Lambda \rightarrow s_2 \Delta t / 2 \).

Die Werte für \(\dddot{q}_a(t) \) und \(\ddot{q}_a(t) \) zum Zeitpunkt \(t + \Delta t \) werden nach den Glgn. 7.19 und 7.20 berechnet. Daher ist es nötig \(\omega_i(t + \Delta t) \) und \(\dot{x}_i(t + \Delta t) \) zu berechnen. In den Euler-Gleichungen ist \(\dot{x}_i \sim x_j \omega_k \). Die Berechnung der \(\omega_i, \dot{x}_i \) kann deshalb nur iterativ erfolgen und ein selbst-konsistentes Ergebnis liefern. Man nennt den \(\omega_i \)-unabhängigen Teil der rechten Seite von Glg. 7.15 \(T_i(t + \Delta t) \), so kann man

\[\omega_i^{(0)}(t + \Delta t) = \omega_i(t) + \frac{1}{2} \Delta t \left[\dot{x}_i(t) + T_i(t + \Delta t) \right] \]
(7.23)

als nullte Näherung in Anlehnung an den Velocity-Verlet-Algorithmus nehmen. Diese Näherung für \(\omega_i(t + \Delta t) \) kann nun benutzt werden, um den bisher nicht berücksichtigten \(\omega_i \)-abhängigen Teil der rechten Seite von Glg. 7.15 zu berechnen:

\[g_i^{(0)} \left[\omega_i^{(0)}(t + \Delta t) \right]. \]
Die erste Näherung für \(\omega_i(t + \Delta t) \) ist dann:

\[\omega_i^{(1)}(t + \Delta t) = \omega_i^{(0)}(t + \Delta t) + \frac{1}{2} \Delta t g_i^{(0)} \]
(7.24)
Danach wird $\omega_i^{(1)}(t+\Delta t)$ benutzt um $g_i^{(1)}\left[\omega_i^{(1)}(t+\Delta t)\right]$ zu berechnen und damit anschließend die zweite Näherung für $\omega_i(t+\Delta t)$

$$\omega_i^{(2)}(t+\Delta t) = \omega_i^{(0)}(t+\Delta t) + \frac{1}{2}\Delta t g_i^{(1)}$$ \hspace{1cm} (7.25)

Dieser Prozess kann bis zum gewünschten Maß an Konvergenz fortgeführt werden. In der Praxis genügen drei Iterationen.

In Abb. 7.2 ist die Energieerhaltung des Molekulardynamik-Algorithmus für molekulare Systeme gezeigt. Simuliert wurde SPC/E-Wasser bei 500 K und 0.9 g/cm3 mit einem Zeitschritt von 1 fs (10^{-15} s). Auch wenn die Energieerhaltung hervorragend ist, so kann eine schwache systematische Abweichung beobachtet werden.

Abbildung 7.2: Energieerhaltung des im Text beschriebenen Molekulardynamik-Algorithmus für molekulare Systeme. Simuliert wurde ein SPC/E-System mit 1.000 Wassermolekülen bei einer Dichte von 0.9 g/cm3 und einer Temperatur von anfanglich 500 K. Der Zeitschritt beträgt 1 fs (10^{-15} s). Links ist die kumulierte relative Schwankung $\sigma(E)/\langle E \rangle = \sqrt{\langle E^2 \rangle - \langle E \rangle^2}$, und rechts die relative Abweichung vom Mittelwert über der Anzahl der Molekulardynamik-Schritte aufgetragen.
7.3 Vielteilchensysteme

Die Integration der Bewegungsgleichungen großer Teilchenzahlen stellt besondere Anforderungen an einen Molekulardynamik-Algorithmus. Der geschwindigkeitsbestimmende Schritt in einer Molekulardynamik-Simulation ist die Berechnung der Kräfte auf die Teilchen, da dies der einzige Schritt ist, in dem die Kopplung der Teilchen untereinander berücksichtigt wird. Mit einem naiven Algorithmus müssen, auch wenn die Potenzialfunktion nur für Teilchen, die sich innerhalb eines Abschneideradius befinden, ausgewertet wird, die Abstände von allen Teilchen zu jeweils allen anderen Teilchen berechnet werden. Ein solcher Algorithmus skaliert mit der Teilchenzahl \(N \) wie \(N^2 \).

Zum Aufstellen der Nachbarschaftsliste müssen die Abstände aller Teilchen untereinander berechnet werden. Für große Teilchenzahlen, dies sind etwa einige zehn- bis hunderttausend Teilchen, ist die Aufstellung der Nachbarschaftsliste, die mit \(N \) wie \(N^2 \) geht, der geschwindigkeitsbestimmende Schritt der Simulation. Die Kraft in solch großen Systemen wird mithilfe der Zellmethode berechnet [1]. Die Simulationsschachtel wird in Zellen mit einer Kantenlänge von mindestens \(r_{\text{cut}} \) unterteilt. Die Teilchen werden jeweils einer Zelle zugeordnet; dies ist linear in \(N \). In der Zelle, in der sich das Teilchen befindet, und in den 26 Nachbarzellen befinden sich alle Teilchen, die innerhalb des Abschneideradius sind. Auf diese Weise wird die Berechnung der Kraft wiederum zu einer linearen Operation in \(N \).

In Abb. 7.3 wird gezeigt wieviel Zeit pro Molekulardynamik-Schritt verschiedene Rechnerarchitekturen mit dem beschriebenen Algorithmus benötigen. Die durchgezogene Linie...
gibt den Vergleich mit einer linearen Steigung an, die bestenfalls erzielt werden kann. Für große Teilchenzahlen ist der Zuwachs an Rechenzeit mit der Systemgröße etwa linear. Die drei Prozessortypen sind der ev67-Prozessor von Alpha mit 667 MHz, der Macintosh G5-Prozessor mit 2 GHz und der Itanium²-Prozessor mit 1.5 GHz von Intel.

²Die Parallelisierung in dieser Arbeit wird mit dem weit verbreiteten MPI (Message Passing Interface) durchgeführt.
³Sie wird force stripping genannt

werden. Ansatzpunkt ist (sind) die Doppelschleife(n) in der Kraftberechnung (und in der Aufstellung der Nachbarschaftsliste). Die äußere Schleife wird, statt wie bisher von 0 bis zur Anzahl der Teilchen N mit einem Inkrement von 1, jetzt vom Rang des Prozessors (die Identität des Prozessors zwischen 0 und Anzahl der Prozessoren -1) $myId$ bis N mit einem Inkrement von der Anzahl der beteiligten Prozessoren $size$ durchlaufen. Die innere Schleife bleibt unverändert. In der Doppelschleife wird die Kraft auf die einzelnen Teilchen, das Virial der Kraft sowie die potenzielle Energie berechnet (die Parallelisierung der Nachbarschaftslisten aufstellung läuft analog). Da diese Größen extensiv sind, können nach dem Schleifendurchlauf die Größen aller Prozessoren aufsummiert werden und an alle beteiligten Prozessoren verteilt werden. Von diesen Doppelschleifen abgesehen läuft das Programm auf den beteiligten Prozessoren unabhängig voneinander.

Die andere Möglichkeit der Parallelisierung einer Molekulardynamik-Simulation ist die

Abbildung 7.4: Die Anzahl der Prozessoren des Parallelrechners ALiCE, die an einer Simulation von einer Million Teilchen bei einer Temperatur von 1.4 und einer Dichte von 0.35 beteiligt sind, gegen die Zeit, die für einen Molekulardynamik-Schritt benötigt wird. Die durchgezogene Gerade zeigt einen linearen Zusammenhang.

In Abb. 7.3 ist das Skalierungsverhalten des Parallelrechners ALiCE5, auf dem die Rechnungen mit einer Million Teilchen durchgeführt wurden, gezeigt. Die durchgezogene Linie zeigt den Vergleich mit einem linearen Zusammenhang. Insgesamt sieht man, dass der Algorithmus linear mit der Anzahl an beteiligten Prozessoren skaliert und ein maximaler Rechenzeitgewinn erzielt wird. Bei 48 an der Rechnung beteiligten Prozessoren verwaltet jeder Prozessor im Schnitt etwa 21.000 Teilchen. Der Vergleich mit Abb. 7.3 zeigt, dass eine Rechnung mit einem Prozessor, wenn man die Teilchen in den Rändern der Simulationsschachtelteilen mit berücksichtigt, etwa gleich lange rechnet. Erst wenn die Anzahl der Teilchen pro Prozessor weiter sinkt und damit sowohl die Rechenzeit pro Molekulardynamik-Schritt, zwischen denen Kommunikation notwendig ist, weiter sinkt als auch die Anzahl der Randteilchen steigt, deren Dynamik mehrfach berechnet wird, ist ein Einbruch des Rechenzeitgewinns zu erwarten.

7.4 Auswertung der Simulationen

4Dieser Art der Parallelisierung wird \textit{spatial decomposition} genannt.

5ALiCE (\textbf{A}lpha-\textbf{L}inux-\textbf{C}luster-\textbf{E}ngine) besteht aus 128 Workstations mit Alpha-ev67-Prozessoren mit 616 MHz, die mit Myrinet untereinander vernetzt sind \cite{3}.

6Es gibt Methoden der Datenkomprimierung, die den benötigten Speicherplatz um ca. 80\% reduzieren.
sechs mal 16 Zeichen (8 Nachkommastellen, zwei Vorzeichen, Vorkommastelle, zwei Zei-
chen für den Exponent, Exponentialzeichen, Trennzeichen zwischen Vor- und Nachkom-
mastellen sowie ein Trennzeichen zur nächsten Zahl) benötigt werden. Zusammengerech-
net ergibt das 96 Byte pro Teilchen oder z.B. fast 100 Megabyte pro Momentaufnahme
bei einer Million Teilchen.

In dieser Arbeit wird die Diffusionskonstante der Teilchen, die Paarkorrelationsfunktion
des Systems sowie die hieraus berechnete Strukturfunktion benötigt. Die Diffusionskon-
stante D kann aus der Einstein Beziehung, die nur im Limes großer Zeiten t sinnvoll ist,
errechnet werden.

$$2tD = \frac{1}{3} < |\vec{r}(t) - \vec{r}(0)|^2$$

Hier sind \vec{r} die kartesischen Koordinaten eines Teilchens. Die spitzen Klammern $<>$
stehen für die Mittelwertbildung über die Teilchen des Systems.

Die Struktur einer Flüssigkeit wird zumeist mithilfe der Paarkorrelationsfunktion beschrie-
en. Die Paarkorrelation wird mit der Dichte-Dichte-Korrelationsfunktion definiert:

$$g_2(\vec{r}, \vec{r}') = \frac{< \rho(\vec{r})\rho(\vec{r}') >}{\bar{\rho}^2}$$

Für isotrope Systeme hängt die Paarkorrelation natürlich nur vom Abstand $r = |\vec{r} - \vec{r}'|$ ab.
Für kleine Abstände $r > 0$ verschwindet die Dichte-Dichte-Korrelation. Erst für Abstände
weniger kleiner als der mittlere nächste Nachbarabstand steigt die Paarkorrelationsfunktion
sprunghaft an. Bei dem Abstand, der die erste und weitere Nachbarschalen charakterisiert,
hat die Paarkorrelation Maxima während sie dazwischen Minima aufweist. Für große
Abstände geht die Paarkorrelationsfunktion gegen eins.

Die praktische Berechnung der Paarkorrelationsfunktion geschieht durch Einordnen der
N^2 Abstände in ein Histogramm von Abstandsintervallen. Die Abstandsintervalle sind so
gewählt, dass die Einteilung der Abstände nicht zu grob ist aber in jedem Intervall auch
noch genügend Abstände gefunden werden. Bei den großen Systemen in dieser Arbeit
genügt eine Anzahl von 10.000 Intervallen beiden Anforderungen.

Struktur auf atomarer oder molekularer Ebene in Flüssigkeiten, Flüssigkeitsgemischen,
Polymerschmelzen, o.a. wird in Experimenten durch Kleinwinkel-Streuung gemessen [7].
Je nach der Art des zu untersuchenden Gegenstandes eignen sich dafür besonders Licht-
streuung, Röntgenbeugung oder auch Neutronenbeugung. Hier wird Röntgenbeugung mit
typischen Wellenlängen λ von z.B. der CuK$_\alpha$-Linie (1.5 Å) angenommen. Die Aussagen
lassen sich aber auf andere Streuexperimente übertragen. Die Streuzentren, an denen die
einfallenden Röntgenstrahlen gebeugt werden, sind die Elektronen in der untersuchten
Probe. Es wird hier nur kohärente Streuung behandelt. Inkohärente (Compton-)Streuung
trägt bei den betrachteten Winkeln nicht merklich bei. Das Interesse gilt Strukturen von
einigen Atom- bzw. Moleküldurchmessern. Deshalb wird eine homogene Elektronendichte
$\rho (\bar{\rho} = < \rho(\vec{r}) >)$ innerhalb der Streuzentren angenommen. Mit der Korrelationsfunktion:

$$\gamma(r = |\vec{r} - \vec{r}'|) = < \rho(\vec{r}) - \bar{\rho} > < \rho(\vec{r}') - \bar{\rho} >$$
folgt für die Streuintensität:

\[I(q) = \frac{1}{\rho} \int_0^\infty 4\pi r^2 dr \gamma(r) \frac{\sin qr}{qr} \]

(7.29)

oder das dazu inverse Problem:

\[\frac{\gamma(r)}{\rho} = \frac{1}{2\pi^2} \int_0^\infty q^2 dq I(q) \frac{\sin qr}{qr} \]

(7.30)

Diese Beziehungen zeigen den reziproken Zusammenhang zwischen dem Abstand \(r \) und dem Betrag des Streuvektors \(q \). Daraus folgt, dass große Teilchen bei kleinen Streuvektoren und über \(q = (2\pi/\lambda)\sin \theta \) bei kleinen Streuwinkeln \(\theta \) zu beobachten sind. Die Gestalt der Streuintensität mag ein Beispiel verdeutlichen. Es werde an kugelförmigen Streuzentren mit dem Radius \(R_0 \) und dem Volumen \(V \), die in einer verdünnten Lösung vorliegen streut. Nur die Differenz der Elektronendichten ist für die Streuung relevant: \(\Delta \rho = (\rho - \rho_0) \). Ist die Lösung stark verdünnt kann die Streuintensität aus der Streuung eines der kugelförmigen Streuzentren berechnet werden. Für eine Kugel ist die Streuintensität \(I_1 \) (Rayleigh 1911) [8]:

\[I_1(q) = (\Delta \rho)^2 V^2 \left[3 \sin qR_0 - qR_0 \cos qR_0 \right] \left(\frac{(qR_0)^3}{(qR_0)^3} \right)^2 \]

(7.31)

Für verschwindendes \(q \) geht \(I_1(q) \) gegen \((\Delta \rho)^2 \) (konstant). Für kleine \(q \) lässt sich \(I_1 \) entwickeln und liefert:

\[I_1(q) \sim (\Delta \rho)^2 V^2 \left(1 - \frac{1}{5}(qR_0)^2 + \ldots \right) \]

(7.32)

Diese Beziehung entspricht der allgemeingültigen Guinier-Näherung (1939) [8]:

\[I_1(q) = (\Delta \rho)^2 e^{-q^2 R^2/3} \text{ mit } R^2 = \langle \hat{V}(r) \rangle \]

mit (7.33)

Die Korrelationsfunktion \(\gamma(r) \) kann bei konstanter Elektronendichtedifferenz als eine Korrelationsfunktion der besetzten und unbesetzten Volumina verstanden werden:

\[\gamma(r) = (\Delta \rho)^2 \gamma_0(r) = (\Delta \rho)^2 \frac{\hat{V}(r)}{V} \]

(7.34)

Stellt man sich zwei übereinanderliegende kugelförmige Teilchen vor, die mit dem Abstand \(r \) gegeneinander verschoben werden, so wird das Überlappvolumen der beiden Kugeln durch \(\langle \hat{V}(r) \rangle \) gegeben. Die Änderung des Volumens ist durch \(dS \hat{r} \cos \theta \) gegeben. Der Winkel \(\theta \) ist der Winkel zwischen der Oberflächennormalen und dem Richtungsvektor \(\hat{r} \). Mittelung über alle Richtungen gibt \(|\cos \theta| = 1/2 \). Zur Änderung des Volumens trägt nur der Teil von \(\hat{r} \) der in die Kugel gerichtet ist bei, was einen weiteren Faktor 1/2 ergibt. Nach der Integration über die Oberfläche ergibt sich also:

\[\langle \hat{V}(r) \rangle = V - \frac{1}{4} Sr + \ldots \]

(7.35)
Abbildung 7.5: Oben: Die Volumenkorrelationsfunktion (s. Glg. 7.34) einer Einheitskugel mit einer identischen Kugel im Abstand \(r \). Unten: Die Streuintensität zum obigen Beispiel nach Glg. 7.31.
Die Integration dieser Korrelationsfunktion ergibt, wenn man nur am Grenzverhalten für große \(q \) interessiert ist:

\[
I_1(q) \to (\Delta \rho)^2 \frac{2\pi}{q^4} S
\]

(7.36)

Dies ist das Porodsche Gesetz [8]. Man erhält es in gleicher Weise, wenn man Glg. 7.31 für große \(q \) nähert. Auch bei nichtpartikularen Systemen führt die vorangehende Überlegung zum gleichen Ergebnis. Die Oberfläche muss nun als innere Oberfläche interpretiert werden.

Im vorangegangenen Abschnitt wurde die Streuung einzelner kugelförmiger Teilchen betrachtet. Die Streuung eines Vielteilchensystems das stark verdünnt ist kann durch Summation über alle Streuintensitäten \(I_1 \) berechnet werden. In dichteren Systemen wird die Streuung aus der Dichte-Dichtekorrelation nach Glg. 7.29 berechnet. In dieser Arbeit wird die Paarkorrelation (s. Glg. 7.27) zur Berechnung der Streuintensität \(S(q) \) herangezogen.

\[
S(q) = 1 + 4\pi \rho \int_0^\infty r^2 dr \frac{\sin qr}{qr} \left[g_2(r) - 1 \right]
\]

(7.37)

Hier ist \(\rho \) die mittlere Dichte im System. Durch die Eins auf der rechten Seite der Glg. wird die Autokorrelation, die in der Paarkorrelation nicht enthalten ist, berücksichtigt. In der Paarkorrelation werden nur Abstände \(r > 0 \) gezählt.

\[\text{7} \text{Es wurde z.B die Kleinwinkelstreuung von Kohle gemessen [9]. Abweichungen des Verhaltens von} \ q \text{bei großen} \ q \text{vom Porodschen Gesetz wurden mit einer fraktalen Dimension der inneren Oberflächen erklärt.}\]
Literaturverzeichnis

Kapitel 8

Theorie der Phasenseparation

8.1 Anfangsstadium der spinodalen Entmischung

Die Entmischung beginnt direkt nach dem sprunghaften Absenken der Temperatur. Es wird angenommen, dass sich das System zuvor im thermodynamischen Gleichgewicht befunden hat. Der Beginn der Entmischung wird von der Cahn-Hilliard-Theorie beschrieben. Der Ordnungsparameter des Phasenübergangs ist in diesem Fall die lokale Abweichung von der mittleren Dichte \(\rho_0 \): \(c(\vec{x},t) = \rho(\vec{x},t) - \rho_0 \). Die freie Energie des Systems kann als Integral über die freie Energiedichte dargestellt werden. Für ein lokal-homogenes System ist die freie Energiedichte eine Funktion der Dichte \(f(c(\vec{x})) \). Der erste nichtverschwindende Term einer Entwicklung der freien Energie bezüglich eines Gradienten in der lokalen Dichte ist \(\frac{K}{2}(\nabla c(\vec{x}))^2 \) (es gibt keinen Beitrag der linear im Gradienten ist). Dieser Term beschreibt den Beitrag der Oberflächenergie zwischen den unterschiedlichen lokalen Dichten. Die freie Energie des Systems kann deshalb als [2]:

\[
\begin{align*}
F(c(\vec{x},t)) &= \int \left[f(c(\vec{x},t)) + \frac{K}{2} \left(\nabla c(\vec{x},t) \right)^2 \right] dV, \\
\end{align*}
\]

(8.1)

geschrieben werden. Die Variation des Funktionals mit der Dichte ist:

\[
\frac{\delta F}{\delta c} = f'(c(\vec{x},t)) - K \nabla^2 c(\vec{x},t).
\]

(8.2)
8.1. ANFANGSSTADIUM DER SPINODALEN ENTMISCHUNG

Diese Gleichung beschreibt die Änderung der freien Energie, wenn sich die locale Abweichung von der mittleren Dichte ändert. Die Änderung der freien Energie ist die treibende Kraft der Entmischung. Für eine Erhaltungsgröße gilt immer eine Kontinuitätsgleichung.

\[\frac{\partial c}{\partial t} = \nabla j \]

(8.3)

Weil die lokale Dichte eine Erhaltungsgröße ist, muss ihre Zeitableitung die Divergenz eines Stromes sein. Dieser Dichtestrom wird als linear im Gradienten von \(\delta F/\delta c \) angenommen\(^1\), d.h.

\[\bar{J}_c = -M \nabla \left[f'(c(\bar{x}, t)) - K \nabla^2 c(\bar{x}, t) \right] \]

(8.4)

Vorausgesetzt, dass die Mobilität \(M \) konstant ist, folgt daraus die Cahn-Hilliard-Gleichung.

\[\frac{\partial c(\bar{x}, t)}{\partial t} = M \left[\nabla^2 f'(c(\bar{x}, t)) - K \nabla^4 c(\bar{x}, t) \right] \]

(8.5)

Der führende Term von \(\nabla^2 f'(c(\bar{x}, t)) \) für kleine \(c(\bar{x}, t) \) ist \((\partial^2 f/\partial c^2)\big|_{c=0} \nabla^2 c(\bar{x}, t) \). Die Lösung der resultierenden Form der Gleichung 8.5 erhält man durch Fourier-Analyse.

\[c(\bar{k}, t) = \exp \left[R(k) t \right] \]

(8.6)

mit

\[R(k) = -M \left(\frac{\partial^2 f}{\partial c^2} \right)\bigg|_{c=0} k^2 - MKk^4 \]

(8.7)

Im instabilen Bereich des Phasenraumes ist \((\partial^2 f/\partial c^2)\big|_{c=0} \) negativ. Deshalb ist \(R(k) \) für alle Wellenzahlen, die kleiner als die kritische Wellenzahl \(k_c \) sind, positiv. Diese kritische Wellenzahl ist durch

\[k_c = \sqrt{-\frac{(\partial^2 f/\partial c^2)\big|_{c=0}}{K}} \]

(8.8)

gegeben. Das System ist instabil gegen Dichteaufluktuationen für die \(k < k_c \) gilt. Diese Dichteaufluktuationen wachsen exponentiell an. Der maximale Verstärkungsfaktor \(R(k_m) \) hat eine Wellenzahl von \(k_m = k_c/\sqrt{2} \). Die Abweichung der lokalen Dichte von der mittleren Dichte \(c(\bar{k}, t) \) ist durch

\[S(k, t) \propto |c(\bar{k}, t)|^2 \]

(8.9)

mit der Strukturfunktion verbunden [3]. Mit Glg. 8.6 wird die Strukturfunktion zu:

\[S(k, t) = S(k, 0) \exp \left[2R(k) t \right] \]

(8.10)

Bisher wurde lediglich der Dichteaufluss, der von der Phasenseparation herrührt, betrachtet. Der gesamte Fluss im System beinhaltet zusätzlich noch einen Term aufgrund der ungerichteten thermischen Bewegung der Teilchen. Dieser Fluss kann durch einen Langevin-Term dargestellt werden, der auf der rechten Seite der Kontinuitätsgleichung (Glg. 8.3)

\(^1\) Diese Näherung ist analog zum Fick’schen Gesetz.
hinzuaddiert wird. Der Langevin-Term hat einen verschwindenden Mittelwert und für die Korrelationsfunktion gilt:

\[
\left\langle C(\vec{r}, t)C(\vec{r}', t') \right\rangle = -4k_B T M_0 \delta(\vec{r} - \vec{r}') \delta(t - t')
\]

(8.11)

Wird dieser thermische Fluss berücksichtigt, resultiert eine Differenzialgleichung für die Strukturfunktion, die auf Cook zurückgeht [4]

\[
\frac{dS(k, t)}{dt} = 2R(k) \left[S(k, t) + \frac{Mk_B T k^2}{R(k)} \right]
\]

(8.12)

Die Lösung dieser Gleichung ist durch

\[
S(k, t) = \left\{ S(k, 0) + \frac{Mk_B T k^2}{R(k)} \right\} 2R(k) \exp \left[2R(k)t \right] - \frac{Mk_B T k^2}{R(k)}
\]

(8.13)

gegeben. Diese Gleichung wird benutzt, um den Verstärkungsfaktor zu Beginn der Simulationen zu berechnen.

Der Verstärkungsfaktor \(R(k)\) ist durch Glg. 8.7 gegeben. Aufgrund der Linearisierung von Glg. 8.5 ist er zeitunabhängig. Wie zu Beginn des Kapitels beschrieben wird jedoch erwartet, dass sich immer größere Strukturen ausbilden, bis diese schließlich Systemgröße erreichen. Die Wellenzahl der am stärksten wachsenden Fluktuation muss sich demnach zu immer kleineren Wellenzahlen verschoben, sobald die Phasenseparation begonnen hat. Langer et al. haben auch nichtlineare Terme in Glg. 8.5 berücksichtigt [5], die einen zeitabhängigen Verstärkungsfaktor bewirken. Bisher existiert jedoch keine Theorie, die die gesamte Phasenseparation beschreiben kann.

8.2 Diffusive Systeme

In diesem und dem folgenden Unterkapitel wird das späte Stadium der Entmischung behandelt. Zur Vereinfachung wird angenommen, dass das System aus voneinander unabhängigen Tropfen der dichten Phase besteht. Weiterhin wird angenommen, dass die Konzentration \(c\) der Lösung nahe der Sättigungskonzentration \(c_\infty\) ist, d.h. \(c - c_\infty \ll 1\). Wird der Teilchentransport in dem System durch Diffusion getrieben, dann gilt für den Strom durch die Tropfenoberfläche eines Tropfens mit Radius \(R\) [6]:

\[
j = D \frac{\partial c}{\partial r} \bigg|_{r=R}
\]

(8.14)

Im Gleichgewicht ist dieser Strom konstant. Wird \(j_0 = 4\pi r^2 j(r)\) in Glg. 8.14 eingesetzt und über \(r\) von \(R\) bis \(\infty\) integriert ist:

\[
\frac{j_0}{4\pi} \int_R^{\infty} \frac{1}{r^2} dr = D(c - c_R)
\]

(8.15)
und deshalb ist:

\[
\frac{\partial c}{\partial r}_{r=R} = \frac{c - c_R}{R} \tag{8.16}
\]

Die Konzentration an der Tropfenoberfläche \(c_R \) ist mit der Sättigungskonzentration durch \(c_R = c_\infty + \alpha/R \) verküpfht. Hier ist der \(1/R \)-Term ein Oberflächenbeitrag. Es wurde bis zu diesem Punkt eine Differenzialgleichung hergeleitet, die die Übersättigung \(\Delta = c - c_\infty \) mit der Tropfengröße \(R \) verküpfht.

\[
\frac{dR}{dt} = \frac{D}{R} \left(\frac{\Delta - \alpha}{R} \right) \tag{8.17}
\]

Wenn Glg. 8.17 durch \(R^* = R/R_c \) und \(t^* = t/t_c \) dimensionslos gemacht wird, kann man \(t_c \propto R_c^3 \) ablesen. Daher sollte der Tropfenradius mit \(t^{1/3} \) skalieren, falls das System diffusionsgetrieben ist [6].

8.3 Kinetische Systeme

Wird die Teilchenbewegung durch die kinetische Energie der Teilchen bestimmt, ist der Zusammenhang zwischen \(t \) und \(R \) anders. In diesem Fall kann eine Ratengleichung für die Anzahl der Teilchen \(n \) im Tropfen bzw. Cluster aufgeschrieben werden [7]

\[
\frac{dn}{dt} = g_n - l_n \tag{8.18}
\]

die aus einem Gewinn- und einem Verlust-Term besteht. Der Gewinn-Term wird durch

\[
g_n = n_v(t)S \left(\frac{T}{2\pi m} \right)^{1/2} \tag{8.19}
\]

beschrieben. Hier ist \(n_v(t) \) die zeitabhängige Gasdichte und \(S(T/(2\pi m)^{1/2}) \) der thermische Teilchenstrom durch die Oberfläche \(S \) des Clusters; \(m \) ist die Masse der Teilchen. Der Verlust-Term kann mit einer Proportionalitätskonstante \(A \) und der Volumenergie \(\phi \) als

\[
l_n = A S \exp \left[-\frac{\phi}{T} + \frac{\alpha}{R} \right] \tag{8.20}
\]

geschrieben werden. Ähnlich wie in Glg. 8.17 wird ein kritischer Tropfenradius als die stationäre Lösung von

\[
\frac{dR}{dt} = \frac{n_v(t)}{n_t} \left(\frac{T}{2\pi m} \right)^{1/2} - \left(\frac{A \exp \left[-\phi/T \right]}{n_t} \right) \exp \left[\frac{\alpha}{R} \right] \tag{8.21}
\]

definiert. Die Flüssigkeitsdichte \(n_t \) wird als konstant angenommen. Die Anzahl der Teilchen im Tropfen ist \(n = (4\pi/3)R^3n_t \). Deshalb folgt \(dn/dt = Sn_t dR/dt \). Der Oberflächenbeitrag zur Gesamtenergie des Tropfens sollte für lange Zeiten klein sein, weshalb die Näherung \(\exp[\alpha/R] \) durch \((1 + \alpha/R) \) gerechtfertigt ist. Wird die Entwicklung
R(t) = R_c + \epsilon f(t) mit der Konstanten R_c und der kleinen Größe \epsilon in Glg. 8.21 eingesetzt, erhält man

\frac{dR(t)}{dt} = A \exp \left(\frac{-\phi}{T} \right) \left(\frac{\alpha}{R_c} - \frac{\alpha}{R(t)} \right).

(8.22)

Wiederum werden dimensionslose Größen eingeführt, d.h. \(R^* = R/R_c \) und \(t^* = t/t_c \). Die Zeitskala ist dann \(t_c = R^2_c/(A \exp [-\phi/T]) \). Der Radius R der Cluster skaliert in diesem Fall wie \(t^{1/2} \) [7].
Literaturverzeichnis

Kapitel 9

Molekulardynamik Experimente zur spinodalen Entmischung

9.1 Spinodale Entmischung in Lennard-Jones-Fluiden*

Abb. 9.1 zeigt den Entmischungsvorgang, der auf das Absenken der Temperatur von \(T = 1.4 \) auf \(T = 1.0 \) bei einer Dichte von \(\rho = 0.35 \) folgt. Die Abb. zeigt die Verteilung der lokalen Dichte an unterschiedlichen Zeitpunkten auf einer logarithmischen Zeitskala. Die anfänglich scharfe Gaußverteilung verbreitert sich, bis sie sich in zwei Gaußverteilungen mit separaten Maxima aufteilt, die zur Flüssig- und zur Gasphase gehören. Die Dichteverteilung wird berechnet, indem an beliebigen Positionen die Anzahl der Teilchen in

\[\text{bei Testrechnungen an Lennard-Jones-Systemen mit 90.000 Teilchen konnte kein Einfluss des Thermostaten auf die Dynamik der Phasenseparation nachgewiesen werden.} \]

\[*\text{Dieses Kapitel folgt Referenz [1].} \]
9.1. SPINODALE ENTMISCHUNG IN LENNARD-JONES-FLUIDEN

Für die weitere Analyse wird die Strukturfunktion nach Glg. 7.37 berechnet. Die Abb.

Abbildung 9.1: Die Wahrscheinlichkeitsverteilung der Dichte in dem System nach dem schlagartigen Absenken der Temperatur. Es wurde die Wahrscheinlichkeit, an einer beliebigen Position im System eine gewisse lokale Dichte, gemittelt über eine Kugel mit einem Durchmesser von 5 Lennard-Jones-Längeneinheiten, zu finden, berechnet. Der Peak bei einer Dichte von $\rho=0.35$, zeigt die Dichteverteilung zu Beginn, während die beiden Peaks bei 0.06 sowie 0.63 den Endzustand zeigen, in dem Gas und Flüssigkeit im Gleichgewicht sind.
KAPITEL 9. MOLEKULARDYNAMIK EXPERIMENTE

9.2 zeigt die radiale Strukturfunktion $S(k, t)$ zu verschiedenen Zeiten nach der Temperaturabsenkung. In allen Graphen ist bei $k \approx 2\pi$ ein gemeinsamer Peak zu sehen, der dem nächsten Nachbarabstand entspricht. Die immer größer werdenden Strukturen, wie in Abb. 9.6 und 9.7 gezeigt, spiegeln sich im wachsenden Kurvenscheitel wieder, der sich bei entsprechend kleinen k-Werten ausbildet. Dies ist der Peak, der im Folgenden näher untersucht wird. Um den Verstärkungsfaktor zu erhalten wird zunächst die Mobilität M mit Glg. 7.26 und $D = k_B T M$ berechnet. Die Mobilität nach dem Absenken der Temperatur ist $M = 0.36$. Nach Glg. 8.13 erhält man für den Verstärkungsfaktor zur Zeit $t = 5.82$ die in Abb. 9.3 dargestellten Werte. Bis zu diesem Zeitpunkt hat sich die Dichteverteilung noch nicht verändert. Der Verstärkungsfaktor ist, für Wellenvektoren deren Betrag kleiner als $k_c = 0.8$ ist, positiv. Daraus folgt, dass das System instabil gegenüber Dichtefluktuationen mit diesen Wellenvektoren ist. Die k-Abhängigkeit des Verstärkungsfaktors $R(k)$ entspricht nicht der k-Abhängigkeit in Glg. 8.6 (s. den Einsatz in Abb. 9.3). In dieser Hinsicht stimmen die Daten mit denen aus Abb. 25 in Ref. [2] überein. Andererseits wird diese k-Abhängigkeit im Experiment nachgewiesen [3]. Möglicherweise ist der Grund in

Abbildung 9.2: Die Strukturfunktion $S(k, t)$ als Funktion des Betrages des Wellenvektors k zu verschiedenen Zeitpunkten. Von oben nach unten $t = 800, 600, 400, 250, 55, 13, 1, 0$.
9.1. **SPINODALE ENTMISCHUNG IN LENNARD-JONES-FLUIDEN**

dem begrenzten k-Bereich, der vom Experiment abgedeckt wird, zu finden. Experimentell wird lediglich der Bereich, in dem $R(k)$ positiv ist, gemessen. In Abb. 9.4 wird das Skalenverhalten des Anwachsens der Bereiche unterschiedlicher Dichte studiert. Der obere Teil der Abb. zeigt die Position des Maximums der Strukturfunktion k_{max} als Funktion der Zeit. Die Geraden zeigen ein Skalenverhalten mit $k_{\text{max}} \sim t^{-1/2}$ bzw. mit $k_{\text{max}} \sim t^{-1/3}$, wie im vorherigen Kapitel diskutiert, an. Insgesamt gesehen gibt das Potenzgesetz mit einem Exponenten von -1/3 das Skalenverhalten im späten Stadium der Entmischung gut wieder. Der Übergang vom Verhalten zu Beginn der Entmischung zu dem Verhalten im späten Stadium der Entmischung beinhaltet natürlicherweise einen Bereich, in dem $k_{\text{max}} \sim t^{-1/2}$ gilt. Wenn das Zeitintervall der Simulation nicht groß genug ist, kann man fälschlicherweise annehmen, dass $k_{\text{max}} \sim t^{-1/2}$ das Skalenverhalten im späten Stadium der Entmischung beschreibt. Der untere Teil der Abb. 9.4 zeigt dieselbe Analyse mit dem Abstand, bei dem die Paarkorrelation zuerst den Wert eins annimmt, anstelle der Position des Maximums der Strukturfunktion. Die beiden Geraden zeigen das Verhalten $r_i \sim t^{1/2}$ bzw. $r_i \sim t^{1/3}$. In Übereinstimmung mit dem oberen Teil der Abbildung findet man das $r_i \sim t^{1/3}$ Verhalten im späten Stadium der Entmischung. Die Abweichung von diesem Ver-

Abbildung 9.3: Der Verstärkungsfaktor $R(k)$ berechnet nach Glg. 8.13 zum Zeitpunkt $t=5.82$ als Funktion des Wellenzahlvektor-Betrages.
KAPITEL 9. MOLEKULARDYNAMIK EXPERIMENTE

halten für späte Zeiten nach $t=800$ kann mit der endlichen Systemgröße erklärt werden.

Die Strukturfunktionen zum Zeitpunkt $t=13.55$ und $t=250$ in Abb. 9.2 folgen Porods Gesetz, $S(k) \sim 1/k^4$, für große k ($k \simeq 1$), wohingegen das Verhalten der Strukturfunktionen zu späteren Zeiten durch Oszillationen, die von der endlichen Systemgröße herrühren, verborgen bleibt. Dennoch sollten diese Oszillationen das Langzeitverhalten in Abb. 9.4 nicht beeinflussen, wie auch der Vergleich der t Abhängigkeit von r_1 und k_{max} zeigt. Zusätzlich wurde untersucht welchen Effekt verschiedene vernünftige Fortsetzungen der Paarkorrelation über die Hälfte der Länge der Simulationsschachtel hinaus auf Abb. 9.4 haben. Es konnte jedoch keine signifikante Abweichung vom Langzeitverhalten $\sim t^{-1/3}$ beobachtet werden.

Die Abb. 9.5 zeigt die skalierte Strukturfunktion $F(x) = k_{\text{max}}^3 S(k)$, mit $x = k/k_{\text{max}}$, in verschiedenen Zeitintervallen. Es kann abgelesen werden, dass die angewandte Art der Skalierung in den Intervallen, in denen die Daten mit $k_{\text{max}} \sim t^{-1/2}$ bzw. $k_{\text{max}} \sim t^{-1/3}$ übereinstimmen, gut erfüllt ist (die oberen beiden sowie die unteren beiden Abbildungen beinhalten vergleichbare Zeitintervalle). Während dies für das Langzeitverhalten $k_{\text{max}} \sim t^{-1/3}$ nicht erstaunlich ist, so zeigt es für das $k_{\text{max}} \sim t^{-1/2}$-Intervall, dass dieses Verhalten nicht nur einem Einschwenken auf das -1/3-Verhalten entspricht, sondern seine eigene physikalische Bedeutung, die einem Wachstumsgesetz entspricht, hat. In den Ref. [4, 5] wird ein Exponent für das Wachstumsverhalten der Bereiche unterschiedlicher Dichte im späten Stadium der Entmischung aus isothermen Molekulardynamik-Simulationen abgeleitet. In der vorliegenden Arbeit wird gezeigt, dass es ein kinematisches Skalierungsintervall gibt (Exponent -1/2) aber dass es lediglich ein temporäres Intervall ist. Das asymptotische Skalierungsverhalten ist diffusiv. Der Wachstumsexponent ist auch in diesem Fall 1/3 wie er bereits aus isoenergetischen Simulationen spinodaler Entmischung abgeleitet wurde.
Abbildung 9.4: Oben: Die Position des Maximums der Strukturfunktion k_{max} als Funktion der Zeit t. Die Geraden entsprechen den beiden im Text erklärten Potenzgesetzen, d.h. $k_{\text{max}} \sim t^{-1/2}$ (durchgezogene Gerade) und $k_{\text{max}} \sim t^{-1/3}$ (gestrichelte Gerade). Unten: Der Abstand r_i, bei dem die Paarkorrelation eins wird, als Funktion der Zeit. Die durchgezogenen Geraden entsprechen wiederum den erwähnten Potenzgesetzen, d.h. $r_i \sim t^{1/2}$ (durchgezogene Gerade) und $r_i \sim t^{1/3}$ (gestrichelte Gerade).
Abbildung 9.5: Die skalierte Strukturfunktion \(F(x) = \frac{k^3}{k_{max}^3} S(k) \) als Funktion von \(x = \frac{k}{k_{max}} \) in den angegebenen Zeitintervallen. Die rechts abgebildeten Zeitintervalle sind in Abb. 9.4 durch vertikale Markierungen auf der Zeitachse angedeutet.
Abbildung 9.6: Die lokale Dichteverteilung im System an drei verschiedenen Zeitpunkten. Die abgebildeten Scheiben haben eine Dicke von 0.5; die Punkte zeigen die Positionen einzelner Teilchen. Die Momentaufnahmen zeigen das System bei a) 13, b) 55 und c) 250 Lennard-Jones-Zeiteinheiten nach dem Absenken der Temperatur.
9.2 Spinodale Entmischung von Wasser

Abbildung 9.8: Die Wahrscheinlichkeitsverteilung der lokalen Dichte im System nach dem schlagartigen Absenken der Temperatur. Es wurde die Wahrscheinlichkeit, an einer beliebigen Position im System eine gewisse Dichte, gemittelt über eine Kugel mit 12 Å-Durchmesser, zu finden, berechnet. Der Peak zu Beginn bei 0.3 g/cm3 zeigt die Dichteverteilung zu Beginn, während die beiden Peaks bei 0.008 und 0.75 g/cm3 den Endzustand zeigen, in dem Gas und Flüssigkeit im Gleichgewicht sind.
KAPITEL 9. MOLEKULARDYNAMIK EXPERIMENTE

9.14 zeigt das System an drei Zeitpunkten während des späten Stadiums der Entmischung \((t = 40, 60, 80\ \text{ps})\). Der mittlere Teil e) ist gerade in dem später identifizierten Skalierungsintervall. Im unteren Teil der Abb. sind die Bereiche unterschiedlicher Dichte größtenteils zusammengewachsen. Nach etwa 120 ps wird sich eine zusammenhängende Gasblase gebildet haben. In Abb. 9.9 ist die für die weitere Analyse benötigte Strukturfunktion an den Zeitpunkten, die in den Abb. 9.13 und 9.14 ausgesucht wurden, dargestellt. Der allen Strukturfunktionen gemeinsame Peak bei \(k \approx 2.5 \ 1/\text{Å}\) korrespondiert zu einer Wellenlänge von etwa 2.7 Å. Dies entspricht dem mittleren \(O-O\)-Abstand (vgl. auch Abb. 4.7). An den beiden letzten hier dargestellten Zeitpunkten haben sich bereits so große Strukturen ausgebildet, dass das Verhalten der Strukturfunktion für \(k \approx 1\) durch starke Oszillationen verdeckt wird. An den anderen Zeitpunkten befolgen die Strukturfunktionen Pore's Gesetz, \(S(k) \sim 1/k^4\), für große \(k\) \((k \approx 1)\). Für kleine \(k\) bilden sich mit der Zeit immer stärkere Kurvanscheitel aus, die den im System wachsenden Strukturen entsprechen. Aus der Strukturfunktion wurde nach Glg. 8.13 der Verstärkungsfaktor \(R(k)\) am Zeitpunkt \(t = 1.5\ \text{ps}\) berechnet. Die hierfür benötigte Mobilität wurde aus der Simulation nach Glg. 2.1 zu \(30 \times 10^{-5}\ \text{cm}^2/\text{s}\) berechnet. Experimentell bekannt ist die Diffusionskonstante bei überkritischen Bedingungen: \(T = 673\ \text{K}\ D \sim 120 \times 10^{-5}\ \text{cm}^2/\text{s}\) [7].

Um einen besseren Vergleich mit dem Lennard-Jones-Experiment zu ermöglichen, werden die Lennard-Jones-Parameter für Argon benutzt. Die Lennard-Jones-Längeneinheit

Abbildung 9.9: Die Strukturfunktion als Betrag des Wellenzahlvektors \(k\) zu verschiedenen Zeitpunkten. Von oben nach unten \(t = 10, 15, 30, 40, 60, 80\ \text{ps}\).
entspricht bei Argon 3.405 Å und die Zeiteinheit 2.16 ps [8]. Die Mobilität von Argon bei \(T = 1.0 \) ist demnach \(\sim 20 \times 10^{-5} \) cm\(^2\)/s und damit von einer ähnlichen Größe wie die Mobilität von Wasser bei \(T = 500 \) K. Die kritische Wellenzahl \(k_c \) von Argon ist etwa 0.22 1/Å, berechnet an einem mit \(t \approx 12 \) ps wesentlich späteren Zeitpunkt. Der maximale Verstärkungsfaktor von Argon beträgt etwa 0.027 1/ps. Der maximale Verstärkungsfaktor von Wasser ist etwa 0.3 1/ps. Die maximal verstärkte Wellenlänge ist bei Wasser \(\sim 20 \) Å und bei Argon \(\sim 50 \) Å. Daraus lässt sich schließen, dass Dichtefluktuationen in instabilem Wasser schneller anwachsen als in Argon. Zusätzlich werden Fluktuationen schon mit einer kleineren Wellenlänge positiv verstärkt. Die \(k \)-Abhängigkeit des Verstärkungsfaktors ist im Fall von Wasser qualitativ wie erwartet. Es gibt einen \(k \)-Bereich, in dem Dichtefluktuationen verstärkt werden und es gibt eine maximal verstärkte Wellenlänge. Der Zusammenhang \(R(k)/k^2 \) mit \(k^2 \) ist, wie auch beim Lennard-Jones-Potenzial, nicht wie erwartet. Bei Wasser ist \(k_m = k_c/\sqrt{2} \) schlechter als beim Lennard-Jones-Potenzial erfüllt. Dass Wasser insgesamt stärker von der Theorie für die Dynamik der Phasenseparation abweicht, lässt sich vermutlich durch einen stärkeren Einfluss der nichtlinearen Terme in Glg. 8.5 erklären. Durch den größeren Verstärkungsfaktor und die kleinere kritische Wellenlänge ist die Dynamik bei Wasser wesentlich schneller als beim Lennard-Jones-System. Mit Abb. 9.11 wird das späte Stadium der Entmischung untersucht. In der Abb. ist im oberen Teil das Maximum der Strukturfunktion als Funktion der Zeit doppeltloga-

Abbildung 9.10: Der Verstärkungsfaktor \(R(k) \) berechnet nach Glg. 8.13 zum Zeitpunkt \(t = 1.5 \) ps als Funktion des Wellenzahlvektor-Betrages.
arithmisch aufgetragen. Die eingezeichnete Gerade gibt das Verhalten des Maximums der Strukturfunktion etwa 30 ps nach dem Abkühlen wieder. Die Gerade entspricht einem $k_{\text{max}} \sim t^{-0.6}$-Verhalten. Im unteren Teil der Abb. ist der Abstand, bei dem die Paarkorrelationsfunktion zuerst den Wert eins erreicht r_i, gegen t aufgetragen. Dem oberen Teil der Abb. entsprechend gibt ein $t \sim t^{0.6}$-Verhalten den Verlauf gut wieder. Wie im Lennard-Jones-System zeigt sich eine Abweichung von diesem Verhalten, das durch die Systemgröße erklärt werden kann, zuerst bei $r_i(t)$. In der Abb. 9.12 ist das Skalierungsverhalten der Strukturfunktion nach $F(x) = k_{\text{max}}^3 S(k)$ mit $x = k/k_{\text{max}}$ in drei Zeitbereichen dargestellt. Das mittlere Zeitintervall ist auch in Abb. 9.11 auf der t-Achse im unteren Teilbild angedeutet. In diesem mittleren Intervall zeigt die Strukturfunktion ein deutliches Skalierungsverhalten als in den beiden anderen Bereichen. Das mittlere Zeitintervall ist deutlich größer als die ihn umgebenden Intervalle. Die skalierten Strukturfunktionen sind allerdings in allen drei Bereichen recht ähnlich. Es ist nicht klar, ob der Grund für die Verschlechterung des Skalierungsverhaltens im letzten Zeitbereich mit der Systemgröße zusammenhängt oder ob es eine physikalische Ursache hierfür gibt. Von Grant und Elder wurde gezeigt, dass der abschließende Exponent für das Anwachsen der Bereiche unterschiedlicher Dichte $\leq 1/2$ sein muss [9]. Dass hier ein Exponent $\geq 1/2$ gefunden wurde könnte darauf hindeuten, dass dieser Exponent, wie der Exponent von 1/2 beim Lennard-Jones-Potenzial, lediglich temporär gilt. Eine endgültige Antwort auf die Frage, welcher Exponent das Anwachsen der Bereiche unterschiedlicher Dichte bei der spinodalen Entmischung von Wasser beschreibt, kann wohl nur durch die Simulation eines größeren Systems beantwortet werden.
Abbildung 9.11: Oben: Die Position des Maximums des Stukturfaktors k_{max} als Funktion der Zeit. Die Gerade zeigt ein Potenzgesetz $k_{\text{max}} \sim t^{-0.6}$. Unten: Der Abstand, bei dem die Paarkorrelationsfunktion eins wird r_i, als Funktion der Zeit. Die Gerade zeigt ein Potenzgesetz $r_i \sim t^{0.6}$.
Abbildung 9.12: Die skalierte Strukturfunktion \(F(x) = k_{\text{max}}^3 S(k) \) als Funktion von \(x = k/k_{\text{max}} \) in den angegebenen Zeitintervallen. Das mittlere Zeitintervall ist in Abb. 9.11 durch vertikale Markierungen auf der Zeitachse angedeutet.
Literaturverzeichnis

Kapitel 10

Zusammenfassung — Spinodale Entmiscung

Im zweiten Teil der vorliegenden Arbeit wurde die spinodale Entmiscung eines dreidimensionalen Lennard-Jones-Systems nach einer sprunghaften Temperaturänderung von \(T = 1.4 \) auf \(T = 1.0 \) bei einer Dichte von \(\rho = 0.35 \) untersucht. Das untersuchte System besteht aus einer Million Teilchen. Diese Systemgröße erlaubt es die Entmiscung 2000 Lennard-Jones-Zeiteinheiten lang zu untersuchen. Die Proportionalität von \(R(k)/k^2 \) zu \(k^2 \), mit dem Verstärkungsfaktor \(R(k) \), wie sie von der Theorie vorhergesagt wird, konnte nicht gefunden werden. Es besteht jedoch eine qualitative Übereinstimmung zwischen Theorie und Simulation die \(k \)-Abhängigkeit von \(R(k) \) betreffend. Im Langzeitverhalten der Entmiscung wurde ein Übergangsbereich gefunden, in dem das Zeitverhalten des Maximums der Strukturfunktion \(t^{-1/2} \) entspricht sowie ein asymptotischer Bereich, in dem das Maximum \(t^{-1/3} \) folgt. Dieses Ergebnis widerspricht den bisherigen Beobachtungen an isothermen Molekulardynamik-Simulationen. In den beiden Zeitintervallen, in denen das Maximum der Strukturfunktion einem Potenzgesetz folgt, kann ein Skalierungsverhalten der Strukturfunktion beobachtet werden. In einem weiteren Molekulardynamik-Experiment wurde die spinodale Entmiscung von Wasser im SPC/E-Modell studiert. Ein System mit hunderttausend Teilchen wurde von 700 K auf 500 K bei einer Dichte von 0.3 g/cm\(^3\) abgekühlt. Die Entmiscung kann 120 ps verfolgt werden. Im Vergleich dazu konnte die Entmiscung von beispielsweise Argon, mit dem Lennard-Jones-Potenzial, im ersten Molekulardynamik-Experiment 400 ps beobachtet werden. Die spinodale Entmiscung des Wassersystems geht, gerade zu Beginn der Entmiscung, schneller vorstatten als bei Argon. Die Mobilität von Argon und von Wasser ist bei der jeweiligen Zieltemperatur ungefähr gleich (Ar: \(20 \times 10^{-5} \) cm\(^2\)/g; H\(_2\)O: \(30 \times 10^{-5} \) cm\(^2\)/g). Die \(k \)-Abhängigkeit des Verstärkungsfaktors folgt bei Wasser noch weniger der Theorie als bei den Lennard-Jones-Systemen. Qualitativ wird der Beginn der Entmiscung jedoch auch in diesem Fluid von der Cahn-Hilliard-Theorie beschrieben. Das Maximum der Strukturfunktion zeigt, im Fall von Wasser, einen Bereich, in dem es einem Potenzgesetz in \(t \) mit einem Exponenten \(\leq -1/2 \) (\(\sim -0.6 \)) folgt. In diesem Bereich kann ein Skalierungsverhalten der Strukturfunktion beobachtet werden. Im Anschluss an dieses Zeitintervall verschlechtert sich das Skalierungsverhalten der Strukturfunktion. Die Simulation eines größeren Systems wird
zeigen müssen, ob der gefundene Exponent temporär ist.
Index

ab initio, 13, 50, 51
Abschneideradius, 74
ALiCE, 84
amorph, 55
Anwendungswahrscheinlichkeit, 28, 31, 36, 38
Argon, 106
Berendsen Thermostat, 76
Binodale, 66
Cäsiumchlorid, 13
Cahn-Hilliard-Theorie, 90
chemisches Potenzial, 66
Cluster-Volumen, 58
Diffusion
 Diffusionsgleichung, 22
 diffusives System, 92
Diffusionsgleichungs-Methode, 21
Diffusionskonstante, 85
Distanzskalierungs-Methode, 23
Drehmoment, 77
Energieerhaltung, 76, 80
Ergodenhypothese, 20
Euler-Winkel, 77
Eulersche Bewegungsgleichungen, 77
EXAFS, 12
fitness, 18, 26, 33, 35
force stripping, 82
Fourier-Poisson-Integral, 22
freie Energie, 9, 67, 90
Freiheitsgrad, 75

genetischer Algorithmus, 12, 17
genetischer Operator, 17

Gleichverteilungssatz, 75
globale Energieminimierung, 10
Icosaeder, 12, 24, 47
Infrarot-Spektroskopie, 12, 13
instabil, 67
kanonisches Ensemble, 19
Keimbildung, 68
kinetisches System, 93
Koexistenz, 66
kritischer Punkt, 67
kubisch flächenzentriert, 12
Langevin-Term, 92
lokale Dichte
 Lennard-Jones, 97
 Wasser, 105
lokale Minimierung, 26, 31, 35, 41
magische Zahl, 47
memeischer Algorithmus, 18
Message Passing Interface, 82
meta-stabil, 67
Metropolis Kriterium, 11, 19
minimum image convention, 74
Mobilität, 12
 Lennard-Jones, 98
 Wasser, 106
Monte Carlo-Basin-Hopping, 12, 23, 39
Monte Carlo-Simulation, 19
Mutation, 28, 33, 36
Nachbarschaftsliste, 81
Newtonische Bewegungsgleichungen, 73
NP, 11
Paar-Potenzial

116
INDEX

Coulomb+Born-Meyer-Potenzial, 44
Lennard-Jones-Potenzial, 10
MCY-Potenzial, 23
Morse-Potenzial, 24
SPC/E, 9, 50
TIP3P, 50
TIP4P, 50
Paarkorrelationsfunktion, 85
periodische Randbedingungen, 74
Phasendiagramm, 66
Phasenraumdichte, 20
Population, 37
Porods Gesetz, 100, 106
Quaternionen, 78
Quaternionen-Bewegungsgleichungen, 78
Roulette Wheel-Auswahl, 31
Simulated Annealing, 19
 GDA, 20
 GDSA, 12
 GPP, 20
 MDSA, 12
Simulationsschachtel, 74
Solvatationsenergie, 62
spatial decomposition, 84
Speicherbedarf, 81, 84
Spinodale, 67
spinodale Entmischung, 67
spinodale Fragmentierung, 69
Strukturfunktion
 Lennard-Jones, 98
 Wasser, 106
System, 66
traveling salesman problem, 11
Verlet-Algorithmus, 74
 Leap-Frog, 74
 molekulare Systeme, 79
 Velocity-Verlet, 74
Verstärkungsfaktor, 68, 92
 Lennard-Jones, 98
 Wasser, 106
XANES, 12
Zellmethode, 81
Danksagung

An dieser Stelle möchte ich die Gelegenheit nutzen allen zu danken, die mich während der Entstehung dieser Arbeit unterstützt haben. Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Reinhard Hentschke für die Ermöglichung dieser Dissertation, seine Diskussionsbereitschaft, die vielen Freiräume zur Verwirklichung meiner Ideen und die gute Zusammenarbeit gerade auch bei den Übungen zur theoretischen Physik. Ich danke dem Institut für Angewandte Informatik für die Bereitstellung des Parallelrechners ALiCE. Herzlich bedanke ich mich bei den Systemadministratoren von ALiCE, insbesondere bei Dr. Norbert Eicker und Boris Orth für die prompte und freundschaftliche Hilfe bei allen Problemen ALiCE betreffend. Die angenehme Atmosphäre in unserer Arbeitsgruppe hat auch wesentlich zum Gelingen dieser Arbeit beigetragen. Dafür bedanke ich mich bei den ehemaligen Mitgliedern Dr. Zhong-Yuan Lu und Prof. Dr. Gyula Dömötör, der Sekretärin Susanne Christ sowie dem neu hinzugekommenen Jörg Bartke. Meinen langjährigen Weggefährten Peter Lenz und Enno Oyen danke ich besonders für viele lange Diskussionen nicht nur zu physikalischen Themen und ihre stetige Hilfsbereitschaft. Ein weiterer Dank gilt natürlich meiner Familie und last but not least meiner lieben Lebensgefährtin Regina Kluczynski. Das Schlusswort gebührt selbstverständlich dem bedeutendsten Naturwissenschaftler und Amateur-Kriminologen einer vergangenen Zeit, Prof. Dr. Dr. Dr. Augustus van Dusen1: ”Merken Sie sich, mein lieber Hatch: Zwei plus zwei ist vier, immer und überall!”

1nach Michael Koser