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Introduction

The issues of stability and stabilizability of dynamical systems with external inputs belong to
the basic concepts in control theory. In order to illustrate the stability question we take a look
at the following time-invariant system of ordinary differential equations given by

:t:f(xvu)v .T(O) = 2o, (1)

with a function f: R™ x R™ — R". We shall make the assumption that for any initial value
xo € R™ and any essentially bounded function u (called the input of the system), this equation
has a unique solution x (called the state of the system), which is defined on the entire half-
axis [0,00). Generally there are two kinds of stability behaviours. First we have the internal
stability, also called Lyapunov stability, which is the asymptotic behaviour of the trajectories
t — x(t) for u = 0. The second is the external stability, which is the stability with respect to
the inputs wu.

The notion of input-to-state stability (ISS) was introduced by E. Sontag in 1989, see [Son89].
For a more recent account of the theory we also refer to compendium [Son08]. It allows a joint
description of both internal and external stabilities of a system in a unifying manner. System
is called input-to-state stable with respect to L if for all initial values zg € R™ and all
measurable, essentially bounded functions u: [0,00) — R™ we have

lz@)F < B(llzoll; ) +v(llulloo) (2)

for all ¢ > 0. The function v: [0,00) — [0,00) is continuous, strictly increasing and satisfies
v(0) = 0. It is called the gain and the set of all such functions is denoted by K. The function
B:]0,00) x [0,00) — [0,00) is an element of the set L. This means that we have 5(-,t) € K
for all t > 0 and for every fixed s > 0 the function f(s,-) is continuous, strictly decreasing and
satisfies limy_, o (s,t) = 0.

A further advantage of using ISS lies in its invariance with respect to nonlinear changes of
variables. More precisely, assume that we have a homeomorphism F': R™ — R" of the state
space with F'(0) = 0 and a homeomorphism G: R™ — R™ of the input space with G(0) = 0,
both not necessarily linear. Then making the changes of variables x(t) = F(y(t)) and u(t) =
G(v(t)) leads to another system, which is ISS if and only if the original system is ISS, see
[Son08]. This invariance does not hold, for example, for exponential stability. This fact makes
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the notion of ISS more suitable for scrutinizing questions of stability of nonlinear systems.
In fact, the notion of global asymptotic stability, which is loosely speaking the input-to-state
stability without the external inputs, and more precisely the estimate with © = 0, arises
naturally if one starts with an exponentially stable system and performs a nonlinear change of
coordinates. Additionally allowing inputs, a nonlinear transformation of the input space leads
to the estimate given by (2), see [Son08].

Input-to-state stability has been studied intensively and many important characterisations of
ISS have been developed, see e.g. [SW95,ISW96]. Later E. Sontag introduced in [Son98] another
related notion of stability, the so-called integral input-to-state stability (iISS), motivated by the
fact that by taking unbounded inputs, the right hand side of the ISS estimate might become
infinite and, thus, no relevant information is obtained in this situation. System is called
integral input-to-state stable with respect to L if there exist 8 € XL, an unbounded function
0 € K and p € K such that

01 < B(keoll )+ 0 [ wlluCs) s ®)

for all ¢ > 0 and u € L*°(0,¢; R™). If the system is linear, i.e., we have f(x,u) = Ax + Bu
with some linear maps A and B, then it is ISS if and only if it is iISS. In general, for ODE
system the notion of iISS is weaker than ISS. For instance, as it follows immediately from the
definitions, an iISS system does not necessarily have bounded trajectories if the inputs are
bounded. In applications many systems are not ISS but iISS. Therefore, a particular interest
in iISS is justified. Both notions can be defined for a more general function space Z, other
than L. The definitions have to be adopted accordingly and it is clear that whether or not a
certain system is (i)ISS depends on the choice of the topology of Z.
More recently the ISS concept has been adopted for infinite-dimensional systems, see [JLROS|,
DM13al, [KK16| [KK17, MP 11, MI14, MI16, MW18, MW 15, DMI3b, [Log 3, Mirl6, MI15]. As we
are only standing at the beginning of this development there is no comprehensive ISS theory
for infinite-dimensional systems in Banach spaces. As one would expect, many well-known
characterisations of ISS and related notions fail to be true in infinite-dimensional settings, see
e.g. [MW16] for a series of counterexamples. In [MI16] it is shown that the equivalence between
ISS and iISS for linear finite-dimensional systems remains true if we pass on to the following
class of linear systems:

#(t) = Az(t) + Bu(t), z(0) = wo, (4)

where A is the generator of a Cy-semigroup (7'(t))+>0 on a Banach space X, U is another Ba-
nach space and B € £(U, X). This system is denoted by (A, B). In applications, the operator
B is typically linear but not necessarily bounded. This class of systems is of particular interest
since it includes boundary control problems that are described by evolution partial differential
equations. In this situation the notion of admissibility plays a crucial role in characterisation
of ISS .

The first pivotal question we have here is how ISS and iISS are connected for linear systems



vii

with possibly unbounded input operators for Z = LP. We will see that for finite p those no-
tions are equivalent. For p = co the problem turns out to be more challenging. One apparent
difficulty when dealing with the iISS estimate is that the argument of 6 in is in general not
a norm of the input function wu.

Similar to the ISS situation, the iISS estimate is invariant with respect to nonlinear transforma-
tions of the input space and can be obtained by starting with the LP-norm and then performing
such a transformation. This reminds us of the Orlicz spaces Ly — a generalisation of the usual
LP spaces, where the role in the definition played by the function ¢ — t? is replaced by a more
general function ®. So it seems to be natural to try to relate iISS to Orlicz spaces. Indeed, it
turns out that iISS with respect to L is equivalent to ISS with respect to a certain subspace
FEg of an Orlicz space Lg. It is, though, not straightforward to see this connection. The main
difficulty in carrying out this relation is that the set of functions ® allowed in the definition
of Orlicz spaces, the so-called Young functions, is not the entire set K. Even if the function
w4 in the argument of 6 in is a Young function, it is still not a norm. Thus it takes some
technical preparation. A further result we will obtain is that ISS and iISS are equivalent if
both are taken with respect to Eg. This generalises the equivalence of both stability notions
with respect to LP spaces with p < co.

A further advantage of using the Orlicz spaces lies in the fact that, unlike in the case of LP
spaces, their union on a fixed bounded interval is exactly the set L'. This yields a characteri-
sation of L'-admissibility.

A particular class of linear ISS systems are the parabolic diagonal systems, which means that
the operator A possesses a ¢-Riesz basis of eigenvectors with eigenvalues lying in a sector in the
left half-plane and being uniformly bounded away from the imaginary axis. We will see that
for those systems the notions of L*°-ISS and L*°-iISS are equivalent if we have scalar inputs,
i.e., U = C. Moreover, we will show that every linear operator B: C — X _; is admissible with
respect to L°°, which adds a further characterisation of ISS for such systems.

In addition, we will study the notion of strong input-to-state stability (sISS or strong ISS). It
was introduced in [MW18] for bilinear systems. For linear systems it generalises ISS in the
sense that the exponential stability of the semigroup is relaxed to the more general strong
stability. Our main concern is the connection between sISS and its integral version — strong
integral input-to-state stability (siISS or strong iISS). We will see that strong iISS with respect
to L is implied by infinite-time admissibility with respect to some Orlicz space EFg. But
unlike in the ISS situation they are not equivalent. We will construct an example of a system
that is L°°-silSS but not infinite-time admissible with respect to Eg for any Young function
®. Therefore, sISS and siISS cannot be equivalent neither for L* nor Eg inputs.

The second issue we will study is the question of stabilizability of the linear systems by state
feedback. The classical problem of exponential stabilizability is well-documented in the liter-
ature, see e.g. [CZ95, Chapter 5] or [JZ12, Chapter 10] and the references therein for more
details. Considering a system given by the question is whether there exists a feedback law
u(t) = Fx(t) such that the closed-loop system is exponentially stable. For bounded control
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operators this means that we can find a bounded feedback operator F' € L(X,U) such that the
system X(A+ BF, B) is input-to-state stable with respect to L?. Assuming that the input space
U is finite-dimensional and the control operator B is bounded, W. Desch and W. Schappacher
IDS85], C. A. Jacobson and C. N. Nett [JN88], and S. A. Nefedov and F. A. Sholokhovich
INS86] showed that a system X(A, B) is exponentially stabilizable if and only if it can be de-
composed into two parts: an exponentially stable part and a finite-dimensional controllable
part. We will see that similar results hold if we replace the exponential stability by weaker
stability concepts, strong or polynomial stability in particular. Our definition of strong (or
polynomial) stabilizability of a linear system is motivated by the definition of exponential sta-
bilizability given in [WRO00]. In fact, it is a direct generalisation as the exponential stability
of the semigroup associated with the system is replaced by a weaker stability notion. We also
refer to [OC98] and [CO99], where the notion of strong stability of a linear system is studied.
The essential idea is that when weakening the stability requirement of the semigroup associ-
ated with the system, one has to tighten the conditions on the entire system by adding input
stability, output stability and input-output stability. Roughly speaking, those conditions state
that L2-inputs lead to bounded states, every initial condition leads to outputs, which belong
to L? and that L?-inputs lead to L?-outputs. Those conditions are redundant when the cor-
responding semigroup is exponentially stable. Thus strong and polynomial stabilizabilities are
more general concepts than the exponential stabilizability.

The characterisation of exponential stabilizability was generalised to linear systems with un-
bounded control operators in [JZ99]. We will see that analogous conditions are sufficient for
strong as well as polynomial stabilizability of linear systems with unbounded control. However,
it remains an open question if those conditions are also necessary.

This thesis is organised as follows. In Chapter [l| we review some of the definitions and stan-
dard facts on Orlicz spaces. Chapter [2 deals with linear systems on Banach spaces. There
we set up notation and terminology. As we are interested in ISS and iISS with respect to
various function spaces, those notions will be introduced in an abstract way. We axiomatically
introduce the class of function spaces we want to work with. Those include, for instance, the
Orlicz spaces, the LP spaces and Sobolev spaces. Most of the results we present in this chapter
are well-known in LP context and their proofs are straight forward generalisations. We still
include them for readers’ convenience, making the exposition self contained. In Chapter 3| the
strong versions of input-to-state stability and integral input-to-state stability are introduced.
After breaking down some basic properties of those stability notions we establish the relation
between L*°-silSS and sISS with respect to Eg, with some Young function ®. The question
regarding how those notions are related is motivated by the findings of the following chapter,
which were established beforehand. But since its concepts and results are more general, we
choose to put it first. The main results of this chapter are published in [NS18]. Chapter {4|is
devoted to the study of ISS and iISS. We extend the main results from the previous chapter to
the situation where the semigroup is exponentially stable. The most important advantage is
that in this case, admissibility and infinite-time admissibility become equivalent. This helps us
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to derive the characterisation of L*°-iISS as ISS with respect to an Orlicz space Eg. We further
study parabolic diagonal systems with scalar inputs. We show that in this situation iISS and
ISS are equivalent. At the end of the chapter the main results are applied to an example given
by a one-dimensional heat equation with Dirichlet boundary control. The results of Chapter [4]
are published in [JNPSI18], see also [JNPS16].

In Chapter [5| we shift our focus to stabilizability of infinite-dimensional linear systems. We
start by reviewing some of the well-known facts about stabilizability of finite-dimensional sys-
tems. We then proceed by summarising without proofs the relevant material on well-posed and
regular linear systems. Our main results of this chapter are the sufficient conditions for strong
and polynomial stabilizability of linear systems with admissible control operators, see Section
and equivalent conditions for strong and polynomial stabilizability of linear systems with
bounded control operators and finite-dimensional input spaces, see Sections [5.6] and [5.7}
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Chapter 1

Orlicz spaces

In this chapter we recall some basic definitions and facts about Orlicz spaces. More details
can be found in [KR61], [KJET7, Part II, Chapter 3] and [Ada75l Chapter VIII]. For the
generalisation to vector-valued functions see [RR91, VII, Section 7.5].

1.1 Young functions

Let I C R be an interval, U a Banach space and ®: [0,00) — [0, 00) a function. We denote by
A the usual Lebesgue measure on R.

Definition 1.1.1. The Orlicz class Ly (I,U) is the set of all equivalence classes (with respect
to equality almost everywhere) of Bochner-measurable functions u: I — U such that

po(u) = [ ®(u(a)]o) dz < .

If U = K with K = R or K = C, then we write Lg(I) == Lgo(I,K) for short. In general,
Ls(I,U) is not a vector space. Of particular interest are Orlicz classes generated by Young
functions.

Definition 1.1.2. A function ®: [0,00) — R is called a Young function (or Young function
generated by ¢) if

(1) — /Otcp(s) ds

for t > 0, where the function ¢: [0,00) — R has the following properties: ©(0) = 0, ¢(s) >
0 for s > 0, ¢ is right continuous at any point s > 0, ¢ is nondecreasing on (0,00) and

limg_s 00 p(8) = 00.

We will need the following characterisation of Young functions, see e.g. page 9 in [KR61].
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Proposition 1.1.3. A continuous, increasing, convex function ®: [0,00) — R with ®(0) =0
is a Young function if and only if it satisfies limp o ®(t)/t = 0 and limy_,oc ®(t)/t = 0.

Example 1.1.4. Using Proposition[1.1.3 it is easy to see that the following holds true:
(a) For any p > 1 the function ®(t) =tP is a Young function.
(b) The function U(t) = e! —t — 1 is a Young function.

For any two Young functions ® and W their composition ® o ¥ is again a Young function.
More general the following holds:

Lemma 1.1.5. Let ¥: [0,00) — [0,00) be a Young function and p: [0,00) — [0,00) an un-
bounded convex function with u(0) = 0. Then the composition ® := Vo is a Young function.

Proof. The function ® is continuous, increasing and convex since both functions, ¥ and p have
those properties. Using Proposition we are left to show that ® satisfies limy\ o ®(t)/t =0
and lim;_,oo ®(¢)/t = co. For all ¢t > 0 we have

o< 20 _ W) _ ¥u(0) o)

(1.1)

t t p(t)
Since VU is a Young function and pu is continuous with u(0) = 0, we have by Proposition m
v
W)
t—0  pu(t)

From the convexity of p it follows that for each R > 0 the map t — p(t)/t is bounded on the
interval (0, R]. Therefore we have
W(u(t)) p(t)

O R

Equation (1.1]) now yields

t—0 t

The convexity of the function p implies that the map ¢ — p(t)/t is increasing on (0, 00). Since
lim;_00 ¥(t)/t = 00 and p is a homeomorphism of [0, c0), we have

i () _
t=oo  put)

Therefore we obtain

lim &t) = lim \I/(,u(t))w =00
t—oo ¢ t—00 M(t) t

Hence, by Proposition ® is a Young function. O
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In the following lemma we have another construction of Young functions, which will be
useful later on.

Lemma 1.1.6. Let ® be a Young function. Then there exists some Young function ®1 such
that ® < ®1 and
O (cx)
su
w20 ®1()

for all ¢ > 0.

Proof. We denote by ¢ the generator of the Young function @, i.e., ®(z) = [; (t) dt. Let us
define two Young functions A, ¥: [0,00) — R by

Aw) = /Ox o(V) dt

and W(x) = ®(x?). Then, obviously, ® < A holds on the interval [0,1] and ® < ¥ holds on
[1,00). Therefore, ®;: [0,00) — R,

A(x) for z < 1,
Py (2) = {A(l)

W\I/(x) forx > 1,

defines a Young function with ® < &y, since A(1) > ¥(1) = ®(1). We show by checking
explicitly the Definition that ®; is a Young function. Let ¢1: [0,00) — R be defined by

w@:{wﬁ> for t € [0,1),

Bte(t?) fort > 1.

Then this function satisfies all the conditions in Definition and we have ®1(x) = [ ¢1(t) dt.
Indeed, for all € [0, 1] holds

[ et = [ eVt = Aw) = @1(a)
0 0

and for all x € (1, 00) we have

/OI p1(t)dt = /01 ¢1(t)dt+/lx ©1(t) dt

2
v

—B(1) + 2\111\((11)) /1 to(i?) dt
— (1) + i;g; /1 oL
B1(1) + gy (Vo) - ¥(1)
- @)
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We now show that for each ¢ > 0 the function z — ®(cz)/®;(x) is bounded on (0, 00). For
0 < ¢ <1 this simply follows from the monotonicity of ®. Indeed, we have

<1

for all x > 0.

Now let ¢ > 1. For x > ¢ we have
O(cz) V(1)P(cx) < U(1)
Bi(2)  ADDE?) = A(D)’

For an arbitrary Young function €2, generated by w, we have for all y > 0

Q:(yy) _ ;/wa(t)dtz ;/y?;w(t)dtz %w (‘g)

and Q L
y) _ 7/ w(t)dt < w(y).
Y YyJo
Therefore we have o o
A(cx) . (cx) A:c < 9% o(cx) < 2,
@ e @ L)
where the last inequality holds for all = € (0,1/(2¢?)]. Since the continuous function x
®(cx)/®1(x) is bounded on the compact interval [1/(2¢?), ¢], the claim follows. O

Theorem 1.1.7. Let ® be a Young fzﬁnction. Then f@(I, U) is a convex set. If, additionally,
the interval I is bounded, there holds Le(I,U) C LY(I,U).

Proof. Let u,v € Le(I,U) and A € (0,1). From the triangle inequality in U and the convexity
of ® we obtain

[ @@ + 1= @)l de < [ @@l + (1= Vo) o) do
1 1

< @(u@)l) da+ (1= ) [ @(lo@)l) da

= A (u) + (1 = A)pa(v)
< 0

and hence \u + (1 — \)v € Lg(I,U).
Let I be bounded. Since we have lim;_,o ®(t)/t = oo, there is a ty > 0 such that ®(¢)/t > 1
for all t > ty. Let

Iy = {z e I [u(@)|v > to},
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then for all z € I, we have ||u(z)||y < ®(||u(z)||y) and hence

@l de = [ oo+ [ @l da

Iy,
< pa(u) + toN(I '\ Iy,)
< oQ.
Thus we have u € LY(I,U). O]
Theorem 1.1.8. Assume that the interval I is bounded. Then for every u € LY(I,U) there
exists a Young function ® such that u € Lg(I,U).
Proof. Let u € L*(I,U). For n € N let I, C I be the measurable set
In={z eI |u(@)llv €[n—1n)}

Then I = J,,en I holds and the sets I,,, n € N, are disjoint. Hence we have A\(I) = "2 A(I,).
Now for any N € N follows

N N N
S onAIn) =D (n—1DAI) + > Al
n=1 n=1 n=1

N
<3 [ @)l de+ 3 AL)
n=1""'n n=1

< [ @)l da -+ x(1)

= |lullzr 1,0y + A().
Therefore the series Y oo, n\(I,) converges. By Remark 178 in [Kno28] there is a monoton-
ically increasing unbounded sequence (a;) C [1,00) such that the series > ;2 ; a,nA(I,) still
converges. We define ¢: [0,00) — R by

() t for t € ]0,1),
= an fort € [n,n+1),n € N\ {0}.

Then ®(t) = 5 ¢(s)ds is a Young function and for all n € N we have ®(n) < na,,. Hence we
have

fj 2ty e =3 [ @(fu)ly) ds
< i ®(n)A (L)
n=1

< Z annA(Iy)
n=1

< 00,
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and therefore u € Lg(I,U). O

Definition 1.1.9. Let ® be the Young function generated by the function p. We set for t > 0

()= sup s and Y(t) :/Otw(s) ds.

e(s)<t
The function ¥ is called the complementary function to .

The complementary function of a Young function is again a Young function, i.e., the function
1 has the same properties as the function ¢, see Definition If ¢ is continuous and strictly
increasing in [0, 00), then 4 is the inverse function ¢! and vice versa. We call ® and ¥ a pair
of complementary Young functions.

Lemma 1.1.10. Assume that the functions @,1: [0,00) — R generate two complementary
Young functions and u,v > 0. If v < p(u), then u > ¥ (v). If v > p(u), then u < P (v).

Proof. If v < ¢(u), then, by definition of 9, we have

Y(v) = sup s <u,
e(s)<v

since ¢ is increasing. The equality u = 1 (v) cannot hold, since it would imply v > ¢(u). If
v > ¢(u), then we have
()= sup s>u
p(s)<v

by definition of . O

Lemma 1.1.11. Assume that the functions ¢,1: [0,00) — R generate two complementary
Young functions. Then the following are equivalent:

(i) o(s) <t and Y(t) < s.
(i) p(s) =1t or (t) =s.

Proof. = Assume that ¢(s) < t holds. Then, by Lemma |[1.1.10, we have s < 1)(t).
Together with the condition ¥ (t) < s, we obtain ¥(t) = s.

Now assume 9 (t) < s. We apply Lemma with exchanged roles for ¢ and ¢ and obtain
with the same argument as in the previous case that ¢(s) = ¢ holds.

= If ¢ (t) = s holds, then we have ¢(s) < t, since otherwise ¢(s) > ¢ holds and, hence,
by Lemma s > 1(t), which is a contradiction.

If p(s) =t holds, then we have () < s since otherwise ¢ (¢) > s holds and, hence, by Lemma

1.1.10, ¢ > o(s). O
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Theorem 1.1.12 (Young’s inequality). Let ®, ¥ be a pair of complementary Young functions
and @, ¢ their generating functions. Then for all u,v € [0,00) we have

uv < O(u) + ¥(v).
Equality holds if and only if v = p(u) or u=(v).

Remark 1.1.13. Let ®, VU be a pair of complementary Young functions, u € Eq;([) and
v € Ly (I). By integrating Young’s inequality we obtain

[ lu@p@) de < po(u) + pu(w)

Proof of Theorem[I.1.13. For u,v > 0 denote by R the rectangle R := [0, u] x [0,v] C R?, by Ry
the part of R below the graph of ¢, i.e., By = RN{(z,y) € R? | z € [0,u] and 0 < y < p(x)} and
by Ry the part above the graph of ¢, i.e., Ry = RN{(x,y) € R? | z € [0,u] and p(x) <y < v}.
Then R = Ry U Ry and I'(p) = Ry N Ry, the graph of ¢, is a Ag-null set. Hence we have

uv = )\Q(R) = )\Q(R1) + )\Q(RQ) = /RXR1 dX\o + /RXR2 dXg.

By Fubini’s theorem we have

u  rmin{e(z),v} u  prp(x) u
/ XR, d)\gz/ / 1dydw§/ / 1dyda::/ o(z)de = P(u).
R 0 JO 0 JO 0

with equality if and only if p(z) < v for almost all = € [0,u] and, hence, by right continuity
and monotonicity of ¢, if and only if p(u) < v. By transformation formula we have

A2(R2) = Xa(RN{(z,y) € R* |y € [0,0] and 0 < y < ¢h(2)})

and hence, by Fubini’s theorem, we have

v rmin{y(z),u} v r(z) v
/ XRZd)\QZ/ / 1dydw§/ / 1dydx:/ Y(z)dr = U(u)
R 0 JO 0 Jo 0

with equality if and only if ¢(v) < u. Overall we obtain
uwo < ®(u) + U(u)

and, by Lemma [1.1.11} the equality holds if and only if ¢(u) = v or ¥ (v) = u. O
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1.2 Orlicz spaces

We are now in the position to define the Orlicz spaces. There are equivalent definitions of
Orlicz spaces available. Here we use the so-called Luxemburg norm.

Definition 1.2.1. Let I C R be an interval, U a Banach space and ® a Young function. The
set Lg(I,U) of all equivalence classes (with respect to equality almost everywhere) of Bochner
measurable functions uw: I — U, for which there is a k > 0 such that

[ @ @) ) do < o,

is called the Orlicz space. The Luxemburg norm of u € Lg(I,U) is defined as

Juls = lullzairy = int {k > 0| [ @ u(e) ) dz <1}

If U = K with K =R or K = C, then we write Lg(I) := Lg(I,K) for short. For the choice
O(t) :==1P, 1 < p < 00, the Orlicz space Lg(I,U) is exactly the vector-valued LP space with the
same norm. Next we show that the Orlicz spaces are complete with respect to the Luxemburg

norm. The proof we present here mimics the one for the scalar-valued case as it is given in
[RRI1, pp. 67-68].

Theorem 1.2.2. The normed space (Ls(I,U),|| - ||o) is a Banach space.

Proof. Let (uy)nen be a Cauchy sequence in Lg (I, U). Then, by definition, there are numbers
kmn > 0 such that

] ®kmallen (@) = wa@)) do < 1

for all m,n € N. Let e > 0. From the previous estimate we have that k;.}, < [[tm — tnll £, (1,09
and hence for every R > 0 there is a natural number mg such that k,,,, > R for all m,n > my.
It follows that for all sufficiently large numbers m,n € N we have 1/®(k,,,e) < e. For such
m,n € N and every measurable set B C I with A\(B) < co we then have

AB N {[um (1) = un()llv = €}) = AMB N A{P(kmnllum(-) — un()lv > ®(kmne)})
1
< m /B P (K ||um (z) — un(2)||v) do

c_ 1
= O(kmne)
< €.

This shows that the sequence (uy|p)nen is Cauchy in measure. Since the Lebesgue measure on
I is o-finite, it follows that the sequence (uy,)nen is Cauchy in measure. Therefore it converges
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in measure. We denote by w its limit. Then there is a subsequence (uy,)ien, which converges
to u almost everywhere. Since (uy)nen is a Cauchy sequence in Lg (I, U), we obtain, using the
reverse triangle inequality, that (||un ||z, (7,0))nen is a Cauchy sequence in R. We denote by p
its limit. Now by Fatou’s lemma we have

/<I> “Hu(z)[|v) dz <hm1nf/ < s ()l > dr < 1.
HUmHLq, (L,U)

This shows u € Lo(I,U).

For all fixed j € N and k > 0 the sequence (®(k||un, () — un; (-)||))ien converges to ®(k|u(-) —
un,; (-)|lv) as i — oo almost everywhere. Let ng € N be such that for all n;,n; > ng holds
k:nmj > k, then we have

J @ lun, () =, @) do < [ Dl ftn, 2) = i, (@) ) dr < 1.
I 1

Therefore, Fatou’s lemma yields
[ @Elue) — wn, @)y do < timin [ @(Eun, () ~ o, (o)) do < 1
I 11— 00 I

and hence ||u — un, | 1,70y < 1/k. Since & > 0 is arbitrary, this means that the sequence
(Un, )ien converges to u in Le(I,U). If (um,)ien is any other subsequence, which converges to
@in Lg(I,U), then we have, since u,, converges to u in measure, v = 4. Hence we have u, — u
in Le(I,U). O

Remark 1.2.3. Let U =K and @, ¥ a pair of complementary Young functions. We have the
following characterisation of Orlicz spaces: A measurable function uw: I — K belongs to L (I)
if and only if

llullg = sup /\u )| da < oo.
’UGL\I/(I

The function |||-|| ¢ is called the Orhcz norm on Le(I). It defines a norm on Le(I) with
ulle < lulle < 2lulle (1.2)

for all w € Lg(I), i.e., the Luzemburg norm and the Orlicz norm are equivalent (see e.g.
Theorem 3.6.4 and Theorem 3.8.5 in [KJF’?’?][[).

Remark 1.2.4. For a measurable u: I — U we have that w € Le(I,U) if and only if f =
lu() |l € La(I,R). This follows from the fact that

[ulle = [1/]le-

Thus, a sequence (up)nen C Lo (I, U) converges to zero if and only if the sequence (||un(+)||v)nen
converges to zero in Le(I,R).

'Note that in this reference the Luxemburg norm is denoted by |[||-|||, and the Orlicz norm is denoted by ||-||¢.
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Remark 1.2.5. Combining Remarks|1.1.15 and |1.2.4 we obtain for every u € z@(I, U)
lluGllvlle < po(u) + pu(u) < po(u) +1 < oo

Hence we have
L@(I,U) C L@(I,U)
The following Theorem is an extension of Holder’s inequality to Orlicz spaces, see [KJET77,

Thm. 3.7.5 and Remark 3.8.6].

Theorem 1.2.6. Let ®, U be a pair of complementary Young functions. For any u € Lg(I)
and v € Ly(I) it holds that uv € LI(I) and

[ uls)v(s) ds < 2ullza ol za

1.3 The As-condition

Definition 1.3.1. A Young function ® satisfies the As-condition if there exist a k > 0 and
sg > 0 such that
D (2s) < kD(s)

for all s > sg.
Example 1.3.2. (a) Let p > 1. The Young function ®(t) = t? satisfies the Ay-condition.

(b) The Young function ¥(t) = e! —t — 1 does not satisfy the Ag-condition.

Remark 1.3.3. We saw in Theorem[I.1.8 that for every bounded interval I and every function
u € L'(I) there exists a Young function ® such that u belongs to the Orlicz class Lo(I). Indeed,
this Young function can be chosen such that it satisfies the As-condition. In particular we have
then u € Eg(I), see Definition and Proposition below. The argument is essentially
given on pages 61-62 in [KRG1]. There, for any given u € L'(I), a Young function Q is
constructed, which satisfies the A’-condition, that is, there exist c,sqg > 0 such that

Q(st) < cQ(s)Q(1)

holds for all s,t > sg and u € Zq;([), where ® = Q o Q satisfies the Ay-condition. Indeed let
k= cQ(cQ(2+ s0) + s0). Then for all s > max{sg, Q (so)} we have

D(2s) = Q(Q(29))
< Q(Q((2+ 50)s))
< Q(cQ(2+ 50)Q(5))
< Q(eQ(2 + 50) + 50)Q(5))
< cQ(cQ(2+ s0) + 50))Q(Q(5))

= kd(s),

where we used twice that the function Q satisfies the A'-condition and monotonicity of Q.
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1.4 Convergence in Orlicz spaces

The convergence in Orlicz spaces is understood as convergence with respect to the Luxemburg
norm. Besides the norm convergence we will use the following weaker notion.

Definition 1.4.1 (®-mean convergence). A sequence (up)nen in Lo (I) is said to converge in
®-mean tou € Lo (1) if

lim pg(u, = lim /<I> |un () — u(z)|) de = 0.

n—oo n—oo

The convergence in Lg(I) implies mean convergence with the same limit. The converse
implication is wrong in general (see p. 75 et seq. in [KRG1] for a counterexample). If ®
satisfies the As-condition, both notions of convergence are equivalent.

Lemma 1.4.2 ([KJE77, Lemma 3.10.4]). If the Young function ® satisfies the Ay-condition
(with so = 0 if the interval I is unbounded), then a sequence (up)nen C La(I) converges to u
in Lo(I) if and only if it is ®-mean convergent to u.

The following Lemma follows from Lemma 3.8.4 in [KJE77] together with Remark
Lemma 1.4.3. Let u € Ly(I,U).
(a) If |ulle <1, then pp(u) < |lulls-
(b) If llulle > 1, then pa(u) = |[ufle.

Lemma 1.4.4 (]MT50, Lemma 8.1]). Let I C R be an interval. Let (up)nen be a sequence
in (Un)nen C La(I) such that for all r € N\ {0} the sequence (rup)nen is mean convergent to
zero. Then we have limy,_, ||un|le = 0.

Proof. Let r € N\ {0}. Let ¥ be the complementary Young function to ®. Then for any
v € Ly(I) with ||v[|g < 1 we have, by Lemma the estimate pg(v/r) < 1/r. Choose
ng € N such that pg(ru,) < 1/r for all n > ng. Then, by Young’s inequality,

1 1 2
@@ s = [ @[ “2] do < potrun) + 0 (£) < 741 =2

r r ’I”‘

Hence we have 5
lunlle < sup [ Jun(ayo@) da < =
veLy (I) I r

pw(v)<1

for all n > ng. Since r is an arbitrary natural number, the claim follows. O
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1.5 The space Eg(I,U)

Remark 1.5.1. Clearly, if I is bounded, then L*>°(I,U) is a linear subspace of Le(I,U).
From Remark 3.10.7 in [KJET7], together with Remark we obtain that for any bounded
interval I C R the space L*°(I,U) is even a dense subspace of Lo (I,U) in the sense of mean
convergence.

Definition 1.5.2. For bounded intervals I the space Eg(I,U) is defined as
Eo(I,U) = mll‘\\%(z,u)‘
The norm || - || gy (r;v) refers to || - || Ly r0)-
Again, we write Eg(I) := Eg(I,K) for short if U = K with K=R or K= C.
Lemma 1.5.3. For every Young function ® we have the following inclusion
Eo(I,U) C Lo(I,U).

Proof. Let u € Eg(I,U). Then there exists a function ug € L*(I,U) with |[u—uo|| L, 1,07) < 1/2
or, equivalently, [|2(u — uo)||z,(r,vy < 1. By Lemma we have pg(2(u — uo))
particular 2(u —ug) € Lo(I,U). Since 2ug belongs to LOO(I, U) and the interval I is bounded,
we have 2ug € Lg(I,U), and hence, by convexity of Lg(I,U), we obtain
2u—2 2 ~
w=2"200 4 200 (1D, 0
2 2

Proposition 1.5.4. Let I C R be a bounded interval. For every Young function ® the following

inclusions hold: 3
E@(I,U) CL@(I,U) CL@(I,U). (1.3)

The Young function ® satisfies the As-condition if and only if
Ee(I,U) = Lo(I,U) = Lo(I,U). (1.4)

Proof. The first claim is shown in Remark [I.2.5] and Lemma [I.5.3] Assume that ® satis-
fies the Aj-condition. Then from Lemma and Remark follows that L>°(I,U) is a
dense subspace of Lg(I,U) with respect to norm convergence. Hence, by definition, follows
Eo(I,U) = Lo(I,U) and, therefore, from (L.3) we obtain (L.4). Conversely, if ® does not
satisfy the As-condition, then, by Theorem 3.5.3 in [KJF77], the set Lg(I,U) is not a linear
set. Since Eg(I,U) and Lo (I,U) are always vector spaces, the inclusions in have to be
strict. O

Remark 1.5.5. Eg(1,U) is separable, see e.g. [Sch0d, Thm. 6.5].
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1.6 Comparison of Young functions and Orlicz spaces

We introduce an ordering for Young functions.
Definition 1.6.1. Let ® and ¥ be two Young functions.

(a) We write ® < U if there exist two constants c,ty > 0 such that
O(t) < U(cet)
for all t > tg.
(b) We call ® and ¥ equivalent if ® < ¥ holds as well as ¥ < ®.

(c) We say that the function ¥ increases essentially more rapidly than the function ® if, for
arbitrary s > 0,

D(st

lim (st)

g =

In this case we write ® << W,

Remark 1.6.2. For p > 1 let ¥, be the Young function given by W,(t) = tP. It is shown in
IKRG1, pp. 24-25] that a Young function ® satisfies the Ag-condition if and only if there exists
some p > 1 with ® < ¥,,.

Theorem 1.6.3 ([KR61, Thm. 13.4]). Let ®, Py be Young functions such that @y increases
essentially more rapidly than ®. If (up)nen C Lo, (I) converges to zero in ®i-mean, then it
also converges zero in the norm || - ||s.

Remark 1.6.4. It is well-known that if the interval I C R is bounded and 1 < p < q < o0,
then the space LY(I) is contained in LI(I) and the inclusion is continuous. There is a similar
comparison of Orlicz spaces Le(I,U) and Lg(I,U) using the ordering <. Let ®, ¥ be two
Young functions. Then we have:

(a) The inclusion Lg(I,U) C Ly(I,U) holds if and only if ¥ < ®. In particular we have
Le(I,U) = Lg(I,U) if and only if ® and ¥ are equivalent. Moreover, if Le(I,U) C
Ly (1,U) holds, then the inclusion Lg(I,U) — Ly (I,U) is continuous, that is, it is an
embedding. More precisely there exists a constant k > 0 such that

lulle < Eljulle

for allu € Le(I,U).

(b) Using part[@] and Remark we obtain that for every Young function the following
statements are equivalent:
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(i) @ satisfies the Ag-condition.
(ii) For some 1 < p < oo holds

LP(I,U) — Lg(I,U)

and hence

LP(I,U) — Eo(I,U).
(c) If & << W, then the space Ly (I,U) is continuously contained in Ee(I1,U).

We omit the proofs of the statements as they can be found in [KJF77, Section 3.17] for the
case U = K. The proofs given there are easily adopted to the vector-valued case.

It is well-known that for unbounded intervals I C R there exist bounded functions in LP(I),
p > 1, which do not belong to L*(I). The following Lemma is an Orlicz space version of that
fact. For unbounded intervals I C R and any Young function ®, Lg (1) is not included in L*(T).

Lemma 1.6.5. Let I C R an unbounded interval. Then for each Young function ® there exists
a strictly positive function ug € Le(I) N L>®(I) with ug ¢ L*(I).

Proof. For any Young function ® holds lim;_,o ®(¢)/t = 0. Hence there is a sequence (t;)ren C
(0,1) such that for all k£ € N we have

D(ty)
123

<27k

Since I is unbounded there is a sequence (Ii)gen of measurable disjoint sets I, C R with

I=J L

keN

and \(Iy) = t,;l. We define ug: I — R by ug = > pentexr,. Then ug € L*(I). Further we

have - -
/ lup(x)| dx = Ztk/\(lk) = Z 1=00
1 k=0 k=0

and

[ @@ de = 3" @01 < 32 =2
Q k=0 k=0

Hence we have ug ¢ L'(I) and u € Lg(I). By construction holds 0 < u < 1 on 1. O



Chapter 2

Linear Systems

This chapter presents some preliminaries on linear systems and admissibility concepts. We also
introduce the notion of comparison functions.

2.1 The general setting

Let X be a Banach space and A: D(A) D X — X a closed linear operator, which generates a
Co-semigroup (T'(t)):>0 on X. We denote by wp the growth bound of (T'(¢)):>0, that is,

o = nf (F1og(ITO) )

Then we have wy < oo and for every w > wy there exists a constant M = M, > 1 such that for
every t > 0 we have ||T(t)|| < Me*t. If s € C and Re(s) > wp, then s € p(A). In particular, as
a generator of a semigroup, the operator A has a nonempty resolvent set p(A).

Definition 2.1.1. Let A € p(A). We denote by X_1 the completion of X with respect to the

norm
lz]|-1 = (A — A) "z

for x € X. The space X is defined to be D(A) with the norm
][y = [[(A — A)z]]
for x € X1.

The space X is complete and A € £(X7, X) since ||-]|1 is equivalent to the graph norm on
D(A). For any t > 0 the operator T'(t) is bounded on X. In fact, it is even bounded with
respect to the norm || - ||—1. Indeed, for any x € X we have

IT@)zll-1 = TN = A)~ 2| <T@ = A7 el = [T@llx] -1
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Since X is a dense subspace of X_j, there exists a unique bounded extension of T'(¢) to X_1.
We denote the extended operator by T (t).

Let us summarise some basic properties of the extrapolation spaces in the following proposition.
This facts are all well-known and can be found, for example, in [EN00, Chapter II] or [TW09,
Chapter 2].

Proposition 2.1.2. With the definitions above we have:

(a) Different X\ € p(A) lead to equivalent norms. In particular the spaces X1 and X_1 are
well-defined, i.e., the definitions are independent of the choice of a particular A € p(A).

(b) The operators T_1(t) form a Co-semigroup (T—-1(t))i>0 on X_q.

(¢) The domain of A_y is given by D(A_1) = X. The operator A_; is the unique bounded
extension of A to an element from L(X,X_1).

Let U be another Banach space and B € L(U, X_;). We study linear systems (A, B) on

X given by
#(t) = Az(t) + Bu(t), t>0, =z(0)= o, (2.1)
with some fixed u € LIIOC(O, oo; U). Thus we consider special abstract inhomogeneous Cauchy
problems. The space X is called the state space, U is called the input space and B is called the
control operator. We call B bounded if it belongs to L(U, X) (and unbounded otherwise). We

call = the state and w the input of the system. By Proposition the equation ({2.1)) may
be considered as an abstract inhomogeneous Cauchy problem on the Banach space X_;.

Definition 2.1.3. For u € L _(0,00;U) the (mild) solution of ([2.1) is given by the variation
of parameters formula

2(t) = T(t)ao + /0 Tt — $)Bu(s) ds (2.2)
fort>0.

Let t > 0. For u € L _(0,00;U) we denote by Puu the truncation of u to [0,t], that is,
Pyu = wjo4. The (time-)reflection operator Ry: Ly (0,00;U) — Li,.(0,00; U) is defined by
u(t —s) for s €0,¢,
Riu)(s) =
(Feu)(s) {0 for s > t.
The left-shift St on L (0,00;U) is defined by (Siu)(s) = u(s +t) for u € L _(0,00;U). The
right-shift Sy : Li .(0,00;U) — L (0,00;U) is defined by

0 for s € [0,1),
u(s —t) for s >t.

(Stu)(s) = {
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In the subsequent chapters we are going to study various stability concepts for our systems.
They can be formulated as continuity properties of the map, which assigns the input u together
with the initial value xg to the mild solution x of the abstract Cauchy problem. Thus we need
some structural conditions for the space of input functions. We consider the following types of
function spaces.

Assumption 2.1.4. For a Banach space U, let Z C Li. (0,00;U) be such that for all t > 0
the following conditions hold:

(a) Z(0,;U) = {f € Z | flt,c) = 0} becomes a Banach space of functions on the in-
terval (0,t) with values in U (in the sense of equivalence classes w.r.t. equality almost
everywhere).

(b) Z(0,t;U) is continuously embedded in L*(0,t;U), that is, there exists k(t) > 0 such that
for all f € Z(0,t;U) it holds that f € L*(0,t;U) and

£l 210,60y < KONl z0,50)-

(¢c) Forue Z(0,t;U) and s >t we have |[ul 700y = ull 20,50 -
(d) Z(0,t;U) is invariant under the left-shift and reflection, i.e.,
SLZ(0,t;U) c Z(0,t;U)

for all v > 0 and
R.Z(0,t;U) C Z(0,t;U).

Furthermore, ||Sy||zzox0y) < 1 and Ry is an isometry.

(e) For allu € Z it holds that Pu € Z(0,t;U) and

| Psull z0,50) < 1 Peull z(0,60)
for s € (0,1).

If, additionally, we have in (b) that

Jinm K(t) = 0, (B)

then we say that Z satisfies condition (B).
Example 2.1.5. (a) For firzed 1 < p < oo and U, Z = LP refers to the Lebesque spaces

LP(0,t;U), t > 0. If p > 1, then LP satisfies condition (B), thanks to Holder’s inequality.
Clearly, L' does not satisfy condition (B).
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(b) For a fized Young function ® and a Banach space U, Z = Ly and Z = Eg refer to the
Orlicz spaces Lg(0,t;U) and Eg(0,t;U), t > 0, respectively. From Hélder’s inequality for
Orlicz spaces, see Theorem follows that the condition (B) is satisfied here. Indeed,
lett >0 and u € Lg(0,t;U). The Holder’s inequality yields

t
[l 1 o0 :/0 [us)llv ds < 2lx 0.l llulle,

where V is the complementary Young function for ®. This shows that Le(I,U) and
Es(1,U) are continuously embedded in L'(I;U). We now show that x(t) = 2lx 0,0 1w
satisfies limy o k(t) = 0. By Ezample 3.6.9 in [KJF77] we have |xollw = t®1(1/t).
Using Proposition we obtain limp o t®~1(1/t) = limpot/®(t) = 0. Hence, the
claim follows.

Remark 2.1.6. Further examples of admissible function spaces are Sobolev spaces and Orlicz-
Sobolev spaces (see e.g. [AdaT5, pp. 246-247]). Our goal is not to include the widest possible
range of function spaces. For instance the invariance with respect to the time-reflection excludes
some weighted spaces. For our purposes it would be sufficient to consider the cases Z = LP,
1 <p< o0, and Z = Eg. But since many properties of linear systems rely on more general
conditions rather than specific choices of Z, we choose to formulate them in a more abstract
manner.

2.2 Admissibility

The mild solution is initially defined in X _1. We are interested in those control operators B,
for which the mild solution is X-valued.

Definition 2.2.1. We call the system (A, B) (finite-time) admissible with respect to Z (or
Z-admissible) if for allt > 0 and all w € Z(0,t;U) it holds that

t
/ T_1(s)Bu(s)ds € X. (2.3)

0
An operator B € L(U, X_1) is called a Z-admissible control operator for (T'(t)):>o if the system

Y(A, B) is admissible with respect to Z.

The following result is well-known for Z = LP, see e.g. Proposition 4.2.2 in [TW09].
The proof presented here for more general spaces of input functions uses basically the same
arguments.

Proposition 2.2.2. If X(A, B) is admissible with respect to Z, then all mild solutions of (|2.1))
are X -valued and for each t > 0 there exists a constant c(t) > 0 such that

| [ 71)But) s < oz 2.4)

for alluw € Z(0,t;U). Moreover, (A, B) is admissible if (2.3) holds for some ty > 0.
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Proof. We choose some A € p(A). Let B = (M — A_1)"'B. Since the resolvent (\] — A_{)~"
belongs to £(X_1,X) we have B € L(U, X). Further we have

/T s)Bu(s)ds = (AN — A4 /T u(s) ds.

Hence, for each ¢ > 0 the map Z(0,t;U) — X, u — [y T_1(s)Bu(s) ds, being a composition
of a bounded and a closed operator, is closed. The closed graph theorem now yields that this
map is bounded.

Assume that holds for some ¢ty > 0. Let ¢t > 0. We can assume that ¢ = nty holds for
some n € N. Otherwise we extend the function u € Z(0,¢;U) to the interval [0, ntg], where
n = [t/to], by zero. Then we have

n

t (k+1)to
/OTl(s)Bu(s)ds:Z/k o T_1(s)Bu(s)ds

k=0 " kto

= Zn: /to T_1(s+ k)Bu(s + k) ds
/ T_1(s)Bug(s)ds,

where the function uy: [0,t9] — U is defined by ug(s) = u(s + k). By the left-shift invariance
of the function space Z we have uy € Z(0,to; U) for all k € {0,...,n} and hence

/Oto T_1(s)Bug(s)ds € X

by assumption. Since the extended semigroup (7_1(t)):>0 is invariant with respect to X we
obtain

T (k) Ot(’ T (s)Buy(s) ds = T(k) OtO T\ (s)Bug(s) ds € X

for all k € {0,...,n}. Hence we have

/T s)ds € X,

i.e., the system (A, B) is admissible with respect to Z. O

Definition 2.2.3. We call the system X(A, B) infinite-time admissible with respect to Z (or
infinite-time Z-admissible) if the system is Z-admissible and the optimal constants in ([2.4))
Satisfy Coo = SUP;~ g c(t) < 00.
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Remark 2.2.4. Since the reflection map Ry is an isometry on Z(0,t;U) and

/ Tt — ) Bu(s) ds / T (5)B(Ru) () ds
0 0

for all t > 0, the admissibility of the system X(A, B) with respect to Z means that the mild
solution of (2.1), given by (2.2), is X-valued and, for every t > 0, the so-called input map
O, Z(0,t;U) — X, defined by

t
dyu = / T_1(t — s)Bu(s) ds,
0

is bounded. The infinite-time admissibility of the system (A, B) means that those maps are
uniformly bounded, i.e.,

sup|| ¢l £(z (0,607, x) < 0
t>0

If Z = LP with p € [1,00), then this is equivalent to the fact that for each u € LP(0,00;U) the
improper integral

Doou = /OOO T_1(s)Bu(s)ds

exists in X and defines a bounded linear map P, : LP(0,00;U) — X, the so-called extended
input map. Indeed, if ®oo € L(LP(0,00;U), X), then for all t > 0 we have ®yu = P Ry Piu.
Since the projections Py: LP(0,00;U) — LP(0,t;U) satisfy |[P]] < 1 for allt > 0 and the
reflections Ry: LP(0,t;00) — LP(0,t;00) are isometries, the claim follows.

Assume now that the maps ®;, t > 0, are uniformly bounded. Let u € LP(0,00;U) and (t,)nen
be a sequence of positive numbers such that limy,_, o t, = co. Let <i>t =& P;.. Then we have

- 28
Oy u= T_1(s)Bu(s)ds.
0

n

Thus for any m,n € N, assuming without loss of generality 0 < t,, < t,, we have

in

T_1(s)Bun(s)ds

)

(@, — B2, = | /m T () Bus) ds

0
where wp, == uX,, ). Hence we obtain

(@4, = P, )ull < (1@, | Lo(0,40:07) < Coolltmll Lo 0,000)-
The dominated convergence theorem yields limy,—ool|tm || r(0,00;0) = 0. Therefore, (@, u)pen

is a Cauchy sequence in X and thus converges. The map P is the strong limit of a sequence
of continuous maps. Hence, by the uniform boundedness principle, it is bounded.
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Remark 2.2.5. From the definition of admissibility follows immediately that if the inclusion
Z'(0,t;U) € Z(0,t;U) holds for all t > 0, then Z-admissibility implies Z'-admissibility. In
particular LP-admissibility implies LY-admissibility for all 1 < p < q < oo. Furthermore, the
inclusions L C Eg C Ly C L' yield a corresponding chain of implications of admissibilities.
Howewver, the corresponding property for the infinite-time admissibility is not true, as we shall
see in Theorem [3.3.0.

Since the space L' is the union of all Orlicz spaces we obtain the following characterisation
of L'-admissibility.

Proposition 2.2.6. A system %(A, B) is admissible with respect to L' if and only if it is
admissible with respect to all Orlicz spaces Eg.

Proof. By Remarkwe are left to show that L'-admissibility is implied by the admissibility
with respect to all Orlicz spaces Eg. Thus, let + > 0 and u € L'(0,¢;U). By Remark
there exists a Young function ® satisfying the As-condition with ||u(:)|| € Ls(0,t) = Ee(0,1),
i.e., u € Eg(0,t;U). Thus we have I T_1(s)Bu(s) ds € X by assumption. This shows that the
system (A, B) is L'-admissible. O

Definition 2.2.7. We call the system ¥(A, B) zero-class admissible with respect to Z (or
Z-zero-class admissible ), if it is admissible with respect to Z and the optimal constants in (2.4))
satisfy limg_,o c(t) = 0.

Remark 2.2.8. Clearly, zero-class admissibility and infinite-time admissibility both imply ad-
missibility. Also, if B is a bounded operator from U to X then X(A, B) is admissible. Ad-
missibility in gemeral does mot imply zero-class admissibility as the following simple example
illustrates: We take X = U = C, A = —1 and B = 1. Then the system X(A, B) is L'-
admissible and c(t) = 1 for all t > 0. Hence it is not L-zero-class admissible.

We will see in Chapter |4] that admissibility and infinite-time admissibility are equivalent if
we additionally assume that A generates an exponentially stable semigroup. In general, Z-
admissibility does not imply infinite-time Z-admissibility, not even if B is bounded or if the
semigroup is strongly stable, see [DM13d, Ex. 3.1] for an example with Z = L* or [JS07] with
Z=1I% In Chapter@ we will study a counterexample with Z = Fg.

2.3 Examples

Example 2.3.1. Let X = L%(0,00) and (T(t))i>0 the right-shift semigroup on X, i.e., T(t)x =
Sra for x € L?(0,00). Its generator is given by
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for f € D(A) = H}(0,00). We take U = C and B = §y € X_1, where X_1 = H1(0,00), the
dual of H'(0,00) with respect to the pivot space L*(0,00). We obtain

(/Ot T_1(t — s)Bu(s) ds) (z) = {g(t —x) forxel0,t],

forx >1t.

Thus we have [ T-1(t — s)Bu(s)ds € X for any u € L*(0,t) and, hence, B is admissible with
respect to L?. Further we obtain

/t T_1(t — s)Bu(s)ds
0

< lulle2(0,),

which shows that ¥(A, B) is infinite-time admissible.

Example 2.3.2. We consider the boundary control system given by the one-dimensional heat
equation on the spatial domain (0,1) with Dirichlet boundary control at the boundary point 1:

Ox 0%x

a(f ) 852 (57 )v 5 S (0’ 1)’ t>0,
2(0,t) =0, z(1,t) =u(t), t>0,
(€, 0) = zo(£).

This system can be written equivalently in the form X(A, B). The state space here is X =
L?(0,1) and

Af — f//
f(0) = f(1) = 0}. The input space is U = C. The extrapolation

for f € D(A) = {f € H*(0 ,1) | £(0
H=2(0,1), c.f. Evample 2.10.8 in [TW09]. Thus the state equation

space is given by X_1 =
can be written as

#(t) = Az(t) + dju(t).

We have B = ¢} € X_1 = L(C,X_1). We will see in Ezample that B is an admissible
control operator for the heat semigroup.

2.4 Continuity of mild solutions

Since Z C LIIOC(O, oo;U), for any u € Z and any initial value zg, the mild solution x of ([2.1)
is continuous as function from [0,00) to X_;. Next we show that zero-class admissibility
guarantees that  even lies in C(0, co; X).

Proposition 2.4.1. If ¥X(A, B) is Z-zero-class admissible, then for every xo € X and every
u € Z the mild solution of (2.1), given by (2.2), satisfies z € C (0, 00; X).
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Proof. Since the map ¢ — T'(t)z is continuous, it is sufficient to consider the case zo = 0. Let
u € Z. The solution is then given by

t t
_ / T (t — s)Bu(s) ds = / T_1(s)B(Reu)(s) ds.
0 0
Hence it is sufficient to show that the map z: [0,00) — X, given by

= /t T_1(s)Bu(s)ds,
0

is continuous. First we show that this map is right-continuous. Let ¢ € [0, 00) and (¢,)nen C
[t,0) a sequence with lim,, o t,, = t. Then we have

tn tn—t
x(tn) — x(t) = T_1(s)Bu(s)ds = T(t)/ T_1(s)Bu(t + s)ds
t 0
and hence, by admissibility,
[2(tn) — x(8)]| < c(tn = OITO)ISeull 20,0, 10

<

< c(tn = ONTONSeullzo10)

< et = OIT O ull zo10)-

Here we used conditions (d) and (e) in Assumption for the last two steps. From the
zero-class admissibility follows lim,, o (tn) = x(t).

Next we show that this map is left continuous on (0,00). Let ¢t € (0,00), (tp)nen C [0,t] a
sequence with lim,, o t, =t and u € Z(0,t;U). Then we have

2(t) — x(ty) = tt T_1(s)Bu(s)ds = T(t,) /0 () Bulty + 5) ds

and hence, by admissibility, conditions (d) and (e) in Assumption and the monotonicity
of the exponential function we obtain

() = z(tn)ll < c(t = ta) 1T (En) [ 1St vl 2(0,—t050)
< ¢t — tn) Me“"™ 1Sy, ull 7(0,6,.07)
< et = ta) Me |l 20 1,0
< et — ta) M ul 70 40)-
Again, from the zero-class admissibility follows lim,,_,c z(t,) = z(t). O

Remark 2.4.2. If ¥(A, B) is admissible with respect to LP, 1 < p < oo, then, by Holder’s
inequality, X(A, B) is Li-zero-class admissible for any q > p. Thus, Proposition implies
that the mild solution of lies in C(0,00; X) for all w € L9. In fact, the mild solution is
continuous even for u € LP as it is shown in [Wei89d, Prop. 2.3]. It is still unknown whether
or not this also holds true for p = oo, c.f. [Wei89d, Problem 2.4]. The Pmposition shows
that it is true if we add the zero-class condition.
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2.5 Comparison functions

In this section we introduce the notion of comparison functions. They are very common tools
in systems and control theory as they allow for the formulation of various stability properties
in a short and elegant way. More information on this topic can be found in the survey [Kell4].

Definition 2.5.1. We denote by K the set of all continuous functions p: [0,00) — [0,00),
which are strictly increasing and satisfy u(0) = 0.

Of particular interest are those functions from X, which are unbounded.
Definition 2.5.2. We denote by Ko the set of all 0 € KC, which satisfy lim_, 0(t) = 0.

Evidently, the set Ko consists of all homeomorphisms of [0,00) to itself. In particular,
Koo is a group with respect to composition as group operation. This means that for any pair
of functions 01,6y € K, its composition 01 o 05 belongs to K. Further, any function from
the class K is invertible and its inverse belongs again to K. If # € K is bounded, that is,
0 € K\ Koo, then the limit a := lim;_,~, 0(t) exists and 6 is a homeomorphism from [0, co) onto
[0,a).

Definition 2.5.3. We denote by L the set of all continuous functions v: [0,00) — [0, 00),
which are strictly decreasing and satisfy limy_, o y(t) = 0.

Similar to the functions from the set IC every function v € £ is a homeomorphism from
[0,00) to its range, that is, to (0,7(0)].

Definition 2.5.4. We denote by KL the set of all functions 5: [0,00) x [0,00) — [0,00) such
that B(-,t) € K for all fited t > 0 and 5(s,-) € L for all fizred s > 0.

Next lemma states that every function from K, is bounded above by another function from
Koo, which can be written as a composition of a concave and a convex function.

Lemma 2.5.5 ([PW96, Lemma 14]). Let i € K. Then there exist two continuously differ-
entiable functions iy, pe € Koo such that p, is convex, . is concave and the estimate

1(s) < pepo(s))
holds for all s € [0, 00).
The following lemma is a special case of Lemma 2.5 in [CLS9§].

Lemma 2.5.6. Let 6: [0,00) — [0,00) be a noninreasing function with 6(0) = limy 0 0(t) = 0.
Then there exists a function 6 € Ko with 6 < 6.
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Strong input-to-state stability

In this chapter we introduce the strong versions of the stability notions we are mainly interested
in, that is, the strong input-to-state stability and the strong integral input-to-state stability.
Though general spaces of input functions as introduced in Assumption [2.1.4] are allowed, we
are mainly interested in inputs from L* and Eg for some Young function ®. Our goal is to
understand the connections between those stability notions. The main results of this chapter
were published in [NS18].

3.1 Strong input-to-state stability and related notions

Definition 3.1.1. A Cy-semigroup (T'(t))¢>0 is called strongly stable if lim oo T'(t)z = 0
holds for all x € X.

Definition 3.1.2. The system (A, B) is called strongly input-to-state stable with respect to
Z (or Z-sISS) if there exist functions p € IC and f: X x [0,00) — [0,00) such that

(a) B(x,-) € L forallz € X, z# 0 and
(b) for everyt >0, xog € X and u € Z(0,t;U) the state x(t) lies in X and

(@) < B(xo,t) + pllull zo50))- (3.1)

The system X(A, B) is called strongly integral input-to-state stable with respect to Z (or
Z-si1SS) if there exist functions 0 € K, pp € K and f: X x [0,00) — [0,00) such that

(a) B(x,-) € L forallz € X, x #0 and

(b) for everyt >0, xg € X and u € Z(0,t;U) the state x(t) lies in X and

I < 5Ge0.0) +0 ([ (o)l ds) (2)
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Remark 3.1.3. (a) The definitions of Z-sISS and Z-siISS given above generalise the stan-
dard notions of Z-1SS and Z-ilSS, see Definition [{.1.1. We will see in the next chapter
that Z-1SS implies Z-sISS and Z-ilISS implies Z-siISS.

(b) The notion of strong input-to-state stability was introduced in [MWI18] with the following
additional condition: There is a 0 € Ko such that

Bla,t) < o(llz)

forall z € X and t > 0. In our situation of linear systems this condition is redundant.
Indeed, Proposition below shows that strong ISS implies the strong stability of the
semigroup (T'(t))e>0. By the uniform boundedness principle there is some M > 0 such
that | T(t)| z(xy < M. Taking o(s) = Ms yields 0 € K and B(z,t) < o(|[z]]).

(c) If Z' C Z in the sense that Z'(0,t;U) C Z(0,t;U) for all t > 0, then Z-siISS implies
Z'-siISS. The corresponding property for Z-sISS does not hold as we shall see in Theorem
5.5, 9l

3.2 Basic properties

Proposition 3.2.1. (a) The following are equivalent:

(i) X(A, B) is Z-sISS.
(i) (A, B) is infinite-time Z-admissible and (T'(t))t>0 is strongly stable.

(b) If (A, B) is Z-siISS, then the system is Z-admissible and (T (t))t>o is strongly stable.

Proof. Clearly, Z-sISS and Z-siISS imply Z-admissibility.

If (A, B) is Z-sISS or Z-silSS, then by setting u = 0, it follows that for all z # 0 and ¢t > 0
we have | T(t)z|| < B(x,t) and hence lim;_,o T'(t)x = 0, which shows that (T'(¢)):>0 is strongly
stable. This shows [(b)] In the case that $(A, B) is Z-sISS, we get

‘ u(s)

t
/ T 1(s)B————ds
0 HUHZ(O,t;U)
< p(Wlullz k0

for any u € Z(0,t;U) with u # 0. This shows that (A, B) is infinite-time Z-admissible and,
thus, [DF in [(a)]

Conversely, if the system X(A, B) is infinite-time Z-admissible and (7'(t)):>0 is strongly stable
we set B(xz,t) = ||T(t)z|] and u(s) = css. Then p belongs to K, B(z,-) € £ and [|z(t)]| <
B(wo,t) + p(l|lull z(o,k0y) for all t >0, w € Z(0,¢;U) and zp € X. O

||U||Z(0,t;U)

/t T_1(s)Bu(s)ds
0

Proposition 3.2.2. Let p € [1,00). If the system (A, B) is LP-sISS, then it is LP-silSS.
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Proof. For any z9 € X and u € LP(0,¢;U) we have by the infinite-time LP-admissibility and
strong stability that

@ < IT@)woll + oo llull Lo (o 4,07)
t 1/p
= flaost) + e ([ Nue)l ds)
where (xg,t) :== ||T(t)zo||. This shows the strong integral input-to-state stability with respect
to LP. O

We will see in Theorem that the converse implication in Proposition does not
hold in general. However, under the additional assumption that the semigroup (7'(t)):>0 is
exponentially stable, those conditions are equivalent, see Proposition

Remark 3.2.3. Let 1 < p < oo. If the system X(A, B) is infinite-time LP-admissible and
(T'(t))t>0 is strongly stable, then the system (A, B) is LP-sISS with the following choices for
the functions B and :

Bz, t) = [|T(W)x| and u(s) = cos,

where coo = supysqc(t), see Definition M Furthermore, the system is LP-silSS with the
following choices for the functions B, 8 and u:

Bz, t) = |T®)z||, 0(s):=coos’? and p(s):= s’
Proposition 3.2.4. If ¥(A, B) is L*°-siISS, then X(A, B) is L -zero-class admissible.

Proof. If (A, B) is L>-siISS, then there exist § € K and p € K such that for all ¢ > 0,
u € L*(0,t;U), u# 0,

/t T_1(s)Bu(s) ds
0

fullos 211
o0

<0 (/0 pu (el ds> [ (3:3)

< 0(tp(1))l[ulloo,

/Ot T_1(s)Bu(s) u(s) ds‘

since the function p is monotonically increasing and ||u(s)||y < ||ul|co a.e. As 6 € K, we have
lim¢ 0 6(tp(1)) = 0. O

3.3 Strong integral input-to-state stability and Orlicz space ad-
missibility

We start by presenting a criterion for a system to be strong iISS with respect to L.
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Theorem 3.3.1. Suppose there is a Young function ® such that the system X(A, B) is Eg-
sISS. Then the system ¥(A, B) is L*>-silSS.

Proof. Let ®1 be a Young function given by Lemma We define 6: [0,00) — [0,00) by
6(0) = 0 and

f(a) = sup {H/ot T_1(s)Bu(s) ds

t
lue L(0.1:0), 1 >0, / &1 ([lu(s)||o) ds < a}
0

for a > 0. This function is well-defined, since by infinite-time admissibility with respect to Eg,
Remark and the inequality ® < ®; we have

s)ds

< coollull By (0,6:0) (3.4)

<o (14 [ 2o o) s

<o (14 [ @a(lu(s) o) s

for all t > 0 and uw € L*(0,t;U). Clearly, 0 is nondecreasing.

We show that 6 is continuous at zero. Let (ay,)nen C [0,00) be a sequence with lim,,_, o, = 0.
Then, by construction, for any n € N there exists a u,, € L*(0,00; U) with compact essential
support such that

| el ds < a, (3.5)

and

'H(an) - < % (3.6)

/ C T () Bun(s) ds
0

From follows that the sequence (||un(+)||v)nen is P1-mean convergent to zero. According to
Lemma[1.1.6] there exists a constant C' > 0 such that for any r > 0 the estimate ®(r|ju(s)| ) <
C®q(JJu(s)| ) holds for almost all s € [0,¢]. Hence, for all r > 0, the sequence (7 ||un(-) ||t )nen is
d-mean convergent to zero. By Lemma[I.4.4] this sequence converges to zero with respect to the
norm of the space Lg(0,00) and hence limy, oo ||tnl 14 (0,00:07) = 0. Therefore, by infinite-time
admissibility,

/Oo T_1(s)Buy(s)ds
0

for n — o0o. Hence we obtain

< COOH””HL@(O,OO;U) —0

O(an) < ‘H(an) _ §) Bun(s) ds

/Ooo T_1(s)Buy(s)

< =+ Coolltnll £y (0,00,

S
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and thus lim,,_o 0(ay,) = 0. ) )
Applying Lemma we obtain the existence of a function 6 € K, such that 8§ < §. The

definition of 0 yields
<o( [ atuts)lo)as) <o ( [ allutslo)as)

for all ¢t > 0 and u € L*(0,¢;U). This means that the system X (A, B) is strong iISS with
respect to L°°. U

/t T_1(s)Bu(s)ds
0

Lemma 3.3.2. Let (T'(t))i>0 be a semigroup and let (A, B) be L>-silSS. Then there exist
0, € Ko such that ® is a Young function, which is continuously differentiable on (0,00) and

/01 T_1(s)Bu(s)ds|| < 0 (/01 q>(|u(s)||U)ds) (3.7)

for allu e L*>(0,1;U).

Proof. By assumption, there exist 0 € Ko, and pu € K such that holds for Z = L.
Without loss of generality we can assume that g belongs to Ko,. By Lemma there exist
a convex function p, € Ko and a concave function p. € Koo such that both are continu-
ously differentiable on (0,00) and p < p. o p, holds on [0,00). Now for any Young function
U: [0,00) — [0,00) we have by Jensen’s inequality

o( 1u<uu<s>u>ds) <o 1 peo u(u(s)]) ds

< @opeow™) ([ @o () ds)

Taking 0:=00p, 0¥ ! and ® := o, we obtain the desired estimate. We obviously have
0,P € Ko and @ is a Young function by Lemma O

The next theorem is a partial converse of Theorem [3.3.1]

Theorem 3.3.3. Assume that the system X(A, B) is L>°-silSS. Then there is a Young function
O such that the system (A, B) is Eg-admissible. If, additionally, the function p in (3.2)) can
be chosen as a Young function, then X(A, B) is infinite-time E,-admissible and hence E,,-sISS.

Proof. Let ® be a Young function given by Lemma We show that (A, B) is Eg-
admissible. It is sufficient to show that fol T_1(s)Bu(s)ds € X for all u € Eg(0,1;U). By
assumption we have that fol T_1(s)Bu(s)ds € X if u e L*(0,1;U). Let u € E3(0,1;U), then,
by definition, there is a sequence (un)nen C L%°(0,1; U) such that limy, e [|un—u|| 240,150 = 0
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Since (up)nen is a Cauchy sequence we can assume without loss of generality that |lu, —
U || By (0,1;07 < 1 for all m,n € N. Lemmaylelds

<0 ([ lhuats) ~ un)l) ds)

<0 (Hun - ’U«mHE@(OJ;U)) )

Un(8) — um(s)) ds

Hence ( fol T_1(s)Bun(s) ds)nen is a Cauchy sequence in X and thus converges. Let y denote
its limit. Since Fg(0,1;U) is continuously embedded in L(0,1;U) it follows that

lim/ T_1(s)Bun(s ds—/ T_1(s)Bu(s) ds

n—oo

in X_1. Since X is continuously embedded in X_1, we conclude that

1
y:/O T_1(s)Bu(s)ds.

Thus, we have shown that fol T_1(s)Bu(s)ds € X for all u € Eg and hence ¥(A, B) is admis-
sible with respect to Eg.

Now assume that the function y in is a Young function. The admissibility with respect
to E, is now easier to see: For u € E,(0,t;U) we pick a sequence (up)nen C L>(0,t;U) such
that limy oo |un — ullg, 060y and [[un — umllg, 0y < 1 for all myn € N Then the silSS
estimate and Lemma yield

/T_ B(un(s) — um(s)) ds

<0 ([ wlluns) = um(s) ) s
<0 ([lun = wmllgu000)) -

Hence (fy T-1(s)Buy(s) ds)nen is a Cauchy sequence in X and the same argument as above
shows that [f T 1(s)Bu(s)ds € X holds. For all t > 0, u € E,(0,t;U), u # 0, we have by
Lemma [1.4.3

HUHEH(O,t;U)

/t T_1(s)Bu(s) ds
0

t
/ T_l(s)BA ds
0 ”u”Eu(O,t;U)

tof )l
=0 / | ds | ||u .
( 0 P (”uHEu(O,t;U) lull £, 0,40

< 0D)llullp.0.40):

Hence the system X (A, B) is infinite-time FE,-admissible and thus, by Proposition E,-
sISS. =
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Given a sequence (¢p)nen C [0, 00) for which the series Y, oy ¢, diverges there exists another
sequence (dp)nen C [0,00) with lim, o d, = 0 such that the series >, oy cnd, still diverges.
Thus, loosely speaking, there is no real series, which diverges less rapidly than any other. The
following Lemma is an integral version of it.

Lemma 3.3.4. Let f € L>(0,00) \ L(0,00) such that f > 0 almost everywhere. Then there
exists a bounded, continuously differentiable and decreasing function h: (0,00) — [0,00) such
that limy_o0 h(t) = 0 and [5° h(s)f(s)ds = .

Proof. Let (cp)nen C R be the sequence defined by

Cn = /n+1 f(s)ds.

Then we have Y72 ¢, = oo by assumption. Thus, by a well-known fact, c.f. [Kno28, p. 299,
the series 32 ¢,,d,, is also divergent, where d,, :== (3}_q cx)!. Since the function f is positive,
the sequence (d,,)nen is strictly decreasing. Therefore there exists a continuously differentiable
decreasing function h: (0,00) — [0, 00) such that

d, < h|[n,n+l] <dp-1 (38)

for all n € N, where d_; := 2/¢p. From (3.8) follows that 0 < h(t) < 2/c¢y for all t € (0,¢) and
lim¢_, o h(t) = 0. Further we have

n+1 n+1
/ h(s)f(s)ds > dn/ f(s)ds = cpd,

for all n € N. Thus we obtain
/ h(s)f(s)ds > Z cndy = 00,
0 neN

which completes the proof. O

The following theorem shows that infinite-time Fg-admissibility and strong integral input-
to-state stability with respect to L°° are not equivalent, i.e., we cannot drop the Young function
condition in the second part of Theorem entirely. Thus, Theorem and the following
result show that sISS with respect to Eg is a stronger notion than L*°-silSS.

Theorem 3.3.5. There is a system X(A, B) such that the following holds:
(a) The semigroup generated by A is strongly stable.
(b) B(A, B) is infinite-time admissible with respect to L*.

(c) (A, B) is L'-sISS, L'-siISS and hence, in particular, L>-silSS.
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(d) (A, B) is not E¢-sISS for any Young function ®.
(e) (A, B) is not L*>*-sISS.
In particular, Z-siISS does not imply Z-sISS, neither for Z = Eg nor Z = L.

Proof. Let (T(t));>0 be the left-translation semigroup on X = L'(0,00), i.e., (T'(t)f)(s) =
(SLf)(s) = f(t+s), f € X, which is strongly stable. Its generator is given by

Af =f
for f € D(A), where
D(A) ={f € L}0,00) | f € AC(0,00) and f’ € L*(0,00)},

see e.g. p. 51 in [ENQO0]. We choose U = X = L(0,00) as input space and B = I as control
operator. The system Y (A, B) is infinite-time L'-admissible since for any u € L'(0,¢; X) we

have
/t T(s)Bu(s)ds
0

< [ 1T Buts)x ds

t
sé@@mw
= HUHLl(O,t;Ll(&OO))'

Hence, by Proposition (A, B) is L'-sISS. Therefore, Proposition yields that
Y(A, B) is L'-siISS. By inclusion of the LP spaces on bounded interval, we get that ¥(4, B) is
L>-siISS, see Remark Hence we have proved parts @, @ and of the theorem.
Now let us fix a Young function ®. In order to show that (A, B) is not infinite-time Eg-
admissible, we construct a function u in the following way: Let ug € L (0,00) N L*°(0,00) be
a function given by Lemma with I = (0,00) and let h a function given by Lemma m
applied to f := ug. Now set g = —h’ and define u: (0,00) — L'(0, 00),

[u(s)](r) = g(r)X[s,00) (1) uo(s),
which is well-defined since for s € (0, 00), [ |g(r)| dr = h(s) and
t 00 t
o) = [ uo(s) [ lg)ldrds = [ uo(s)h(s) ds.
Hence, the restriction of u to the interval [0,t] belongs to L'(0,¢; L'(0,00)) for all ¢ > 0 but

t
u ¢ L'(0,00; L' (0,00)). Using that [u(s)](r) > 0 for all r,s > 0 and [u(s)](r) = 0 for all
r € [0, s), Fubini’s theorem yields

/OtT(s)Bu(s) ds

. = HUHLl(o,t;X)-
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Since ug € L*>(0,00) and for all s > 0
o)l = [T dr = uo(s) [ o) dr = ua(s)i(s) 3.9)
we have that u € L*°(0,00; X) and

|2l Lo (0,00:x) < 10l 200 (0,00) 1]l Lo (0,00) (3.10)

Therefore ul(g ) € Eg(0,t; X) and by (3.9) follows that

[ull £g 0,6:x) < 12l o (0,00) 10| Eg 0,6) < 1l £o0 (0,00 40l L (0,00) - (3.11)

If ¥(A, B) were infinite-time Eg-admissible, (3.11)) would lead to

s = | [ T(Bu(s)ds

for some ¢y, > 0 independent of u and ¢. Letting ¢ — oo, this gives a contradiction as

< Coolltl| £ (0,4:x) < CoollPll oo (0,00) 1U0]] Ly (0,00)

llull 1 (0,4,x) tends to oo.
Using (3.10) instead of (3.11)) we obtain, assuming that the system X(A, B) were infinite-time
L°°-admissible,

/Ot T(s)Bu(s)ds

< eoolltll Lo (0,4:x)

[ullLrox) =
( 7t7 ) X

< COOHUHLOO(O7OO;X)

< Cool| Al oo 0,00) [1u0| Low (0,00)

for some co, > 0 independent of v and ¢. Letting ¢ — oo, this gives again the same contradiction
as u does not belong to L'(0, c0; X). O

The following result generalises Proposition for p € (1, 00).

Theorem 3.3.6. Let ® be a Young function, which satisfies the As-condition with s = 0. If
the system (A, B) is Eg-sISS, then it is Eg-silSS.

Proof. Similarly to the proof of Theorem we consider a nondecreasing function 6: [0, 00) —
[0, 00) defined by 6(0) = 0 and

0(a) = sup {H/Ot T_1(s)Buls) ds| | u € Bo(0,1:0), ¢ >0, /0t<I>(||u(s)|U) ds < a}

for a > 0. It follows as in the proof of Theorem that @ is well-defined and nondecreasing.
Indeed, since the system Y (A, B) is infinite-time admissible with respect to Eg we have

s)Bu(s) ds

< el < e (14 [ @(u(s) o) ds)



34 Chapter 3. Strong input-to-state stability

for all t > 0 and u € Eg(0,t;U). As in the proof of Theorem it remains to show that 0
is continuous in 0. This follows from the Ag-condition. Indeed, let (au,)nen be a sequence of
positive real numbers converging to 0. By the definition of 6, for any n € N there exist t, > 0
and u, € Lg(0,t,;U) such that

[ @ n(s) ) ds <
0

and

tn 1

< —.
n

‘H(an) - ‘ T 1(s)Bun(s) ds

0
By extending the functions u,, to [0,00) by 0, we can assume that (uy)nen C L (0,00;U) and

| @uns)lo) ds < an
0

holds, as well as

1
’9(0%) —’ <

/oo T_1(s)Buy(s)ds

0

It follows that the sequence (||un()||)nen is ®-mean convergent to zero in Lg (0, 00; U). Hence,
by Lemma m it converges to zero in Lg(0,00;U), since ® satisfies the Ag-condition. By
infinite-time Eg-admissibility we conclude that lim, o 6(ay,) = 0. O

3.4 Concluding comments

The fact that the operator A generates a strongly stable semigroup on X is not really signif-
icant for the proofs given in this chapter. Of course, looking at the Proposition it has
to be noted that the strong stability is always involved as soon as we assume that the system
Y (A, B) has one of stability properties introduced in Definition A careful scrutiny of
the proofs in this chapter shows that 5(z,-) € £ is not used in finding and constructing the
comparison functions p and 6, see Definition The only thing we used in this regard was
the boundedness of §(x,-) on the interval [0, 00). So one could replace the first condition in
both definitions of sISS and siISS by “B(x, ) is bounded on [0, 00)”, which is of course weaker
than the initial definition. All the results would remain true if ”(7'(¢));>0 is a strongly stable
semigroup” was replaced by ”(7'(t))+>0 is a bounded semigroup”. This means that for sISS and
silSS the intrinsic and the extrinsic stabilities can be studied separately.

The situation changes significantly in the next chapter where we will study the connections
between more specific versions of those stability notions, namely input-to-state stability and in-
tegral input-to-state stability. These notions involve the exponential stability of the semigroup
and in this case the finite-time admissibility is equivalent to the infinite-time admissibility.



Chapter 4

Input-to-state stability

In this chapter we study the concepts of input-to state stability and integral input-to-state
stability. As we will see they are special cases of strong input-to state stability and strong
integral input-to-state stability, respectively. More precisely they additionally imply the expo-
nential stability of the semigroup associated with the system. This condition implies, as we
saw in Chapter [2] that admissibility and infinite-time admissibility are equivalent. Hence we
can naturally expect stronger connections between those stability concepts. We will see for
instance that admissibility with respect to some Orlicz space is not only sufficient for a system
to be integral input-to-state stable, but it is also necessary. The main results of this chapter
were published in [JNPS18], see also [JNPS16].

4.1 Stability notions for infinite-dimensional systems

Definition 4.1.1. The system (A, B) is called

(a) input-to-state stable with respect to Z (or Z-1SS) if there exist functions f € KL and
€ Koo such that for everyt >0, xg € X and u € Z(0,t;U) the state x(t) lies in X and

@)l < BUlzoll, 1) + p(llullzo0)), (4.1)

(b) integral input-to-state stable with respect to Z (or Z-iISS) if there exist functions 8 € KL,
0 € Koo and p € K such that for everyt > 0, o € X and uw € Z(0,t;U) the state x(t)
lies in X and

01 < 5loll ) + 0 ([ ulas)lo)ds ) (42)

(¢) uniformly bounded energy bounded state with respect to Z (or Z-UBEBS) if there exist
functions v,0 € Koo, 1 € K and a constant ¢ > 0 such that for everyt > 0, xg € X and
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u € Z(0,t;U) the state x(t) lies in X and

I < Aol +6 [ wluts)lo)ds) + (43)

Remark 4.1.2. (a) By the inclusion of LP spaces on bounded intervals we obtain that LP-

(b)

(c)

4.2

ISS (LP-iISS, LP-UBEBS) implies L1-1SS (L1-iISS, L4-UBEBS) for all 1 < p < q < c0.
Furthermore, the inclusions L C Eg C Ly C L' and Z C LllOC yield a corresponding
chain of implications of 1SS, ilSS and UBEBS.

Note that in general the integral [J p(||u(s)||v) ds in the inequalities defining Z-iISS and
Z-UBEBS may be infinite. In that case, the inequalities hold trivially. This indicates
that the major interest in i1SS and UBEBS lies in the case Z = L*°, in which the integral
is always finite.

The difference between (i)ISS and its strong versions is that the function [ now belongs
to the class KL and ((-,t) only depends on the norm of xog which is stronger than the
condition that 5(x,-) € L for allx € X, x # 0. This leads to the uniform convergence to

zero of the semigroup (T'(t))i>0, see Proposition[{.2.9 below.

Comparison of stability notions

Definition 4.2.1. The semigroup (T'(t))i>0 is called exponentially stable if there exist con-
stants M,w > 0 such that

1) < Me! (4.4)

fort>0.

The following simple characterisations of input-to-state stability and integral input-to-state
stability it terms of strong input-to-state stability and strong integral input-to-state stability
respectively will be used in the sequel.

Proposition 4.2.2. (a) The following are equivalent:

(b)

(i) The system X(A, B) is Z-1SS.
(i) The system X(A, B) is Z-sISS and the semigroup (T (t)):>0 is exponentially stable.

The following are equivalent:

(i) The system (A, B) is Z-ilSS.
(i) The system (A, B) is Z-silSS and the semigroup (T'(t))i>0 is exponentially stable.
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Proof. 1f the system X (A, B) is Z-ISS or Z-iISS, then, taking u = 0 and some = € X, with
x # 0and ||z|| <1in and ([£.2), we obtain that | T(t)|zx) < 1 for all sufficiently large
t > 0. This implies the exponential stability of the semigroup.

If the system (A, B) is Z-ISS or Z-iISS, then the function §: X x Ry — Ry defined by
B(x,t) = B(||z|,t), where j is the function from the definition of input-to-state stability or
integral input-to- state stability Tespectively, satisfies Bz, ) 6 L for all x € X, x # 0. Now the
estimates (3.1]) and ( with 3 instead of 3 follow from (4.1)) and ( .

If the semigroup (T(t))tzo is exponentially stable, i.e. there exist constants M,w > 0 such that
IT(t)|lx) < Me=* holds for all t > 0, we define B: Ry x Ry — R by B(s,t) = Me “ts.
Then we have |T(t)z| < 6(||z||,t). Now using the sISS estimate we obtain the ISS estimate
and from the siSS estimate follows the iISS estimate (with 3 instead of 8 in both cases). [

Lemma 4.2.3. Let (T'(t))t>0 be exponentially stable and ¥(A, B) Z-admissible. Then there
exists a constant C = Cy > 0 such that for anyt > 0 and u € Z(0,t;U) there exists a function
u € Z(0,1;U) with

s)Bu(s) ds

< (Cy (4.5)

/ T_1(s)Bu(s) ds

such that

1 t
| nlat)lo)yds < [ ullu()v)ds
0 0

for any p € K. Further we have ||@| z(0,1,0) < |lull z(0,60)-

Proof. Without loss of generality we can assume that t € N\ {0} (otherwise we extend u to
[0, [t]] by zero). Then we have

k
s)ds Z/k " T_1(s)Bu(s) ds

1
ZT(k)/O T_1(s)Bu(s + k) ds

< I;)HT(k)H H/Ol T 1 (s)Buls + ko) ds

where ko € {0,...,t — 1} is defined by the condition

= max
0<k<t—1

s)Bu(s + ko) ds

/T s)Bu(s+ k) ds

Since the semigroup (7'(t))+>0 is exponentially stable, the series > 72 |/T'(k)|| converges. Hence
its partial sums are bounded, i.e., for all t € N\ {0} holds >4 _4 || T(k)|| < C4 for some C4 > 0.
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Let @ = u(- + ko)|[0,1]- The inequality (4.6)) then reads

s)Bu(s)ds|| < Cy

/T_ () Bii(s) ds|| .

For any p € K holds

[t as = [ s ds < [ Gl ds

By properties (d) and (e) of the space Z, see Assumption we have u € Z(0,1;U) and
Il 20,107 < Nlullzo,607- O

Lemma 4.2.4. Assume that the semigroup (T'(t))i>0 is exponentially stable and the system
Y(A, B) is Z-admissible. Then X(A, B) is Z-iISS if and only if there exist € Ko and p € K

such that
<o ([ ulutlv) ds)

Proof. Using Lemma and the monotonicity of 6 we obtain

/ T_1(s)Bi(s) ds

< cao ([ nllats)lo)as)
<cut ([ luts)lo)as)
=0 ([ utlhuts) o) as)

for all u € Z(0,t;U), where 0(s) := C40(s). O

s)Bu(s) ds

for every u € Z(0,1;U).

s)Bu(s)ds|| < Cy

Infinite-time admissibility always implies finite-time admissibility. If the semigroup (T'(¢))>0
is exponentially stable, those notions are equivalent.

Lemma 4.2.5. Let (T(t))t>0 be exponentially stable. Then the system (A, B) is Z-admissible
if and only if it is infinite-time Z-admissible.

Proof. Let t > 0 and u € Z(0,t;U). Then, applying Lemma the Z-admissibility of
Y(A, B) and then Lemma again, we obtain

s)Bu(s)ds|| < Cy

/ T_1(s)Bu(s) ds

<c()Calltllz0,1;0) < coollullz(o,:0)5

where ¢, = ¢(1)Cy4 is a positive constant. O
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Proposition 4.2.6. For any function space Z C L%OC(O, oo; U) satisfying Assumption we
have:

(a) The following statements are equivalent:
(i) $(A, B) is Z-ISS.
(i) £(A, B) is Z-admissible and (T'(t))t>0 is exponentially stable.
(iii) (A, B) is infinite-time Z-admissible and (T'(t))i>0 is exponentially stable.
(b) If$(A, B) is Z-iISS, then the system is Z-admissible and (T'(t))¢>0 is exponentially stable.
(c) If (A, B) is Z-UBEBS, then the system is Z-admissible and (T'(t))i>0 is bounded.

Proof. From definitions follows directly that Z-ISS, Z-iISS and Z-UBEBS imply Z-admis-
sibility. By Proposition Z-1ISS and Z-iISS each imply the exponential stability of the
semigroup (7'(t))¢>0. Taking u = 0 in (4.3) we see that Z-UBEBS implies the boundedness

of (T'(t))t>0. By Lemma the statements and in [(a)] are equivalent. Thus we are
left to show that implies Taking B(s,t) = se™“! and u(s) = cxs we obtain the ISS
estimate for the system (A, B). O

Proposition 4.2.7. If 1 < p < oo, then the following are equivalent:
(i) (A, B) is LP-ISS.

(ii) (A, B) is LP-iISS.

(iii) X(A, B) is LP-UBEBS and (T (t))t>0 s exponentially stable.

Proof. Using Proposition and Proposition we obtain (i) = From Definitions of
iISS and UBEBS and Proposition follows = Also from Proposition we get
= O

Remark 4.2.8. Let 1 < p < co. If the system ¥(A, B) is LP-admissible and (T(t))¢>0 is expo-
nentially stable, then the system (A, B) is LP-1SS with the following choices for the functions

B and w:
B(s,t) = Me “'s and u(s) = coos,

where coo = sup;>q c(t), cf. Remark . Furthermore, the system is LP-iISS with the follow-
ing choices for the functions 5, 0 and p:

B(x,t) = Me s, 0(s) = coos? and p(s) = s’
Proposition 4.2.9. If ¥(A, B) is L*°-iISS, then (A, B) is L™ -zero-class admissible.

Proof. Since L*°-iISS implies L>°-siISS the claim follows from Proposition ]
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Some of the equivalences in the following proposition were already shown in [MI16] for the
case Z = LP.

Proposition 4.2.10. Let Z C LIIOC(O, oo;U) be a function space satisfying Assumption
and B € L(U,X). Then the following statements are equivalent:

(i) (T
(i) ¥
(iii)

t))e>0 is exponentially stable.

is Z-admissible and (T(t))e>0 is exponentially stable.

)

(
(A,B
(A, B) is infinite-time Z-admissible and (T (t))t>0 is exponentially stable.
(iv) ©(A, B
(v) £(A, B) is Z-iISS.
(A,B
(4,

)

(vi) ¥ is Z-UBEBS and (T'(t))t>0 is exponentially stable.

(vii) ¥

)

)
)
) is Z-18S.
)
)
B)

is L .-admissible and (T(t))¢>0 is exponentially stable.

If the function space Z additionally satisfies condition (B), then the assertions above are equiv-

alent to:
(viii) X(A, B) is Z-zero-class admissible and (T'(t))t>0 is exponentially stable.

Proof. Since for every bounded control operator B we have x(t) € X for any xg € X and
u € LY(0,t;U), the equivalences hold. Using Propositions Ml and M
and Remark we see that From Proposition we obtain
By Proposition we have The implication | ()| holds trivially. From
definitions of iISS and UBEBS follows directly Since trivially the proof
of the first part is complete.

From definitions we obtain Hence it remains to show that if Condition (B) holds
for Z, then Since the semigroup (7'(t)):>0 is exponentially stable there exist
constants M,w > 0 such that holds. Let t > 0 and u € Z(0,t;U) then

t
< MIB [ e lu(s)ll ds

/Ot T(s)Bu(s)ds

t
< MBI | fuls) o ds
= MBIl
< MIBIs(t) [l 26000,

By Condition (B) we have limy\ o #(t) = 0 and, hence, the system 3 (A, B) is zero-class admis-
sible with respect to Z. O
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The following corollary is a simple consequence of Proposition[d.2.10jand Holder’s inequality.

Corollary 4.2.11. Let 1 < p < co. If one of the equivalent conditions in Proposition
holds, then the system (A, B) is LP-1SS with the following choices for the functions  and p:

M
B(s,t) = Me s and  p(s) = w—qHBHs,

where q is the Holder conjugate of p. The system (A, B) is then also LP-iISS with the following
choices for the functions 8, p and 0:

B(s,t) = Me “'s, wu(s) =s and 0(s) = M||B||s.
The constants M and w are given by (4.4).
Remark 4.2.12. In Proposition the assertions are independent of Z as they only rely
on exponential stability. In particular, in the situation of Proposition [{.2.10 and Corollary
4.2.11| the system 3(A, B) is LP-ISS and LP-iISS for all p if it holds for some p. The choices

for the functions u, however, do depend on p. If the control operator B is unbounded, then the
question whether the system %(A, B) is ISS or iISS with respect to LP also depends on p.

4.3 Integral input-to-state stability and Orlicz space admissi-
bility
In this section we show how the integral input-to-state stability can be characterised in terms

of admissibility with respect to some Orlicz space Eg.

Lemma 4.3.1. Let X(A, B) be L>®-iISS. Then there exist functions ,® € Ko, such that ® is
a Young function, which is continuously differentiable on (0,00) and

ds <9</ (|| )HU)ds> (4.7)

forallt >0 and u € LOO(O,t;U).

Proof. 1t is clear that we only have to consider the case where ¢t > 1 since for ¢ € [0,1) the
Lemma follows from Lemma 2l By Lemma [3.3.2 “ 2| there exist functions 0, ® € K such that
. holds for ¢t = 1 with 0 1nstead of . Using this and Lemma we get

/T Bu(s) ds

< cad ([ @(lut)lv) ds)
([ @duts) ) as)

([ @uts) ) s

s)Bu(s)ds|| < Cy

IN
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for all ¢ > 1, where 6 := C40. O
Theorem 4.3.2. The following statements are equivalent:

(i) There is a Young function ® such that the system (A, B) is Eg-1SS.

(ii) 3(A, B) is L*>-iISS.

(iii) (T'(t))e>0 is exponentially stable and there is a Young function ® such that the system
S(A, B) is Eq-UBEBS.

Proof. By Proposition the system Y (A, B) is Fg-sISS and the semigroup
(T'(t))e>0 is exponentially stable. Theorem now implies that (A, B) strongly iISS with
respect to L°°. Hence, by Proposition Y(A, B) is L>-iISS.

:>@ The assumption implies that the system (A, B) is strongly iISS with respect to
L*>. By Lemmathe function p in can be chosen as a Young function ®. By Theorem
@the system X(A, B) is Eg-sISS. Using Propositionwe obtain that ¥(A, B) is E3-ISS.
@l From Proposition [.2.6|follows that the semigroup (T'(t));>0 is exponentially stable.
Since, by Lemma m, for all u € Eg(0,t;U) we have u € Lg(0,t;U) and, by Remark
the following estimate holds

t
Jullzygose) <1+ [ @(lu()lv) ds,

the claim follows.

:>@ This follows from Proposition m O

Remark 4.3.3. If the system X(A, B) is integral ISS with respect to L™, then it is not difficult
to see that the Young function ® from statement of Theorem satisfies the Ao-condition
if and only if the system X(A, B) is actually admissible with respect to LP for some p <
o0o. Indeed, if the latter is the case, we can choose ®(t) = tP and the claim is shown in
Proposttion. Conversely, if we assume that our system X.(A, B) is Eg-admissible, where ®
is some Young function satisfying the Ao-condition, then, by Remark we have LP(I,U) <
Eo(I,U) for some p € (1,00) and, hence, 5(A, B) is LP-admissible, c.f. Remark[{.1.3

Next Theorem is a generalisation of Proposition [£.2.7]

Theorem 4.3.4. If ® is a Young function that satisfies the Ao-condition, then the following
are equivalent:

(i) $(A, B) is Eg-ISS.
(ii) S(A, B) is Eg-iISS.

(1ii) £(A, B) is E¢-UBEBS and the semigroup (T'(t))t>0 is exponentially stable.
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Remark 4.3.5. The prooffor is very similar to the proof of Theorem but the

statement does not follow from this theorem as we additionally assumed there that the Young
function ® satisfies the Ao-condition with so = 0. This additional assumption is not needed
here.

Proof of Theorem [[.5.4). From definitions of iISS and UBEBS we obtain By
Proposition 4.2.6| we have :>@
In order to show [(i)] ={ (ii)] we define 6: [0, 00) — [0, 00) by 6(0) = 0 and

0(a) = sup {H/ol T_1(s)Bu(s)ds ‘ u€ Eg(0,1;U0), /01 O(|lu(s)||v)ds < a}

for > 0. The function 6 is well-defined since by Eg-admissibility and Remark [I.2.5] we have

< e(D)[ull gy 0,150 (4.8)

<et) (14 [ B(uts) o) s

/1 T_1(s)Bu(s)ds
0

for all u € F$(0,1;U). Clearly, 6 is nondecreasing,.
We show that 6 is continuous at zero. Let (ay,)nen C [0,00) be a sequence with lim,, o o, = 0.
Then, by construction, there exists a sequence (uy)neny C Eo(0,1;U) with

[ @)l ds < a (49)

and .
—. 4.10
< n ( )

/1 T_1(s)Buy(s)ds
0

From the estimate (4.9) follows that the sequence (uy,)nen is $-mean convergent to zero. Since
the Young function & satisfies the Ag-condition, this sequence converges to zero in Eg (0, 1; U )E
Therefore, the inequality (4.8) applied to wu, yields

as n — oo. By (4.10) now follows

o |

1
| T1(6)Bun() ds| < eDlluallzagorr — 0.

0law) < |0(an) - |

1 1
/ T_1(s)Buy(s) ds / T_1(s)Buy(s) ds
0 0

g

1
<-4 c(D)|lunll g4 (0,10

'"Here we do not need the As-condition with so = 0 since the interval (0, 1) is bounded, c.f. Lemma



44 Chapter 4. Input-to-state stability

and thus lim,,_o 0(ay,) = 0. ) )
Applying Lemma we obtain the existence of a function 6 € K, such that 8§ < §. The

definition of 0 yields that
1 ~ 1
<o ([ euts)lvrds) <d ([ eluts)lo) ds)

for all u € E3(0,1;U). By Lemma the system X(A, B) is iISS with respect to Fg. O

s)Bu(s) ds

Recall that admissibility and infinite-time admissibility are equivalent if the semigroup
(T'(t))> is exponentially stable. We are thus led to the following strengthening of Proposition

Theorem 4.3.6. The following statements are equivalent:
(i) X(A, B) is L*-ISS.
(ii) ¥(A, B) is L'-iISS.
(iii) X(A, B) is Eg-1SS for every Young function ®.
Proof. By Proposition we have As an immediate consequence of Propositions

and we obtain O

The following Proposition will be useful for characterising the input-to-state stability of
parabolic diagonal systems.

Proposition 4.3.7. Let (A, B) be L>°-1SS. Assume that there exist a nonnegative function
f €LY 0,1),0 € K, aconstant ¢ > 0 and a Young function u such that for everyu € L'(0,1;U)
with fol f(s)u(Hu(s)HU)ds < 0o we have

s)Bu(s) ds

< c+9</ F(s)ullluls )HU)ds). (4.11)

Then ¥(A, B) is L>*-iISS.

Proof. Since f € L*(0,1), Theorem yields a Young function ¥ such that f € Ly(0,1).
We denote by @ its complimentary Young function and define the Young function ® by & =
® o u. Applying the Young’s inequality, more precisely Remark [1.1.13) we obtain for any

u € E<1>(0,1;U)
<cto( [ ol ds)

<cr o [ w0 dst [ bullus)ds)
=0 ([ wrends+ [ elutlo) ds)

s)Bu(s)ds
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and hence fol T_i(s)Bu(s)ds € X. This shows that the system (A, B) is Eg-admissible. By
Proposition it is Eg-ISS. At last from Theorem we obtain that ¥(A, B) is L°°-
iISS. O

4.4 Stability for parabolic diagonal systems

Definition 4.4.1. Let X be an infinite-dimensional Banach space. A sequence (Xy)pnen C X
is called a Schauder basis for X if for all x € X there is a unique sequence (¢p)nen C K such
that

n

T — chazk

k=0

=0.
X

lim
n—oo

In other words we have x =Y 72 cxx) and the series converges with respect to the norm of X.

Definition 4.4.2. Let X be an infinite-dimensional Banach space and 1 < g < 0o. A sequence
(n)nen C X is called a g-Riesz basis for X if it is a Schauder basis for X and there are
constants c1,co > 0 such that

[e.e]
1 Z|ak|q <
k=0

for all sequences (ay)ken C £2.

q

[o¢]
> apap
k=0

[ee)
< e Z’Gk’q
X k=0

For this entire section we assume that the input space U is one-dimensional, i.e., U = C,
1 < ¢ < oo and the state space X possesses a g-Riesz basis of eigenvectors (e, )nen of A with
eigenvalues (A, )nen such that sup{Re A, | n € N} < 0 and there exists a constant k£ > 0 such
that [Im \,,| < k|Re | for all n € N. The latter means that the sequence (A,)nen lies in a
sector in the open left half-plane, i.e., (—=\p)nen C Sy for some 0 € (0,7/2), where

Sp={z € C\ {0} | |arg 2| < 0}.

As X possesses a g-Riesz basis, we can assume without loss of generality that X = ¢9 and that
(en)nen is the canonical basis of £9. Then the linear operator A: D(A) C ¢4 — (%, given by

Ae, = \pen

for n € N and D(A) = {(zn)nen € €7 | (AnZn)nen € 7}, generates an analytic, exponentially
stable Cp-semigroup (7'(t))¢>0, which acts on the basis (e, )nen by T(t)e, = e?e,. Since 0
belongs to p(A) we have

lellx_y = A7 ] e

for z € ¢9. An easy computation shows that the extrapolation space X_; = (¢9)_; is given by

(gq)*l = {l’ = (:L'n)neN cC ‘ (xn/)\n)neN S Eq} .
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Every linear operator B: C — (£9)_; is bounded and can be identified with an element from
(¢7)_1, that is, with a sequence (b, )neny C C for which holds (b, /An)nen € €9. This is equivalent
to (bn/ Re A\p)nen € €4 since the sequence (A, )nen satisfies the sectoriality condition.

The following theorem shows that in the situation above the system (A, B) is integral input-
to-state stable with respect to L°°. This means in particular that under the assumptions above
L°-iISS is equivalent to L*>-ISS.

Theorem 4.4.3. Let U = C and assume that the state space X possess a q-Riesz basis (€n)nen,
which consists of eigenvectors of A with eigenvalues (Ap)nen such that (—Ap)nen C Sp for some
0 € (0,7/2) and sup{Re \,, | n € N} < 0. Furtherlet B € L(C,X_1). Then the system (A, B)
is L>-iISS.

Proof. Without loss of generality we may assume that X = (¢ and (e, )nen is the standard
basis of ¢9. Let the function f: (0,1) — R be defined by

Z ’b |q Re/\ns.
= |Re A\ |9~ [Re A, |01

Then f is nonnegative and belongs to L(0,1). Indeed, for n € N let f,: (0,1) — R be the
function given by

’bn|q Re)Aps
() = fRep, e

Then each f,, n € N, is continuous and, hence, measurable. Further we have

! bl Rea |bn |
n ds = ein < ’
/0 fuls)ds = 2 A7 S Reana

as each )\, has negative real part. Hence the monotone convergence theorem yields
[RCEE s
0 \Re/\ “1 %

since B € L(C,X_1) by assumption. Now let u € L(0,1) with fol f(s)|u(s)]9ds < oo and
denote by ¢’ the Holder conjugate of ¢, i.e., 1/¢ + 1/¢' = 1. Then we obtain, using Holder’s

inequality,
1 q
= S lbal?| [ M fu(s)] ds
neN 0

< Sl ([ e pu(s)las )

neN

|65 |4 ! Re Ans 1
=¥ e /O|Re)\n|e lu(s)| ds
neN n
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1 1 a/d
> |ReA Z (/ 'R“nleR““st)rqu) (/0 [Re A fefter d3>
= Z |Re)\ ’q/ |Re Ay, |€Re>‘"8’u( )|9ds

|0 |1 Ans
*/ Z < TReAJi 1 el lu(s)| ds

= [ rs)as
0
< 00

This shows that the system (A, B) is L*°-ISS and satisfies the estimate (4.11) (with ¢ = 0,
0(s) = s'/% and u(s) = s7). Hence Proposition implies that it is L>°-iISS. O

Corollary 4.4.4. In the situation of Theorem[{.4.3 the following are equivalent:

(i) ¥(A, B) is L>°-ISS.
(ii) (A, B) is L>-iISS.
(iii) (A, B) is L>*-admissible.
(iv) (A, B) is L>®-zero-class admissible.
(v) Be X_;.

Remark 4.4.5. In Theorem [[.4.3 and Corollary [{.4.7) we assumed that the input space U is
one-dimensional. The result can actually be generalised to any finite-dimensional Banach space
U, see Proposition 4 in [JSZ17].

Recall that the support of a positive Borel measure p on R™ is defined as the set
supp(p) = {x € R" | u(U) > 0 for each neighbourhood U of z} C R".
It is a closed set and its complement R™ \ supp(u) is a p-null set.

Lemma 4.4.6. Let p be a positive reqular Borel measure on C with supp(n) C Sy for some
6 € (0,7/2) and 1 < q < co. Then the Laplace transform L: L>°(0,00) — Li(C*, u),

= [T et
0

is bounded if and only if the function s — 1/s belongs to LI(C*, u).
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Proof. Assume first that the Laplace transform £: L*(0,00) — L(C*, 1) is bounded. Then
taking f(¢) =1 for ¢t > 0 yields (L£f)(s) = 1/s and the claim follows.
Conversely, let f € L>°(0,00) and s € C*. Then we have

’/Ooo f(t)e™* dt‘ < Hf”oo/ooo o~ Re()t gy _ ﬂ{];’(:;-

Since the measure p is supported in Sy for some 6 € (0, 7/2) and there exists a constant M > 0
such that |s| < M Re(s) for all s € Sy, the claim follows. O

Theorem 4.4.7. Suppose X possesses a q-Riesz basis (en)nen consisting of eigenvectors of A
with eigenvalues (Ap)nen such that (—Ap)neny C Sp for some 0 € (0,7/2) and B = (by)nen €
X_1. Then the following are equivalent:

(i) (A, B) is infinite-time L*°-admissible.

(i) supyec+ (AT — A)7'B|| < co.

iii) The function s — 1/s belongs to LY(C*, ), where p is the measure > br|96_y, .
keN k

Proof. Theorem 2.1 in [JPP14] applied to Z = L*°(0, c0) yields that the admissibility is equiv-
alent to the boundedness of the Laplace transform £: L>(0,00) — LI(C*, u). Therefore
and are equivalent by Lemma
We have |b a
A — A)7IB|7 = .
I =5 5
=
Assume that holds. Then, letting A — 0, we have (bg/A;)reny € ¢4 and hence holds.
Conversely, if holds we have (by/Ar)ken € ¢4 and hence, by sectoriality, (bx/ Re Ag)ren € £9.
Since for all £ € N and A € C* holds |Re \g| < | — Ag| we conclude that

q q
Z et 3 b
pan A Ael? T IRe A
and therefore supycc+||(AM — A)71B| < oo. O

4.5 Examples

In this section we discuss stability notions on examples of systems, which admit a diagonal
representation. For n € Z we denote by @, the following strip in the complex plane:

Qn={zcC|2"! <Rez < 2"}

We need the following characterisation of LP-admissibility from [JPP14].
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Theorem 4.5.1. Let 1 < g < 0o and suppose A: D(A) C £1 — 9 is a diagonal operator with
eigenvalues (Ap)nen such that (—Ap)nen C Sp for some 6 € (0,7/2). Let B € L(C, (¢1)_1) be
given by the sequence (by,)nen. Then for any p € (q,00) the following are equivalent:

(i) (A, B) is LP-admissible.
(ii) The sequence (2797 11(Q,))nez belongs to (#/P=9 (7).
Here p' denotes the Holder conjugate of p, i.e., p' = p/(p—1) and p is the measure > cn|bi|70—», -

Example 4.5.2. We consider again the boundary control system, as studied in Example[2.3.3,
given by the one-dimensional heat equation on the spatial domain (0, 1) with Dirichlet boundary
control at the boundary point 1:

2
SEN=55E0. €, >0,
xz(0,t) =0, x(1,t)=wu(t), t>0,
(&, 0) = zo(§).
We saw in Fxample that this system can be written as X(A, B). The state space here is
X =L?(0,1) and
Af — f//
for f € D(A), where
D(A) = {f € H*(0,1) | f(0) = f(1) = 0}.
The input space is U = C. The eigenvalues of A are given by

A\, = —m°n?

forn € N\ {0} and the eigenfunctions ey: [0,1] — C are
en(t) = V2sin(nnt)
forn € N\ {0}. The sequence (en)neny C L?(0,1) forms an orthonormal basis of L*(0,1). With
respect to this basis, the operator B = 0] can be identified with the sequence (by)nen C C for
by = (8], en) = —(01,¢)) = =€/ (1) = (=1)"V2nm.

Hence we have b -

> |bn 2 1 1

DL wein DDA R

and therefore B € ((*)_1. Hence, Theorem yields that the system X(A, B) is L*°-iISS.
Further we have the following L*°-1SS estimate

a2 1
()l 2201y < €77 “l@ollL2(0,1) + %”UHLw(o,t)
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for all o € L*(0,1), t > 0 and u € L>(0,t). Using Theorem we obtain that X(A, B) is
even LP-admissible for any p > 2. Indeed, for any n € N we have u(Q—p) = 0 and pu(Qn) =
O(n?). Hence for anyn € N and p > 2 there holds

(2*271(10*1)/17#(@”))

which shows that the sequence (2-2"®=D/P1(Q,))nez belongs to (#/°=2)(Z). Therefore the
following L°°-iISS estimate holds true:

p/(p—2) _ 9—2n(p—1)/(p—2) O(n3p/(p72)),

2 t 1/p
Jo®ll20s) < ¢ laollzzon) + < ([ fut)?as )

for all zo € L*(0,1), t > 0 and u € L>(0,t), where the constant c = c(p) > 0 only depends on
p.

In the previous example the system ¥ (A, B) is not only admissible with respect to L> but
even LP-admissible for all p > 2. The following example provides a system (A, B), which is
L*>-admissible but not LP-admissible for any p < co.

Example 4.5.3. Let X = (2. We consider again a parabolic diagonal system (A, B) as
in Section [{.4l Let us choose A, = —2", n € N, and b, = 2"/n for n € N\ {0}, by = 0.
Then we have by /Ny = —1/n for all n > 1 and hence (bp/Mn)nen € 2. This means that
(bn)nen € (£2)_1, i.e., B = (by)nen is an L>®-admissible control operator. For anyn € N\ {0}
we have
5 22n
1(Qn) =D |byl?6-x, = —
n
keN

and hence an
—on(p— 2°n/p
22D/ (Q) =

n
Thus for any p > 2 holds

_ 2n/(p—2)
—2n(p—1)/p p/(p—2) . 2
(2 Q) = WD

which shows

—2n(p—-1)/p p/(p—2)
(2 'U(Q"))nez ¢4 '

Therefore, by Theorem the system (A, B) is not LP-admissible for any p € (2,00).
Thus, by Remark: it is mot LP-admissible for any p € [1,00). Since B € X_1, Theorem
shows that (A, B) is integral ISS with respect to L*°. Hence, Proposition shows
that it is zero-class admissible with respect to L*°. By Proposition the mild solutions are
continuous for all xg € P and u € L>°(0,00). By Theorem there exists a Young function
O such that (A, B) is Eg-admissible. By Remark the Young function ® cannot satisfy
the Ag-condition.
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4.6 Concluding remarks

In this chapter we studied the notions of input-to-state stability and integral input-to-state
stability for infinite-dimensional linear systems as well as the connections between them. We
saw that the well-known results concerning the equivalence of ISS and iISS with respect to
LP, with p < 0o, admit a generalisation to inputs from any Orlicz space, where the generating
Young function satisfies the As-condition.

Further we have seen that integral input-to-state stability with respect to L is equivalent
to input-to-state stability with respect to some Orlicz space. Since Orlicz spaces on bounded
intervals contain L™ as a subspace, we conclude that L°°-iISS is stronger than L°°-ISS, at least
formally. It remains an open question whether or not those conditions are actually equivalent.
In the situation of parabolic diagonal systems, those notions are indeed equivalent if the input
space is finite-dimensional. More recently B. Jacob, F. Schwenninger and H. Zwart showed,
using holomorphic functional calculus, that the equivalence also holds for broader class of
linear systems, namely for analytic semigroups on Hilbert spaces, which are equivalent to a
contraction semigroup, see [JSZ17].

Other possible questions, which can be addressed in future research, are nonlinear systems,
nonanalytic diagonal systems as well as Lyapunov theory for ISS of linear systems.
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Chapter 5

Stabilizability of linear systems

In this chapter we continue studying linear systems (A, B) given by
#(t) = Az(t) + Bu(t), t>0, =z(0)= o, (5.1)

with the restriction that X and U are now Hilbert spaces. The operator A generates a Cy-
semigroup (7'(t))s>0 on X and B is a linear and bounded map from U to the extrapolation
space X_1. Recall that for u € L{ (0, 00;U) the mild solution of (5.1)) is defined by

() = T(t)zo + /O Ty (= 5)Bu(s) ds (5.2)

for ¢ > 0, where the semigroup (7_1(t))s>0 is the extension of (T'(t))i>0 to X_1, see Section
For A € R let Cj\L be the open right half-plane

Ci={2€C|Rez> A}
and C, the open left half-plane

Cy ={z€C|Rez <A}

5.1 Stabilizability of finite-dimensional linear systems

In this section we recall some well-known results concerning controllability and stabilizability
of finite-dimensional linear systems. Thus, we consider linear systems

z(t) = Axz(t) + Bu(t), t>0, xz(0)= o, (5.3)

on a finite-dimensional state space X. The input space U is also assumed to be finite-
dimensional. By choosing a basis we can assume without loss of generality that X = K" and
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U = K™, both equipped with the usual Euclidean norm. In this situation A and B are matrices,
A € K" B € K™™ the initial value zg is a vector, o € K", and u € L _(0,00; K™). The
semigroup generated by A has an explicit representation by its matrix exponential, (etA)tZO,
where

tA _ _ o (A
e = exp(tA) = kz_;) I

for ¢ > 0. Thus the mild solution reads in this situation as
t
z(t) = ey + / =4 Buy(s) ds (5.4)
0

for ¢t > 0.
Definition 5.1.1. We call the system (A, B)

(a) controllable if for every xg, 1 € K" there exists a t; > 0 and a function u € L'(0,t1; K™)
such that the mild solution of (5.3)), given by (5.4), satisfies x(t1) = x1,

(b) controllable in time ¢1 (for a fized t; > 0) if for every xo,x1 € K" there exists a function
u € LY(0,t1; K™) such that the mild solution of (5.3)), given by (5.4), satisfies x(t1) = x1,

(¢) reachable if for every x1 € K" there exists a t; > 0 and a function u € L(0,t1;K™) such
that the mild solution of (5.3)) with zo =0, given by (5.4), satisfies x(t1) = x1.

Definition 5.1.2. Let A € K"*" and B € K"*™. We define the controllability matrix R(A, B)

by
R(A,B) =B, AB,..., A" D).

It is clear that controllability in time 1, for some ¢1 > 0, implies controllability and the latter
implies reachability. For finite-dimensional systems we have the following characterisation of
controllability.

Theorem 5.1.3. The following statements are equivalent:
(i) The system (A, B) is controllable.
(ii) For every t1 > 0 the system X(A, B) is controllable in time t;.
(iii) The system X(A, B) is reachable.
(iv) tk R(A, B) = n.

In particular, if the system (A, B) is controllable, then it is controllable in arbitrarily
small time. The proof can be found in [JZ12], see Theorem 3.1.6 there. This result is no longer
true for infinite-dimensional systems.

For a semigroup (etA)tZQ on a finite-dimensional space the notions of strong and exponential
stability are equivalent. Hence in this situation we call a semigroup simply stable.
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Definition 5.1.4. A system X(A, B) is called stabilizable if for every xo € K" there exists a
function u € LL _(0,00; K™) such that lim;_,oo 2(t) = 0, where x is the unique mild solution of

, given by .

It can be shown that if the system (A, B) is stabilizable, then the stabilizing control
function u can be obtained via a feedback law wu(t) = Fxz(t) with some F' € K"™*" see e.g.
[JZ12l Sec. 4.3]. The equation (j5.3)) then becomes

#(t) = (A+ BF)z(t), t>0, 2(0)= 0.

Thus the question of stabilizability of a system is related to the so-called pole placement problem

for A € K", B € K"™™ which is the following: Given Aq,..., A, € K does there exist a
matrix F' € K™*" such that Aq,..., A, are the eigenvalues of the matrix A + BF?

Theorem 5.1.5. Let A € C"*" and B € C"*™. Then the system (A, B) is controllable if
and only if the pole placement problem is solvable.

The proof can be found in [JZ12], see Corollary 4.2.6 there. This means in particular that
if the system (A, B) is controllable, then there exists a matrix F' € K™*" such that A+ BF
is a Hurwitz matriz, i.e., (A + BF) C Cy. The latter condition is obviously weaker than the
solvability of the pole placement problem. If we only want to stabilize the system, then this
condition is also sufficient.

Theorem 5.1.6. Let A € C"*" and B € C"*™. Then the system 3(A, B) is stabilizable if
and only if there exists a matriz F' € K™*™ such that A+ BF is a Hurwitz matriz.

This means in particular that every stabilizable system can be stabilized by an input of the
form u(t) = Fx(t).

Definition 5.1.7. Let A1, Ay € K™" and By,By € K"™™. The systems %(A1,B1) and
Y(Ag, B2) are called similar if there exists an invertible matriz T € K™™ such that Ay =
TilAlT and By = TﬁlBl.

We conclude this section on finite-dimensional systems by presenting a condition, which
characterises stabilizability. The proof can be found in [JZ12], see Theorem 4.3.3 there.

Theorem 5.1.8. Let A € C"*" and B € C"*™. Then the following statements are equivalent:
(i) The system 3(A, B) is stabilizable.

(ii) There exist two A-invariant subspaces X and X,, of C™ such that the following properties
hold:

(a) C" = X; @ X,,.
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(b) The system (A, B) is similar to

(5 4)-(2)

(¢) The matriz As is a Hurwitz matriz.
(d) The system (A, By) is controllable.

5.2 Spectral projections

We return to the infinite-dimensional setting. In this section X is a Hilbert space and (T'(t))¢>0
is a Cp-semigroup on X with the generator A.

Definition 5.2.1. A subspace V' of X is called T (t)-invariant if T'(t)V C V holds for all t > 0.

The T'(t)-invariance of a subspace V' C X is equivalent to the fact that the solution of the
homogeneous initial value problem #(t) = Az(t), (0) = =g, stays in V' if the initial value
belongs to V.

Definition 5.2.2. A subspace V' of X is called A-invariant if A(V N D(A)) C V.

It is not difficult to see that the T'(¢)-invariance of a subspace V' implies the A-invariance
of the same subspace.

Definition 5.2.3. Let A be a closed densely defined operator on X. Assume there exists an
isolated subset ot of o(A), the spectrum of A. More precisely there exists a rectifiable, closed,
simple curve T, which encloses an open set containing o in its interior and 0~ = o(A) \ o™
in its exterior. The operator Pr: X — X, defined by

Prz = /F(AI — A7tz (5.5)

where I' is traversed once in the positive direction, is called the spectral projection on o™ .

Definition 5.2.4. Let \g € o(A) an isolated eigenvalue. We say that \g has order vy if
limy_, (A — Ag) (A — A)*lzc exists for every x € X and there exists an xg € X such that
limy sz, (A — Xo)? (AT — A)~Lag does not exist. We say that the order of \o is infinity if for
all v € N there exists an x, € X such that the limit limy_,\,(A — X\o)" (A — A) "z, does not
exist.

We summarise the main properties of the operator Pr in the following theorem. The proofs
of the next two theorems can be found in [JZ12, Chapter §].



5.2. Spectral projections Y

Figure 5.1: Spectral decomposition

Theorem 5.2.5. The spectral projection Pr induces a decomposition of the state space
X=XToX, (5.6)
where X+ = ran Pr and X~ = ker Pr = ran(I — Pr). Moreover, the following properties hold:

(a) For all x € D(A) we have PrAz = APrz and for all A € p(A) holds (M — A)~'Pp =
Pr(M — A) L

(b) The spaces X and X~ are A-invariant and (A — A)~-invariant for all A € p(A).
(c) PrX C D(A) and AT = A|x+ € L(XT).

(d) o(A*) = oF, where A~ = A|x-. Furthermore, for \ € p(A) we have that (\[ — AT)~! =
()\I - A)il‘X:{:.

(e) If ot is finite, o7 = {A\1,...,\n}, and each N\, € ot has a finite order vy, then Pr
projects onto the space of generalised eigenvectors of the enclosed eigenvalues. Thus we
have that

ran Pp = Z ker(Apl — A)"* = Z ker(Apl — A1),
k=1 k=1

(f) If o = {\} and X is an eigenvalue of multiplicity 1, then
P[‘l' = <(L’, y>zv

where y is the eigenvector of A corresponding to A and z is an eigenvector of A* corre-
sponding to X\ with (y,z) = 1.
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Theorem 5.2.6. Assume that A is the infinitesimal generator of the Cy-semigroup (T'(t))+>0
and its spectrum is the union of two parts, o= and o~ as in Theorem m Then X+ and X~
are T(t)-invariant and (T+(t))i>0, (T~ ()10, with TE(t) == T(t)|x+, define Co-semigroups on
X+t and X, respectively. The infinitesimal generator of (T (t))i>o is AT and the infinitesimal
generator of (T (t))¢>0 is A™.

5.3 Exponential stabilizability

In this section we recall some well-known results about exponential stabilizability of infinite-
dimensional linear systems. They are a starting point for our study of strong and polynomial
stabilizability. We thus consider again linear systems (A, B) given by on a Hilbert
space X. Here A is the generator of a Cp-semigroup (7'(t));>0 on X and B is bounded, i.e.,
Be L(UX).

Definition 5.3.1. The system X(A, B) given by (5.1) with a bounded control operator B, i.e.,
B € L(U,X), is called exponentially stabilizable if there exists an F € L(X,U) such that
A+ BF generates an exponentially stable Co-semigroup (Tpp(t))e>0-

From Theorem [5.1.6] follows that for finite-dimensional systems this definition is equivalent
to Definition If the input space U is finite-dimensional, i.e., U = C™, then there is
a complete characterisation ofiall systems (A, B), which are exponentially stabilizable. We

denote by ot the set o(A) N C{ and by o~ the set o(4) N Cy.

Definition 5.3.2. We say that the operator A satisfies the spectrum decomposition assumption
at zero if there exists a rectifiable, closed, simple curve I, which encloses an open set containing
o™ in its interior and o~ in its exterior.

If the spectrum decomposition assumption at zero holds, then, by Theorem [5.2.5 the
spectral projection Pr: X — X, given by , induces a decomposition of the state space X,
given by (5.6). We have BT :== PrB € L(U,X ") and B~ == (I — Pr)B € L(U, X ™). Thus, by
Theorems and we obtain a decomposition of the system (A, B) in two subsystems:
Y(AT,BT)on XT and 3(A~, B~) on X . The following characterisation of stabilizability was
obtained by W. Desch and W. Schappacher [DS85], C. A. Jacobson and C. N. Nett [JN8§],
and S. A. Nefedov and F. A. Sholokhovich [NS86].

Theorem 5.3.3. For any linear system (A, B) given by (5.1) with a finite-dimensional input
space U = C™ and a bounded control operator, i.e., B € L(C™, X), the following assertions
are equivalent:

(i) (A, B) is exponentially stabilizable.
(i) The operator A satisfies the spectrum decomposition assumption at zero, X is finite-

dimensional, the semigroup (T~ (t))e>0 s exponentially stable and the finite-dimensional
system X (AY, B1) is controllable.
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Remark 5.3.4. Theorem [5.5.3 characterises exponentially stabilizable systems with a finite-
dimensional input space and a bounded control operator. Later, a similar characterisation of
optimizability of linear systems with admissible control operators was found by B. Jacob and
H. Zwart, see [IZ99]. There it is shown that under some additional technical conditions a
system is optimizable if and only if it admits a decomposition into two subsystems: an expo-
nentially stable system and an unstable system, which is exactly controllable in finite time.

5.4 Regular linear systems

In this section we settle the framework for stabilizability questions. We first recall the definitions
and some basic properties of Hardy spaces. More information as well as proofs of the statements
we mention here can be found in [RR97] and [Dur70]. Then we introduce the so-called regular
linear systems — a class of infinite-dimensional linear systems — mainly following the presentation
in [Wei9%4a] and [Wei94b|, see also [Wei89b] and [Wei89¢].

Definition 5.4.1. For Banach spaces X, W and A € R we define the following Hardy spaces:
H*(X) = {f: Cg — X | f is holomorphic and sup/ | f(x + iy)||* dy < oo}
>0 JR

and

HY (W) = {G: C{ — W | G is holomorphic and sup ||G(s)|| < oo} )

sECj

The space H{°(W) is a Banach space with the norm

|Gl zze = Glloc = sup |G(s)[lw

sGCj

for G € H°(W). The space H?(X) is a Banach space with the norm

1/2
192 =171 = (sup o [ 1o+ )P )

for f € H?(X). If X is a separable Hilbert space, then H?(X) is a Hilbert space with the inner

product

1
_27TR

(fr9)m2: (f(iz), glix)) dx

for f,g € H*(X). Here for f € H?(X) the function f is the unique element in L?(iR; X) such
that

lim f(o +iy) = f(iy)
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for almost all y € R and )
i{%”f(x + ) = flle2grix) = 0,

see Theorem 6.5.1 in [Kaw72]. For a function f € L%(0,00; X) its Laplace transform is defined
as

L) = 1) = [ TSty dt

for s € Ca“ . If X is a Hilbert space, then, by the Paley-Wiener theorem, the Laplace transform
is an isometric isomorphism from L?(0,00; X) to H%(X), see Theorem 1.8.3 in [ABHNTI].
Let

HZ(W) = (U H§°<w>) [~
AER

where the equivalence relation ~ is defined as follows: two functions in (Jycgr HS°(W) are

equivalent if one of them is a restriction of the other. The set H3 (W) has a natural vector

space structure. For any A € R we have the embedding H*(W) — H (W), with u — [u],

that is, a function u is mapped to its equivalence class in H(W). Hence the space H°(W),

identifying it with its image under the embedding, is a subspace of HSS(W). Furthermore, we

have for any A, u € R, with A < pu, the following inclusions
HE (W) C HP (W) C HZ(W).
Definition 5.4.2. For any G € HZ (W) its growth bound, denoted by v(G), is defined as
v(G) =inf{\ e R| G € H(W)}.

Definition 5.4.3. Let U,Y be Hilbert spaces. A linear map F: L2 (0,00;U) — L _(0,00;Y)

is called shift-invariant if it commutes with every right-shift, i.e., S{F = FSi for all t > 0.
For A € R the space L%(0,00; W, e~ 2 dt) is denoted by L3(W).

Definition 5.4.4. Let F: L} _(0,00;U) — L2 (0,00;Y) be a shift-invariant linear operator.

loc

Then its growth bound, denoted by v(F), is defined as
Y(F) =inf{A e R | F € L(L3)}.

The next theorem states that all shift-invariant operators with growth bound ~(F) < oo
have a representation in terms of Laplace transforms.

Theorem 5.4.5 (Thm. 3.1 in [Wei94b]). Let U,Y be Hilbert spaces. Suppose F: L% (0,00;U) —
L% (0,00;Y) is a shift-invariant linear operator with growth bound ~(F) < oo. Then there is

a unique H € HE(L(U,Y)), which satisfies the following:

V(H) =~(F) (5.7)
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and, for any A > v(F) and any u € L3(U),

(Fu)(s) = H(s)i(s) (5.8)
for all s € (C;\r. Moreover, we have

[H || 5o = IFll £ (z2)- (5.9)

Conversely, suppose H € HX(L(U,Y)). Then there is a unique shift-invariant linear operator

Fi L (0,00;U) — L& (0,00;Y), which satisfies the following: (5.7) holds and, for any X\ >

Y(H) and any u € L3(U), (5.8) and (5.9) hold.

Definition 5.4.6. Let U, Y be Hilbert spaces. A well-posed transfer function from U to Y is

an element of H(L(U,Y)).

Definition 5.4.7. Let U,Y be Hilbert spaces. Suppose H is a well-posed transfer function from

UtoY andlet K € L(Y,U). Then K is an admissible feedback operator for H if the equation
HX —H=HKHX (5.10)

has a unique solution HX € HX(L(U,Y)). HX is called the closed-loop transfer function
corresponding to H and K.

We will use the following characterisation of the admissibility of K, see [Wei94a].

Proposition 5.4.8. Let U, Y and H be as in Definition[5.4.7 and K € L(Y,U). Then the
following are equivalent:

(i) I — KH is invertible in HX(L(U)).
(ii) I — HK is invertible in H(L(Y)).
(iii) K is an admissible feedback operator for H.

Definition 5.4.9. Let U,Y be Hilbert spaces, v € U and F: L% (0,00;U) — L2 (0,00;Y) a
shift-invariant linear operator. The function

Yv = "F(X[O,OO)/U)
is called the step response of F corresponding to v.

Definition 5.4.10. Let U,Y be Hilbert spaces and assume F: L% _(0,00;U) — L2 .(0,00;Y) is
a shift-invariant linear operator. Then F is called regular if for any v € U, the corresponding
step response y, has a Lebesgue point at 0, i.e., the following limit
.1t
Dv = tlirgog ; Yy(s)ds (5.11)

exists in Y. In that case, the operator D € L(U,Y), defined by (5.11)), is called feedthrough
operator of F.



62 Chapter 5. Stabilizability of linear systems

Definition 5.4.11. Let U, Y be Hilbert spaces and assume H is a well-posed transfer function
from U to Y. Then H is called regular if the corresponding shift-invariant operator F is
reqular. By the feedthrough operator of H we mean the feedthrough operator of F.

Remark 5.4.12. By Theorem 5.8 in [Wei94b], H is regular if and only if, for any v € U,
H(MNv has a limit as X\ — oo with A € R. In this case we have

lim H(\)v = Du,
A—00
AER

where D 1is the feedthrough operator of H.

Recall that a linear map B € £(U, X_;) is an L?-admissible control operator for (T'(t))i>0
if for some (and hence any) ¢t > 0 we have ®, € £L(L*(0,00;U), X), where

du = /Ot T_1(t — s)Bu(s) ds

for u € L?(0,00;U). Next we introduce the concept of an admissible observation operator,
which is the dual concept of an admissible control operator.

Definition 5.4.13. An operator C € L(X1,Y) is called an admissible observation operator
for (T(t))i>0 if for some (and hence any) t > 0 the operator ¥, € L(X1, L?(0,00;Y)), defined
by

CT(s)x for s e |0,t],

0 for s > t,

(Vrz)(s) = {
has a continuous extension to X.

Remark 5.4.14. Let X,U be Hilbert spaces. The concepts of an admissible observation op-
erator is dual to the concept of an admissible control operator in the following sense: Let
B e L(U,X_1). Then B is an admissible control operator for (T'(t))i>o if and only if B* is an
admissible observation operator for (T*(t))t>0, see Theorem 4.4.3 in [TW09].

Definition 5.4.15. Let u,v € L _(0,00;U) and t > 0. The t-concatenation of u and v is the
function uwv € L%OC(O, ooy U) defined by ulv = Pou+ Spv, that is,

u(s) for s < t,
v(s—t) fors>t.

(udrv)(s) = {

We are now ready to introduce the concept of a well-posed linear system.

Definition 5.4.16. Let U, X and Y be Hilbert spaces. An L?-well-posed linear system ¥ on
(Y, X,U) is a quadruple ¥ = (T, ®, ¥, F) satisfying the following conditions:
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(a) T = (T(t))e=0 is a Co-semigroup of bounded linear operators on X .
(b) ® = (®;)¢>0 is a family of bounded linear operators from L?(0,00;U) to X such that
Doy (uQsv) = T(t)Psu + Do
for any u,v € L*(0,00;U) and any s,t > 0.

(c) O = (Wy)i>0 s a family of bounded linear operators from X to L?*(0,00;Y) such that
Uy =0 and
\IIS_H.I = \IJSJIOS\I/tT(S)JZ

for any x € X and any s,t > 0.

(d) F = (Fi)e=o0 is a family of bounded linear operators from L?(0,00;U) to L*(0,00;Y) such
that Fo = 0 and
Fort(usv) = Fsuds (U Psu + Fyv)

for any u,v € L?(0,00;U) and any s,t > 0.

The space U is called the input space of X, X is the state space of ¥ and Y is the output
space of .. The operators ®;, t > 0, are called input maps. The operators Wy, t > 0, are called
output maps. The operators Fi, t > 0, are called input/output maps.

Let ¥ be a well-posed linear system, then, by Salamon’s representation theorem, see Theo-
rem 3.1 in [Sal89], there exists a unique B € L(U, X_1), called the control operator of ¥, such
that

¢
dyu = / T(t — s)Bu(s) ds
0
for any ¢ > 0. Recall that the system (A, B) is infinite-time admissible with respect to L? if
sup|| el £r2(0,0),x) < 00
t>0
In this case for each u € L?(0, 00; U) the improper integral
oo
D ou ::/ T_1(s)Bu(s)ds
0

exists in X and defines a bounded linear map ®..: L%(0,00;U) — X, the so-called ex-
tended input map of 3, see Remark [2.2.4 It can be shown that the families of operators
(V4)i>0 and (F;)¢>0 have strong limits as ¢ — oo as operators ¥oo: X — L (0,00;Y) and
Foo! LIQOC(O7 ooy U) — LIQOC(O, 00;Y). We have ¥y = P,¥, and F; = P,F for t > 0. The op-

erator Wy, is called the extended output map of ¥ and F is called the extended input/output
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map of 3. By Theorem 3.1 in [Sal89] there is a unique C' € £(X},Y), called the observation
operator of 3, such that for any = € Xj,

(Vo) (t) = CT(t)x

for all t > 0. We call C' bounded if it can be extended continuously to X and wunbounded
otherwise.

Definition 5.4.17. The Lebesgue extension of C' is defined by
. Lt
Cror = %gr(l) C’Z ; T(s)xds, (5.12)
with the domain

D(Cp) ={x € X | the limit in (5.12]) exists}.

We have the inclusions X; € D(Cp) C X. For any = € X we have that for almost every
t > 0 holds T'(t)x € D(Cr,) and
(VUoo)(t) = CLT(t)x.

If we define on D(CL) the norm

1t
C- / T(s)xds
t.Jo

lzllpcy) = [lllx + sup
te(0,1]

9

Y

then D(CL) becomes a Banach space. Moreover, the inclusions X; C D(Cp) C X are continu-
ous and Cf, € L(D(CL),Y), see [Wei9b).

Definition 5.4.18. A well-posed linear system X is called regular if its extended input/output
map Fso s regular.

It was shown in [Wei89c| that for regular linear system on Hilbert spaces the following
representation result holds.

Theorem 5.4.19. Let ¥ = (T, ®, U, F) be a reqular linear system with state space X, input

space U and output space Y. Let A be the infinitesimal generator of T = (T'(t))t>0, B the

control operator of ¥, C the observation operator of ¥, Cp the Lebesgue extension of C' and

D the feedtrough operator of F. Then for any zo € X and u € L% (0,00;U), the functions
r:[0,00) = X and y € L% _(0,00;Y), defined by

x(t) =T (t)xo + Pyu, (5.13)

Y = Voo + Fooll, (5.14)
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satisfy
#(t) = Az(t) + Bu(t) (5.15)
and
y(t) = Cra(t) + Du(t) (5.16)

for almost all t > 0. In particular, x(t) € D(CL) for almost all t > 0. The function x given by
(5.13)) s the unique mild solution of (5.15)), which satisfies the initial condition x(0) = xg.

By Proposition 4.1 in [Wei94b] the extended input/output map F is shift-invariant and
its growth bound 7(Fo) satisfies the estimate

7(]‘—00) S wo,

where wy is the growth bound of the semigroup (7'(t));>0. In particular, v(Fu) < co. Hence,
by Theorem [5.4.5] F has a well-posed transfer function H, called the transfer function of ¥
and v(H) = 7(Fx)- The relationship between H and the operators A, B,C is given by the
formula

His) — H(1)
s—1
where s,t € CJ with s # t. By Theorem 4.7 in [Wei94b] the transfer function H of a regular
system X is given by

= —C(sI — A)~'(tI — A)7'B, (5.17)

H(s)=Cp(sI —A)™'B+D

for s € C}, . In particular, (sI — A)~'Bv € D(Cy,) holds for all v € U and s € CJ, .
The existence and uniqueness of the closed-loop system is shown in [Wei94b).

Theorem 5.4.20. Let ¥ = (T, 9, ¥, F) be a well-posed linear system, let H be its transfer
function and let K be an admissible feedback operator for H. Then there is a unique well-posed
linear system LK = (TK, &K WK FK) called the closed-loop system, such that

T(t) — TH(t) = &, KUK,
o, — o = O, KF,
U, - Uf = KUK

and
Fi—Ff = RKFE

for allt > 0. The transfer function of X% is HX | the closed-loop transfer function correspond-
ing to H and K.
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5.5 Strong stabilizability

Definition 5.5.1. Let ¥ = (T, ®, ¥, F) be a well-posed linear system, ®o, its extended input
map, Voo its extended output map and Foo its extended input/output map. The system X is
called

(a) input stable if @, € L(L?(0,00;U), X),
(b) output stable if ¥, € L(X, L%(0,00;Y)),
(c) input-output stable if Fao € L(L?(0,00;U), L?(0,00;Y)).

The following definition of strongly stable systems is due to R. Curtain and J. C. Oostveen,
c.f. JOC9g].

Definition 5.5.2. Let ¥ = (T, ®, ¥, F) be a well-posed linear system. We call ¥ a strongly
stable system if it is input stable, output stable, input-output stable and the semigroup T =
(T'(t))e>0 is strongly stable.

Remark 5.5.3. The input stability of the system X is equivalent to B being an infinite-time
admissible control operator for (T(t))¢0, c.f. Remark[2.2.4 It is also equivalent to the condi-
tion B*(-I — A*)"lx € H2(U) for all z € X. In this case the closed graph theorem implies that
B*(-I1—-A*)"Y € L(X,H?*(U)). The output stability is equivalent to C being an infinite-time ad-
missible observation operator for (T(t))i>o and to the condition Cp(-I—A)™tz € H*(Y). Again,
from the closed graph theorem follows that, in this case, we obtain Cr(-1 —A)~' € L(X, H*(Y))
for allz € X. The input/output stability of X is equivalent to the fact that its transfer function
satisfies H € H3°(L(U, X)).

Remark 5.5.4. If the semigroup (T(t))i>0 is exponentially stable and B is an admissible
control operator for (T'(t))i>0, then, by Proposition the system X is input stable. It can
be shown in a similar way that in this case it is also output stable and input-output stable if C
s an admissible observation operator.

Remark 5.5.5. We sometimes write ¥ = (A, B,C, D) instead of ¥ = (T,®,¥,F), where
A, B,C and D are the generating operators, which uniquely determine the system 3.

We say that (A, B) is a strongly stable system if this holds for the system ¥ = (A, B,0,0),
i.e., the operator A generates a strongly stable Cy-semigroup (T'(t))i>0 and B is an infinite-time
admissible control operator for (T'(t))i>0-

Definition 5.5.6. Let A be the generator of a Cy-semigroup (T'(t))i>0 on the Hilbert space
X, U another Hilbert space and B € L(U,X_1). The system 3(A, B) given by is called
strongly stabilizable if there exists an operator F' € L(D(A),U) such that ¥ = (A, B, F,0) is a
reqular system, I is an admissible feedback operator for ¥ and the closed-loop system %! is a
strongly stable, regular system.
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Remark 5.5.7. The Definition [5.5.6] is a natural generalisation of exponential stabilizability
as it is defined in [WRO(], see Definition 2.1 there.

Remark 5.5.8. From Theorem 7.2 in [Wei94d] we obtain that if the system X is strongly
stabilizable, then Al, the generator of (T (t))i>0, is given by

Alz = (A+ BFp)x
for all z € D(AT), where
D(A"Y ={z € D(FL) | Frz € U and (A + BF)z € X}.
We use the notation Agp, for AT and Tgr, (t) for TL(t).

Let P € £L(X) be a projection that commutes with the Cp-semigroup (7'(¢))s>0, that is, we
have T'(t)P = PT(t) for all ¢ > 0. Then P yields a decomposition of X as X = ker P & ran P
and both ker P and ran P are closed T'(¢)-invariant subspaces of X. By Lemma 4.2 in [JZ99]
the restrictions of (T'(t))i>0 to ker P and ran P respectively define Cp-semigroups. We denote
by (T (t))i>0 the restriction of (T'(t));>0 to X T = ran P and (T (t))>0 the restriction of
(T(t))t>0 to X~ := ker P. The generators of (T~ (t)):>0 and (T (t))¢>0 are denoted by A~ and
AT, respectively.

If B is bounded, then we saw in Section [5.3] that such a projection on X yields a decomposition
of the system X (A, B) in two subsystems (AT, B*) and X(A~,B~), where BT = PB ¢
L(U,X") and B~ = (I — P)B € L(U,X~). If B is unbounded, then the situation is not
as simple since the composition PB is not well-defined. In order to write our system as
a decomposition of two subsystems we need an extension of P as an element of £(X_;) that
behaves well in a certain sense. The following lemma ensures the existence of such an extension.

Lemma 5.5.9 (Lemma 4.4 in [JZ99]). Let (T'(t))t>0 be a Cy-semigroup on X and B €
L(U,X_1) an admissible control operator for (T'(t)):>0. Let P € L(X) be a projection, which
commutes with T (t) for all t > 0. Then the following properties hold:

(a) P has a unique continuous extension P in L(X_1) withrtanP = (XT)_; =1 X T, and
ker P = (X7)_1 =: X~{. The map P is a projection, which commutes with T_1(t), t > 0,
and A_q.

(b) Bt = PB € L(U,X",) is an admissible control operator for (TF(t))i>0 on X T with the
property

/lt TH(t —s)Btu(s)ds = P/t T_1(t — s)Bu(s) ds
0 0

fort >0 and u € L*(0,t;U).
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(¢) B~ = (I — P)B € L(U,X",) is an admissible control operator for (T~ (t))i>0 on X~
with the property

/t T7,(t — $)B u(s)ds = (I — P) /t T 1(t — s)Bu(s) ds
0 0

fort >0 and u € L?(0,t;U).

Next we present sufficient conditions for strong stabilizability of linear systems with an
unbounded control operator.

Proposition 5.5.10. Consider the system (A, B) given by (5.1). Assume that there exists a
projection P € L(X) such that the system X(A~,B~) on X~ is strongly stable and the system
Y (AT, BT) on X is strongly stabilizable. Then the system X(A, B) is strongly stabilizable.

Proof. The system X(AT, BT) is strongly stabilizable and hence, by definition, there exists an
operator F* € L(D(A"),U) such that ¥y := (AT, BT, FT,0) is a regular linear system, I is an
admissible feedback operator for > and the closed-loop system Efr is a strongly stable, regular
system. Choosing F := (FT0), we have F € L(D(A),U) and it is straight forward to check
that ¥ = (4, B, F,0) is a well-posed linear system. We denote by H the transfer function of ¥
and by H; the transfer function of ¥y. As I — H_ is invertible in H(L(U)) by Proposition
and we have I — H; = I — H by the choice of F, it follows that I — H is invertible in
HE(L(U)). Therefore, by Proposition I is an admissible feedback operator for . Hence,
by Theorem there exists a unique well-posed linear system %/ = (71, & ¥l FI) such
that for all z € X holds
T (t)z = (T(t) — ®U])a.

Using Remark the last identity can be written equivalently as
t
T (t)z = Tyr, () = T(t)a / T_\(t — )BF, Tp, (s)z ds. (5.18)
0

Every x € X has a unique representation as z = 2~ + 27, where 2+ = Pr € X' and
2~ = (I — P)x € X~. Therefore, with respect to the decomposition of the state space given by
the projection P, the abstract differential equation #(t) = (A + BFL)z(t), (0) = xo, is given

by
o[ dt) )  (AT+BTFS 0 7t (t) R s
“’”(t)—<5g—(t) “\ B F oA\ ) 2(0) =20 = ay |
Thus we obtain two differential equations, i.e.,
@t (t) = (AT + BTF )2 (), 27(0) =1g,

on XT and
i~ (t)=A"2 (t)+ B Ffat(t), 2 (0) =z,
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on X . Integrating both equations we obtain that the semigroup (Tgr, (t))i>0 is given by

T, (t)x = B+F+ t)x +/ T-,(t—s)B FL+T;F+( szt ds+ T (t)x~ (5.19)
for x € X and ¢t > 0. Since the function u: [0,00) — U, given by

u(t) = Ff Ty, p(s)a™,

BtF}
belongs to L?(0,00;U), as it is the output function of the well-posed system ., we have by
Lemma 12 in [OC98]
. +p+ —
tlggo/ T2\t = 9)B F{ T, o ()™ ds =0
since, by assumption, the semigroup (T~ (t)):>0 is strongly stable. By construction the semi-
group (TB g (t))+>0 is also strongly stable and thus equation (5.19) yields

tlirgo TBFL (t)l' = 0.

The system Y/ is regular since, by construction, its transfer function coincides with the transfer
function of the regular system Zi. Next we show that the system ¥/ is input stable. Applying
the Laplace transform to (5.19)) we obtain

(sI — Agp, ) to =(sI — A;+F+) 'Px+ (s — A7) !B Ff (sl - A;+F+
+ (s — A7) ' (I - P)x

)y 1Pg

forallz € X and s € (Cg and hence

B*(sI — Agp,) 'z =B*[(5] — App,) "z

=B*P*(sI — (A;+F+)*)—1x
+ B*P*(sl — (A B+F+)*) HED) (BT (s = (A7) e
+ B (I = P)*(sI — (A7)

=(B")"(sI (A§+F+) )l
+(B)*(sI (A§+F+) )THE) (BT (s = (A7)")

+ (BT (s — (A7) ta.

By our assumptions we have (B~)*(-] — (A7)*)"lx € H2(U) and (B*)*(-I — (A;ﬂ#)*)*lx €
H2(U) for all # € X. As the system EI is regular its transfer function satisfies

Fr(I- A"

b )BT € HE (L))
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and hence
(BT)*(-I - (A§+FL+)*)_1(FL+)* € H*(L(U)).
Overall we have
Bi(-1 — Agp,) 'z € H*(U),

which shows that ®/ € £(L?(0,00;U), X). The output and input/output stability of %/ are
not difficult to see as the system E{F is input and input/output stable and, hence, by the choice
of F' we have

o o0
| NETar, @l dt = [ CNFTS, O Polde < M|Pal < MPIPa,

which shows W! € £(X, L?(0,00; X)) and

’ LQ_‘

which shows FL € L(L*(0,00;U), L*(0, 00; X)). O

Fr /0. Tpr, (- — s)Bu(s)ds

FE‘/O T;—Jer(' — 5)BTu(s)ds

< Mfuf 2,
L2

Definition 5.5.11. A system X(A, B) is called null controllable in finite time if for each initial
value o € X there is a time tg > 0 and an input u € L?(0,to,U) such that the mild solution

of (b.1), given by (5.2), satisfies z(tg) = 0.

Definition 5.5.12. We call the system X(A, B) optimizable if for every xg € X there exists
an input u € L?(0,00;U) such that the mild solution of (5.1), given by (5.2)), satisfies x €
L?(0, 00; X).

The following result generalises Theorem 4.6 in [ABBMS15]. Its proof uses a similar ap-
proach.

Proposition 5.5.13. Consider the system (A, B) given by . Assume that there exists
a projection P € L(X) such that the system X(A~,B~) on X~ is strongly stable and the
system (AT, B1) on X is null controllable in finite time. Then there exists an operator F €
L(D(A), X) such that A+ BFy, generates a strongly stable semigroup (TBr, (t))t>0. Further,
the system ¥ = (A + BFp, B, F,0) is input stable, output stable and input-output stable.

Proof. Since the system (A", BT) is null controllable there exists a time ¢ty > 0 and an input
u € L*(0,%;U) such that the mild solution of (5.1)), given by (5.2), satisfies z(to) = 0. We
extend u to (0,00) by zero and obtain that the system X (A1, B1) is optimizable. Therefore,
by Theorem 2.2 in [FLT8S]| (see also Propositions 3.2, 3.3 and 3.4 in [WR00]), there exists an
exponentially stable semigroup (7°P(t))¢>0p with infinitesimal generator A°P*': D(AP') — X+
and an operator FP' € L(D(A°P'),U), which is an infinite-time admissible observation operator
for (T°P*(t))i>0 such that for every ¢t > 0 and zo € X there holds

t
T (120 = T (£)ap + / T, (t — 5)BY FPIT (5)z0 ds.
0
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The infinitesimal generator of the semigroup (T°P!(t));>o is given by A%P' = AT + BT FoPt,
Let Fp be the Lebesgue extension of the row operator matrix (F°P*0). As in the proof of
Proposition [5.5.10| we obtain that the semigroup (Tpr, (t))i>0 is given by

t
Tgr, (t)x = TP (t) Px + / T~,(t — 8)B™ FP'TP"(s)Pxds + T (t)(I — P)x
0

for x € X and t > 0. Now all the assertions follow in exactly the same manner as in the proof
of Proposition [5.5.10 ]

5.6 Polynomial stabilizability

Definition 5.6.1. Let o > 0. The Cy-semigroup (T'(t
by A is called polynomially stable with power « if (T'(
exists an M > 1 such that

))t>0 on the Hilbert space X generated

t))e>0 s bounded, iR C p(A) and there
_ M

IT®A™ < 772 (5.20)

for allt > 0. We say that the Cy-semigroup (T'(t))s>0 is polynomially stable if it is polynomially
stable with power a for some o > 0.

Remark 5.6.2. The estimate (5.20) can be rewritten equivalently as
IT(#) A = Ot 1/*)

fort — oco. By Theorem 2.4 in [BT10] a bounded Cy-semigroup (T'(t))t>0 on the Hilbert space
X generated by A with iR C p(A) is polynomially stable with power « if and only if

I(is] — A)~| = O(]s|*) (5.21)
for |s| — oo.
Remark 5.6.3. From the estimate
1T A < [IT@) A7

it is clear that the exponential stability of the semigroup (T'(t))¢>0 on the Hilbert space X implies
the polynomial stability of (T (t))t>0 for any power oo > 0. From (5.20) it follows that

lim T'(t)z =0

t—o00

holds for all x € ran(A~') = D(A). Since D(A) is a dense subspace of X and all operators
T(t), t > 0, are uniformly bounded on X we obtain that every polynomially stable semigroup
on a Hilbert space X is strongly stable.
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Definition 5.6.4. Let ¥ = (T, ®, VU, F) be a well-posed linear system. We call ¥ a polynomially
stable system if it is input stable, output stable, input-output stable and the semigroup T =
(T'(t))e>0 is polynomially stable.

Definition 5.6.5. Let A be the generator of a Cy-semigroup (T'(t))i>0 on the Hilbert space
X, U another Hilbert space and B € L(U,X_1). The system 3(A, B) given by is called
polynomially stabilizable if there exists an operator F € L(D(A),U) such that ¥ = (A, B, F,0)
is a reqular system, I is an admissible feedback operator for ¥ and the closed-loop system %!
18 a polynomially stable, reqular system.

From Remark it follows that a system X(A, B) is strongly stable if it is polynomially
stable and it is strongly stabilizable if it is polynomially stabilizable. Next we have a polynomial
version of Proposition [5.5.10

Proposition 5.6.6. Consider the system (A, B) given by . Assume that there exists a
projection P € L(X) such that the system S(A~,B~) on X~ is polynomially stable and the
system X(AY, BT) on X is polynomially stabilizable. Then the system X(A, B) is polynomially
stabilizable.

Proof. As the system X(A, B) is strongly stabilizable we can use the operator F € L(D(A),U)
constructed in the proof of Proposition [5.5.10] and obtain a strongly stable regular system
S = (T, &1, Wl FI). We are left to show that the semigroup (T (t))i>0 = (Tr(t))i>0, given
by

t
Tor, (te =T}, . (0" + /0 To\(t = 9B FL T, () ds + T (0, (5.22)
where 27 = Pz and 2~ = (I — P)xz, is polynomially stable. Taking the Laplace transform on
both sides of ([5.22) we have
(sI — App, ) te =(sI — A;+FL+)—1P$ +(sI — A7) 'B F} (s - A;F;)—lpx

(5.23)
+ (s — A7) Y1 - P)x

forall z € X and s € Cgf. Since the semigroups (T (t))¢>0 and (T} 14 (t))¢>0 are polynomially
stable we have iR C p(A}, -, ) N p(A7) and hence iR C p(Apr). Further, there exist positive
numbers «, 8 such that

(il — A7) Y| = O(|w|*)

for |w| — oo and
(@] = ALy p) ™l = O(lw]”)

for |w| — oco. From ([5.23)) it follows that for all w € R and = € X we have the estimate
(T — Apg) o] <|(iw] — A%, )" P
+ ||(iwl — A7) 'BTF T (iwl — AT,

B+F+)_1P$H
+ ||(iwI — A7) Y — P)z||.
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For any v > 0 we have
(iwl — A7) 'B™ = ((iw+~)I — A7) 'B™ + ~y(iwl — A7) ((iw +~v) I — A7) !B~

for all w € R. Since B~ is an admissible control operator for the semigroup (7 (t))i>0 we
obtain using Proposition 2.3 in [Wei91] that there is a constant M > 0 such that

M
[(iwl = A7) 'B™|| < — + M| (iwl — A7) 7|
vaRE
for all w € R. In a similar way using the admissibility of the observation operator F* for

the semigroup (T+p+(t))i>0 we obtain by the duality between the admissibility concepts that
there is a constant M’ > 0 such that

. _ M’ . _
I (o] = A7 < T2+ VM (o] = A p) 7

Thus we have ||(iwl — Agr) || = O(Jw|*T#) for |w| — oco. O

Proposition 5.6.7. Consider the system (A, B) given by . Assume that there exists a
projection P € L(X) such that the system S(A~,B~) on X~ is polynomially stable and the
system X(AT, BT) on XT is null controllable in finite time. Then there exists an operator
F e L(D(A), X) such that A+ BF}, generates a polynomially stable semigroup (TBr(t))t>0-
Further, the system ¥ = (A + BFp, B, F,0) is input stable, output stable and input-output
stable.

Proof. By Proposition|5.5.13|we are left to show that the semigroup (Tgr(t))>0 is polynomially
stable. This is done exactly as in the proof of Proposition [5.6.6] O

Remark 5.6.8. The Proposition [5.6.7 without the part concerning the stability of the system
Y. = (A + BFL,B,F,0) is exactly the Theorem 4.6 in [ABBMSI15] and it is generalised by
the Proposition . There the authors call a system (A, B) stabilizable if there exists a
generator Agp of a polynomially stable Co-semigroup (Tpp(t))i>0 on X and an admissible
observation operator F' € L(D(Apr),U) for (Tpr(t))i>o0 such that

(M —App) L= - A+ (M - A'BF(\ — Agp)™?

holds for all X\ € CJ , where wy = max{wy(A),wo(Apr)}. In other words, the semigroup

wo’

(Tpr(t))e=0 satisfies
Tpr(t)e = T(H)z — / T\ (t— $)BF.Typ(s)r ds
0

forallz € X andt > 0. Our definition of polynomial stabilizability is evidently more restrictive,
as we additionally pose conditions on the system ¥ = (A, B, F,0) such as input stability, output
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stability and input-output-stability. On the other hand, as a result we can prove additional
properties for the closed-loop system Y, which involve more than the polynomial stability of
the semigroup (Tpp(t))e>0. Thus neither of the both results, Proposition m and Theorem
4.6 in [ABBMS15], can be viewed as a generalisation or a special case of the other one.

5.7 Stabilizability of systems with bounded control operators

In this section we restrict ourselves to the following systems:

Assumption 5.7.1. Let X(A, B) be a linear system given by (5.1) on a Hilbert space X such
that:

(a) The input space U is finite-dimensional, i.e., we have U = C™ for some m € N.
(b) The control operator B maps to X, i.e., we have B € L(C™, X).
(¢) There exists an r > 0 such that {s € C|0 <Res <r} C p(A).

First we need the following lemma:

Lemma 5.7.2. Consider the system ¥(A, B) with B € L(C™,X) and let F € L(X,C™). Then
for any s € p(A+ BF) we have the following properties:

(a) The following are equivalent:

(i) =1 € o(BF(sI — A— BF)™1).
(ii) =1 € o(F(sI — A— BF)"1B).
(iii) det(I + F(sI — A— BF)~1B) = 0.

If -1 € o(BF(sI—A—BF)™1), then it belongs to the point spectrum. The same assertion
holds for F(sI — A— BF)™1B.

(b) The order and the multiplicity of the eigenvalue —1 of BF(sI — A — BF)~! and F(sI —
A — BF)™!'B are finite and equal.

(c) We have s € p(A) if and only if —1 € p(F(sI — A— BF)™'B). For any s € p(A) we have

(sI — At =(sI-A—-BF)™' —(sI—A-BF)"'B

(I + F(sI — A— BF)"'B)"\F(sI — A — BF)~. (5.24)

(d) Assume that the holomorphic function on p(A + BF), given by
s+ det(I + F(sI — A— BF)™B),

is zero for s = sg, but not identically zero in a neighbourhood of so. Then we have
so € 0(A) and it is an eigenvalue of A with finite order and finite multiplicity.
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The proof can be found in [JZ12], see Lemma 10.4.3 there. Recall that if the operator A
satisfies the spectrum decomposition assumption at 0, then, by Theorem the spectral
projection Pr: X — X, given by , induces a decomposition X = X @ X~ of the state
space. Furthermore, we have Bt :== PrB € L(U, X ") and B~ := (I — Pr)B € L(U, X ), which
leads to a decomposition of the system (A, B) in two subsystems: Y(AT,B") on Xt and
Y(A7,B7)on X™.

Lemma 5.7.3. Assume that the operator A satisfies the spectrum decomposition assumption
at zero and the system X(A, B) is strongly stabilizable. Let F' € L(X,C™) be a stabilizing
feedback. Then the system S(A~, B~, F,0) is output stable.

Proof. From the spectrum decomposition assumption at zero follows the existence of some
po > 0 such that C3 \ D(pg) C p(A). Hence, equation (5.24)) yields

F(sI — A\ =F(sI—A—BF)' -~ F(sI—-A—- BF)"'B
-(I+F(sI—A—BF)'B)"'F(sI - A— BF)™!

for all s € Cg\ID(po). By the input-output stability and regularity of the closed-loop system .
it follows that the maps (I + F(sI — A— BF)™'B)~1, s € C{ \ D(po), are uniformly bounded.
Thus, there exists a constant M’ > 0 such that

|F(sI — A)™ ‘x| < M'|F(sI — A— BF) '] (5.25)

for all z € X and s € C§ \ D(pg). Since o(A~) C CJ we have that for every s € a the map
F(sI—A7)"!is bounded on X . Hence, those maps are uniformly bounded for all s belonging

to the compact set D(pg) N @. Therefore we can find a constant M” > 0 such that for all
s €D(po) NCg and z € X~ the following estimate holds

1F(sI — A) 'l = ||[F(s] — A7) la|l < M"||]). (5.26)

Now the output stability of the closed-loop system X! together with (5.29) and (5.26) imply
the existence of some M > 0 such that ||[F(-] — A) " x| g2(cm) < M||z|| for all z € X~ O

Theorem 5.7.4. For any linear system 3(A, B) given by (5.1) with a finite-dimensional input
space U = C™ and a bounded control operator, i.e., B € L(C™, X), the following assertions
are equivalent:

(i) X(A, B) is strongly stabilizable.

(ii) (A, B) satisfies the spectrum decomposition assumption at zero, X is finite-dimensional,
Y(A~,B7) is a strongly stable system and the finite-dimensional system L(AY, BT) is
controllable.



76 Chapter 5. Stabilizability of linear systems

If X(A, B) is strongly stabilizable, then a stabilizing feedback operator is given by F = F*Pp,
where FV is a stabilizing feedback operator for X(AT, BT).

Proof. By Proposition we are left to show that the implication = holds. From
Lemma it follows that for every s € C{ there holds s € o(A) if and only if det(I +
F(sI — A— BF)"'B) = 0. As the semigroup generated by A+ BF is bounded, we have C§ C
p(A+ BF). Thus, the function det(I + F(-I — A— BF)~!B) is holomorphic on Cg. Therefore,
by the identity theorem for holomorphic functions, it cannot have an accumulation point of
zeros there, unless it is identically zero. As the closed-loop system %! is regular, its transfer
function H! = F(-I — A — BF)™! B satisfies limy_,o, H(\) = 0. Thus, there exists a positive
number py such that [ + F(sI — A— BF)~!B is invertible for all s € C{ \ D(po). Hence, using
part |(c)|of the Assumption we have CJ \ID(pp) C p(A). In particular for all s € Cg \D(po)
holds I+ F(sI — A— BF)~'B # 0, which means that this function is not identically zero. Thus
it has at most finitely many zeros on the compact set D(pp) N (Car . Applying Lemma m we
see that o consists of finitely many eigenvalues with finite order and finite multiplicity. Hence
the spectrum decomposition assumption at zero holds. Now parts of @ and @ of Theorem
imply that X = ran P is finite-dimensional and o(A") = o C C{.

Next we show that the semigroup (7' (¢)):>0 on X~ is strongly stable. Indeed, for every
x € X~ we have

T ()2 = Tep(t)e + /0 Tur(t — s)BFT~(s)z ds.

Now Lemma implies that FT~(-)z € L?(0,00, X ™). Therefore, Lemma 12 in [OC98] is
applicable and we have
t

lim / Tpr(t—s)BFT (s)xds =0

t—oo Jo
since the semigroup (TBr(t))¢>0 is strongly stable. Thus we obtain T~ (t)z — 0 as t — oo.
We proceed by showing that B~ is an infinite-time admissible control operator for the semigroup
(T~ (t))+>0, which means that we have to show the existence of a constant M > 0 such that
the estimate

/OOo T (#)B~u(t) dtHX < M|l (5.27)

holds for every u € L*(0, 00; C™). Since B~ = (I—Pr)B and the semigroup (T'(t))>0 commutes
with the projection Pr, (5.27]) can be written as

(=P [T r@But)dt| < Ml
0 X
Using the identity

<x, (I Pp) /0 “ ) Bu(t) dt> - /0 CUBT () — Po)a, ult) dt
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we obtain that the assertion is equivalent to

| BT @) = Prya dt < Ml

for all z € X. By introducing the space X = ran(I — Pp)* we can rewrite the claim as
o0
/ | B*T*(t)x| dt < M|z (5.28)
0

for all z € X. From the equation ([5.24) follows
B*(sI — A*)™! =B*(sI — (A+ BF)*)™! — B*(sI — (A+ BF)*)"'F*
(I +B*(sI — (A+BF)) 'F*)"'B*(sI — (A+ BF)*)™!

for all s € @\D(po). Then, as in the proof of Lemma by the input-output stability and
regularity of the closed-loop system X%/ the maps (I +B*(sI —(A+BF)*)"1F*), s € C{ \D(po),
are uniformly bounded. Thus, there exists a constant M’ > 0 such that

IB*(sI — A*)"lz|| < M'||B*(sI — (A + BF)*) 2| (5.29)

for all z € X and s € C{ \ D(pp). Lemma 2.15 in [TW14], applied to the decomposition
X = X @® X~ with the projections Py := I — Pr and P, := Pr, yields

ran(I — Pr)* = ker P = ran(Pp)* = (X1)4,
which means X = (I — Pr)*X = (X*)L. Moreover, we get
o(Ax+yr) ={s€Clseo(Alx-)} ={se€C|sea(AT)}.

Since o(A*|¢) C Cy we have that for every s € a the map B*(sI — A*)~! is bounded on

X and, hence, they are uniformly bounded for all s belonging to the compact set D(p) N @.
Thus there exists a constant M” > 0 such that

1B*(sI — A*)arl| < M”||| (5.30)

holds for all z € X and s € D(po). Now the input stability of the closed-loop system %! together
with and imply the existence of some M > 0 such that ||B*(-I—A*)_1xHH2((Cm) <
M||z|| for all z € X. Hence the estimate holds, see Remark

To conclude the proof we are left to show that the finite-dimensional system (AT, BT) is
controllable. For any o € Xt holds

t
Ty (t)we = T (8o + / TH(t — )BT FTp(s)xo ds.
0
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As the closed-loop system Y/ is output stable, the function u: [0,00) — C™, given by u(s) =
FTgr(s)zo, satisfies u € L?(0,00; C™). The mild solution of the equation

i(t) = ATx(t) + BTu(t), x(0)=mx, t>0,

is given by z(t) = Tpp(t)xo for t > 0. Thus it satisfies z(t) — 0 as t — oco. Hence the system

Y (AT, BT) is stabilizable, c.f. Definition Since o(AT) is contained in Cg, the system
Y (AT, BT) is controllable by Theorem O

Example 5.7.5. Let X = (? and U = R. Let Ao = 1 and forn € N\ {0} let \, =in—1/n. We
define A: X D D(A) — X by Ae, = Apen, where D(A) = {x = (zn)nen € £2 | AnZn)nen € £2}
and B € L(R, %) by t — teg. We have o(A) = {\, | n € N} and hence o+ = {1}. Therefore
the spectrum decomposition assumption is satisfied and dim X = 1. By the Stability Theorem
in [AB88] the operator A~ generates a strongly stable semigroup. Since B~ = 0, the system
Y(A™,B™) is strongly stable. The controllability matriz R(AY,BT) = Bt =1 has the full
rank 1 and, thus, the system Y(A™, B") is controllable. Theorem now implies that the
system (A, B) is strongly stabilizable.

For the polynomial stabilizability we have a similar characterisation.

Theorem 5.7.6. For any linear system X(A, B) given by (5.1) with a finite-dimensional input
space U = C™ and a bounded control operator, i.e., B € L(C™, X), the following assertions
are equivalent:

(i) (A, B) is polynomially stabilizable.

(ii) (A, B) satisfies the spectrum decomposition assumption at zero, X is finite-dimensional,
Y(A~, B™) is a polynomially stable system and the finite-dimensional system L (AT, BT)
is controllable.

If (A, B) is polynomially stabilizable, then a stabilizing feedback operator is given by F =
F*Pr, where F* is a stabilizing feedback operator for X(A+, BT).

Proof. By Proposition we are left to show that the implication |(i)| = holds. Since
every polynomially stabilizable system (A, B) is strongly stabilizable, Theorem is ap-
plicable and it remains to show that the semigroup (7'~ (¢));>0 generated by the operator A~
is polynomially stable. It is strongly stable and hence bounded. Using the identity ({5.24]
we obtain ||(iwl — A)~Y| = O(|w[3?) for |w| — oo, since ||(iw] — A — BF)~!|| = O(Jw|®) for
|w| — oo, holds. Thus, Theorem 2.4 in [BT10] is applicable and we obtain the polynomial
stability of (T~ (t))¢>o0- O

Example 5.7.7. Let X = (%> and U = R. Let Ao = 1 and for n € N\ {0} let \, =in—1/n. We
define A: X D D(A) — X by Ae, = Apen, where D(A) = {x = (¥n)nen € £2 | (AnTn)nen € 2}
and B € L(R,(?) by t — teg. By the Stability Theorem in [ABSS] the operator A~ generates



5.8. Concluding remarks 79

a strongly stable (and hence bounded) semigroup. We have iR C p(A~). For any w € R,
T = (Tn)nen € 2 holds

o

R(iw, A7 )z = Z ,

= iw — An

Tn

en-

Therefore we obtain

1 1
|R(iw, A7)[| = sup ———— = sup < |w| + 1.
neN\{0} liw — An| neN\{0} \/(w —n)2 + 1

n

In particular we have ||R(iw, A7)|| = O(Jw|) for |w| — oo. Thus, Theorem 2.4 in [BT10] is
applicable and we obtain the polynomial stability of (T~ (t))i>0. Since B~ = 0, the system
Y(A~, B™) is polynomially stable. We have o(A) = {\, | n € N} and hence o = {1}.
Therefore the spectrum decomposition assumption is satisfied and X is one-dimensional. Since
the controllability matriz R(AT, BY) = BT =1 has the full rank 1, the system L(A1, BT) is
controllable. Theorem thus implies that the system (A, B) is polynomially stabilizable.

5.8 Concluding remarks

In this chapter we studied strong and polynomial stabilizability of linear systems on Hilbert
spaces with bounded and unbounded control operators. We found sufficient conditions for both
— strong and polynomial — stabilizability of linear systems with unbounded control operators
and arbitrary input spaces. For systems with bounded control operators we found a character-
isation of all systems with finite-dimensional input spaces, which are strongly or polynomially
stabilizable respectively. Those equivalent conditions for stabilizability formally look very sim-
ilar to those for exponential stabilizability obtained by W. Desch and W. Schappacher [DS85],
C. A. Jacobson and C. N. Nett [JN8§|, and S. A. Nefedov and F. A. Sholokhovich [NS86]
independently of each other. It remains an open problem to find a similar characterisation
for systems with an unbounded control operator. This is one possible direction for further
investigations.
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Index

A-invariant,
T'(t)-invariant,

basis

Riesz,
Schauder,
bounded control operator,

concatenation, [62]
controllable,
in time ¢, 54

essentially more rapidly increasing, [I3]

function
complementary, [0]
Young,

growth bound, [T5] [60]

iISS, see integral input-to-state stable

input, [16]

ISS, see input-to-state stable

Laplace transform, [60]
Lebesgue extension,
left-shift, [16]

map
input, [20} [63]
extended,
input/output,
extended, [64]
output, [63]
extended,

matrix
controllability,

Hurwitz,
mild solution,

norm
Luxemburg, [§]
Orlicz, [9]

null controllable in finite time, [70]

operator
admissible feedback,
admissible observation, [62]

control,
admissible, [T§]

feedthrough,
observation, [64]
bounded, [64]
unbounded, [64]
reflection,
optimizable, [70]
order of an isolated eigenvalue,
Orlicz class,

pole placement problem, [55]

reachable, [54]

regular,
right-shift, [16]

shift-invariant, [60]
siISS, see strongly integral input-to-state sta-
ble

similar,
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sISS, see strongly input-to-state stable unbounded control operator, [16]
space uniformly bounded energy bounded state,
Hardy, [59]
input, [I6} [63] well-posed linear system,
Orlicz,
output, 63|

state, [10], [63]

spectral projection, |5_?3|
spectrum decomposition assumption,
stabilizable, 55
exponentially,
polynomially, [72]
strongly,
stable, [54]
exponentially,
input, [60]
input-output, [66]
input-to-state, [35]

strongly, [25]

integral input-to-state,
strongly, [25]

output, [66]

polynomially, [71]
strongly,
state, [10]

step response, [61]
support of a measure, [47]

system
closed-loop,
polynomially stable, [72]

strongly stable,

time-reflection operator, see reflection opera-
tor
transfer function,
closed-loop, [61]

well-posed,
truncation, [I6]

UBEBS, see uniformly bounded energy bounded
state
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