Kinetische und spektroskopische Untersuchungen von Nitrylhalogeniden, Halogennitriten und Halogennitraten

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

vorgelegt dem Fachbereich 9 - Chemie - der Bergischen Universität-Gesamthochschule Wuppertal

von

Rolf Bröske

Juli 2000

Mein besonderer Dank gilt Herrn Prof. Dr. F. Zabel für die vielen Anregungen und die stets kritischen und hilfreichen Diskussionen.

Herrn Prof. Dr. K.H. Becker danke ich für die Möglichkeit der Durchführung dieser Arbeit.

Für die vielfältige Unterstützung in theoretischen und praktischen Fragen möchte ich allen Kolleginnen und Kollegen des Arbeitskreises danken.

Den Herren Dipl.-Ing. W. Nelsen, Dipl.-Ing. V. Kriesche und R. Giese gilt ein Dank für die technische Unterstützung.
Abstract

The available literature data of the kinetic and spectroscopic properties of nitrylhalides (XNO₂), halogennitrites (XONO) and halogennitrates (XONO₂) are incomplete and partly contradictory. Some selected reactions and UV spectra of these compounds were investigated by the use of UV/VIS and long path fourier transform infrared spectroscopy. All compounds were prepared in situ in a static reaction chamber (V = 420 l) by the photolysis of X₂/NO₂ (X = Cl, Br, I) mixtures in the wavelength range 300 nm ≤ λ ≤ 500 nm or 500 nm ≤ λ ≤ 700 nm in nitrogen or synthetic air.

The photolysis of Cl₂/NO₂ mixtures in the wavelength range 300 – 500 nm leads to the formation of ClNO₂ and ClONO. The experimental concentration time profiles for ClONO, ClNO₂ and NO₂ during as well as after photolysis were in an excellent agreement with a kinetic simulation model, if the reaction mechanism used for the computer simulations contained the following modifications and additions compared to the literature data:

1.) addition of the new reaction Cl + ClONO → Cl₂ + NO₂, k₂₉₃Κ = (7.5 ± 1.0) x 10⁻¹² cm³ molecule⁻¹ s⁻¹

2.) a heterogeneous conversion of ClONO to ClNO₂ and NO₂

3.) a change in the branching ratio for the two channels of the recombination reaction of Cl with NO₂

An upper limit of 5 x 10⁻⁴ s⁻¹ was determined for the rate of the thermal decomposition of BrNO₂ at 298 K and 1 atm synthetic air. The mechanism of the Br + NO₂ reaction and the thermochemistry of BrNO₂ and BrONO are discussed in light of the results of the present experiments and of previous work from the literature. Evidences were found that BrONO could be the main product of the recombination reaction of Br-atoms with NO₂.

From the time behaviour of ClONO, ClNO₂ and BrNO₂ in the presence of a large excess of NO the rate constants for the second-order reactions 3, ClONO + NO → ClNO + NO₂, 4, ClNO₂ + NO → ClNO + NO₂ and 8, BrNO₂ + NO → BrNO + NO₂ were determined to be k₃ = 7.5 x 10⁻¹² exp [(-26.9 ± 0.7) kJ mol⁻¹/RT] cm³ molecule⁻¹ s⁻¹, k₄ = 1.5 x 10⁻¹² exp [(-29.2 ± 3.4) kJ mol⁻¹/RT] cm³ molecule⁻¹ s⁻¹ and k₈ = 2.3 x 10⁻¹² exp [(-17.8 ± 2.0) kJ mol⁻¹/RT] cm³ molecule⁻¹ s⁻¹.

INO₂ was prepared by the use of the photolysis of mixtures of I₂ and NO₂ in the wavelength range 300 nm ≤ λ ≤ 500 nm. The time behaviour of the concentration of INO₂ after the photolysis was not reproducible, probably being due to heterogeneous chemistry involving aerosols which were built up during the photolysis. The thermal decomposition of INO₂ should lead to the formation of IO radicals, but the time behaviour of INO₂ was independent from the concentration of added NO used as a scavenger for IO radicals. It was not possible to evaluate the rate of the thermal decomposition of INO₂ under the experimental conditions.

The UV/VIS spectrum of INO₂ has been measured for the first time. The spectrum shows three local maxima at 242, 280 and 345 nm. The cross sections were estimated by performing an NO₂ mass balance leading to the upper limits for σ₂₄₂nm = 1.05 x 10⁻¹⁷ cm² molecule⁻¹, σ₂₈₀nm = 0.24 x 10⁻¹⁷ cm² molecule⁻¹ and σ₃₄₅nm = 0.098 x 10⁻¹⁷ cm² molecule⁻¹. The resulting photolytic lifetime of INO₂ was (2.3 ± 1.7) min for 1.july, noon, 50°N. The short INO₂ lifetime of about τ₁/₂ = 2 – 3 s after switched off the photolysis lights prevented a determination of the possible reaction INO₂ + NO → INO + NO₂.

The atmospheric implications will be discussed.
3.2.2 Kinetisches Verhalten von BrNO₂ nach Beendigung der Photolyse .......................... 65
3.2.3 Verhalten von BrNO₂ in Gegenwart von NO.......................................................... 72
3.3 Nitryliodid (INO₂) .................................................................................................. 78
3.3.1 Das UV-Spektrum von INO₂ ................................................................................. 78
3.3.2 Das Zeitverhalten von INO₂ während und nach der Photolyse im
Wellenlängenbereich 500 nm ≤ λ ≤ 700 nm ................................................................. 82
3.4 Iodnitrat (INO₂) .................................................................................................... 86
3.4.1 Photolyse von I₂/NO₂-Mischungen im Wellenlängenbereich
300 nm ≤ λ ≤ 500 nm .................................................................................................. 86
3.4.2 Verhalten von IONO₂ nach Beendigung der Photolyse .......................................... 93
3.4.3 Verhalten von IONO₂ in Gegenwart von NO ......................................................... 97
3.4.4 Vergleich der thermischen Zerfälle von Iodnitrat (INO₂), Bromnitrat
(BrONO₂) und Chlornitrat (ClONO₂) ........................................................................ 100
3.4.5 Das UV-Spektrum von IONO₂ ............................................................................ 105
4. Zusammenfassung .................................................................................................. 108
5. Literatur .................................................................................................................. 113
1. Einleitung

1.1 Allgemeines

Halogenen, wobei die genaue Quelle für die Halogenatome noch nicht eindeutig feststeht. Folgende Möglichkeiten werden in der Literatur diskutiert:

a) Die Photolyse von halogenierten Verbindungen natürlichen oder antropogenen Ursprungs;

b) Adsorption von HBr und organischen Bromverbindungen auf Aerosolen mit anschließender photoinduzierter Umwandlung von Br\(^-\) in Br\(_2\) (McConnell et al. (1992));

c) Die Oxidation von Br\(^-\) in wässriger Phase auf Aerosolen durch HBr oder HOBr (Fan and Jacob (1992)) mit einer schnellen Photolyse des freigesetzten Br\(_2\);

d) Die Oxidation von Br\(^-\) durch Peroxymonoschwefelsäure oder OH- und HO\(_2\)-Radikale in wässriger Phase auf Seesalz-Aerosolen zu Br\(_2\). In der Gasphase gebildete BrO-Radikale oder HOBr können auf diesen heterogenen Oberflächen adsorbiert werden und weiteres Br\(^-\) zu Br\(_2\) oxidieren (Mozurkewich (1995));

e) Autokatalytische HOBr-Oxidation auf Seesalz-Aerosolen unter Freisetzung der photolabilen Verbindungen BrCl und Br\(_2\) (Vogt et al. (1996));

f) Die Reaktionen von NO\(_2\) oder N\(_2\)O\(_5\) auf Seesalzaerosolen mit anschließender Photolyse der dabei gebildeten Nitrosyl- und Nitrylhalogenide (Finlayson-Pitts (1983), Finlayson-Pitts and Johnson (1988)).

1.2 Bildung und Reaktionen von Nitrosyl- und Nitrylhalogeniden auf Oberflächen

Die Bildung von Nitrosyl- und Nitrylhalogeniden durch Reaktionen von NO\(_2\) und N\(_2\)O\(_5\) mit Alkalimetallhalogeniden ist seit längerem bekannt (X = Cl, Br):

\[
\begin{align*}
( \text{i} ) & \quad 2 \text{NO}_2 (\text{g}) + \text{NaX} (\text{f}) \rightarrow \text{XNO} (\text{g}) + \text{NaNO}_3 (\text{f}) \\
( \text{ii} ) & \quad \text{N}_2\text{O}_5 (\text{g}) + \text{NaX} (\text{f}) \rightarrow \text{XNO}_2 (\text{g}) + \text{NaNO}_3 (\text{f})
\end{align*}
\]

Bereits 1974 beschrieben Schroeder und Urone die Bildung von Nitrosylchlorid (ClNO) durch die Reaktion von NO\(_2\) mit NaCl und wiesen auf die mögliche atmosphärenchemische Bedeutung dieser Reaktion hin (Schroeder and Urone (1974)). Bedingt durch die in dieser Arbeit verwendeten hohen NO\(_2\)- und damit verbundenen N\(_2\)O\(_4\)-Konzentrationen war eine Reaktion von N\(_2\)O\(_4\) mit NaCl jedoch nicht auszuschließen. Finlayson-Pitts (1983) konnte bei Experimenten mit geringeren NO\(_2\)-Konzentrationen unter nahezu N\(_2\)O\(_4\)-freien Bedingungen ebenfalls ClNO als Reaktionsprodukt nachweisen und somit sicherstellen, dass dessen Bildung nach Reaktion (i)
abläuft. Die analoge Reaktion von NO₂ mit NaBr führt entsprechend zu Nitrosylbromid (BrNO) (Finlayson-Pitts and Johnson (1988)).

In Anlehnung an die auf stratosphärischen Wolken ablaufende heterogene Reaktion von N₂O₅ mit HCl untersuchten Finlayson-Pitts und Mitarbeiter die Reaktion (ii) von N₂O₅ mit NaCl. Dabei konnte Nitrilchlorid (ClNO₂) als Reaktionsprodukt nachgewiesen werden (Finlayson-Pitts et al. (1989 a), Livingston and Finlayson-Pitts (1991)). Bestätigt wurde diese Reaktion auch von anderen Gruppen (Leu et al. (1995), Fenter et al. (1996)). Auch hier führt die entsprechende Reaktion mit NaBr zur homologen Verbindung Nitrylbromid (BrNO₂) (Finlayson-Pitts et al. (1989 b)). Fenter et al. (1996) konnten für diese Reaktion allerdings nur Br₂ als Reaktionsprodukt nachweisen. Erklärt wird dies mit einer schnellen Folgereaktion des als Primärprodukt gebildeten BrNO₂ mit KBr. Die Begründung für die unterschiedlichen Reaktionsprodukte könnte in den sehr unterschiedlichen experimentellen Bedingungen der jeweiligen Arbeiten zu suchen sein.


Während ClNO₂ gegenüber Cl⁻-haltigen Lösungen stabil ist, findet sich eine erhöhte Reaktivität gegenüber Br⁻-haltigen Lösungen. Als Reaktionsprodukte konnten Br₂ als Hauptprodukt und BrNO₂ als Nebenprodukt sowie, in geringer Ausbeute, BrCl identifiziert werden (Frenzel et al.}

1.3 Gasphasenreaktionen und Photochemie der Nitrylhalogenide und Halogenimine

In der Gasphase werden Nitrylhalogenide und Halogenimine durch die Rekombination von Halogenatomen mit \( \text{NO}_2 \) gebildet. In der nachfolgenden Tabelle ist eine Übersicht über die verfügbaren Literaturdaten zur Rekombination von Cl-Atomen mit \( \text{NO}_2 \) dargestellt.

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Badgas</th>
<th>( T , [\text{ K }] )</th>
<th>( p , [\text{ mbar }] )</th>
<th>( k_o , [10^{-31} \text{ cm}^6 \text{ Molekül}^{-2} \text{ s}^{-1}] )</th>
<th>Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahniser et al. (1977)</td>
<td>He</td>
<td>300</td>
<td>1 - 8</td>
<td>8</td>
<td>Strömungsrohr</td>
</tr>
<tr>
<td>Leu (1984)</td>
<td>He</td>
<td>264 - 417</td>
<td>1 - 10</td>
<td>9,5 ± 1,2</td>
<td>Strömungsrohr</td>
</tr>
<tr>
<td>Mellouki et al. (1987)</td>
<td>He</td>
<td>293</td>
<td>2,8</td>
<td>11,0 ± 1,9</td>
<td>Strömungsrohr</td>
</tr>
<tr>
<td>Mellouki et al. (1989)</td>
<td>He</td>
<td>293</td>
<td>5,5 ± 0,9</td>
<td>Mellouki et al. (1987), korrigiert</td>
<td></td>
</tr>
<tr>
<td>Ravishankara et al. (1988)</td>
<td>He</td>
<td>240 - 350</td>
<td>20 - 670</td>
<td>7,5 ± 1,1</td>
<td>Blitzlichtphotolyse</td>
</tr>
<tr>
<td>Clyne and White (1974)</td>
<td>Ar</td>
<td>298</td>
<td>keine Angabe</td>
<td>7,2</td>
<td>Strömungsrohr</td>
</tr>
<tr>
<td>Seeley et al. (1996)</td>
<td>Ar</td>
<td>298</td>
<td>67 - 333</td>
<td>7,2 ± 0,4</td>
<td>turbulente Strömung</td>
</tr>
<tr>
<td>Leu (1984)</td>
<td>( \text{N}_2 )</td>
<td>296</td>
<td>1 - 10</td>
<td>14,8 ± 1,4</td>
<td>Strömungsrohr</td>
</tr>
<tr>
<td>Ravishankara et al. (1988)</td>
<td>( \text{N}_2 )</td>
<td>240 - 350</td>
<td>25 - 267</td>
<td>16,6 ± 3,0</td>
<td>Blitzlichtphotolyse</td>
</tr>
</tbody>
</table>

Tab. 1: Vergleich der Literaturdaten für die Geschwindigkeitskonstante der Rekombination von Cl-Atomen mit \( \text{NO}_2 \); Angabe Leu (1984) und Ravishankara et al. (1988) \( k_o \) für 298 K

Mischungen aus Cl₂/NO₂ in 930 mbar synthetischer Luft identifizierten Niki et al. (1978) neben ClNO₂ auch die isomere Verbindung Chlornitrit (ClONO) als Reaktionsprodukt für die Rekombination von Cl-Atomen mit NO₂.

( iii ) \[ Cl + NO₂ + M \rightarrow ClNO₂ + M \]

( iv ) \[ Cl + NO₂ + M \rightarrow ClONO + M \]


\[
\begin{align*}
(\text{v}) & \quad \text{Br} + \text{NO}_2 + M \rightarrow \text{BrNO}_2 + M \\
(\text{v i}) & \quad \text{Br} + \text{NO}_2 + M \rightarrow \text{BrONO} + M
\end{align*}
\]


An Reaktionen von BrNO\(_2\) in der Gasphase wurde bislang nur die Reaktion mit Br-Atomen untersucht (Mellouki et al. (1984)).


1.4 Halogennitrate

Halogennitrate (XONO\(_2\)) stellen eine temporäre Senke für XO-Radikale (X = Cl, Br, I) und NO\(_2\) dar. Um die Bedeutung dieser Senken abschätzen zu können, sind Kenntnisse über die Chemie der Halogennitrate notwendig. Bekannt sind heterogene Reaktionen von Chlor- und Bromnitrat auf Schwefelsäureaerosolen und stratosphärischen Wolken, die zur Freisetzung von photolytisch instabilen Halogenverbindungen führen, z.B.:

\[
\begin{align*}
(vii) & \quad \text{ClONO}_2 + \text{HCl} & \rightarrow & \text{Cl}_2 + \text{HNO}_3 \\
(viii) & \quad \text{ClONO}_2 + \text{H}_2\text{O} & \rightarrow & \text{HOCl} + \text{HNO}_3 \\
(ix) & \quad \text{BrONO}_2 + \text{H}_2\text{O} & \rightarrow & \text{HOBr} + \text{HNO}_3 \\
(x) & \quad \text{BrONO}_2 + \text{HCl} & \rightarrow & \text{BrCl} + \text{HNO}_3
\end{align*}
\]


experimentelle Ermittlung der Dissoziationskonstante des IONO\(_2\) wäre aber dennoch von Interesse. Eine schwächere Bindung könnte eine schnellere Dissoziation zur Folge haben. Außerdem wäre ein Zerfall zu I + NO\(_3\) statt zu IO + NO\(_2\) möglich. In Kombination mit der Geschwindigkeitskonstanten für die Rekombination (Daykin and Wine (1990)) ließen sich darüber hinaus Informationen über die bislang nur sehr ungenau beschriebene Thermochemie des IONO\(_2\) erhalten.


1.5 Aufgabenstellung dieser Arbeit

Die in der Literatur beschriebenen kinetischen und spektroskopischen Eigenschaften der Nitrylhalogenide, Halogenitrite und Halogenitratre sind unvollständig und teilweise widersprüchlich. Im Rahmen dieser Arbeit sollten ausgewählte Reaktionen dieser Verbindungen sowie UV-Spektren experimentell untersucht und auf ihre Bedeutung für die Atmosphärenchemie und die Anwendung in Laborexperimenten hin überprüft werden. Im Einzelnen sind zu nennen:

1. Bestimmung der Geschwindigkeitskonstanten für die Reaktion von ClNO\(_2\) mit NO und die möglichen Reaktionen von ClONO, BrNO\(_2\) (BrONO) und INO\(_2\) (IONO) mit NO
2. Klärung der in der Literatur beschriebenen Widersprüche bezüglich der Lebensdauer von BrNO\(_2\) in der Gasphase
3. Messung des UV/VIS-Absorptionsspektrums des INO\(_2\)
4. Untersuchungen zum thermischen Zerfall des IONO\(_2\)
5. Bestimmung des UV/VIS-Absorptionsspektrums des IONO\(_2\)
2. Experimenteller Teil

2.1 Temperierbarer 420 l - Reaktor


Über einen Pumpstand, bestehend aus einer Drehschlieberpumpe und einer Wälzkolbenpumpe kann der Reaktor bis zu einem Druck von ca. 10^{-3} mbar evakuiert werden. Die Druckmessung erfolgt mittels Kapazitätsmanometern (MKS Baratron).


Die Temperaturmessung im Reaktorinnenraum erfolgt mit zwei kalibrierten Platin-Widerstandsthermometern.
Abb. 1: Temperierbarer 420 l - Photoreaktor


Bedingt durch die Anordnung der Lampen ergeben sich für die Lichtintensität je nach eingesetzter Kühlmitteltemperatur die in Abb. 3 dargestellten Zeitverhalten und relativen Endwerte.
Abb. 2: Spektrum des Photolyselichtes (Philips TL 40W/05) innerhalb des 420 l-Photoreaktors

Abb. 3: Änderung der Lichtintensität nach dem Zünden der Photolyselampen (Philips TL 40W/05) bei verschiedenen Temperaturen
2.2 Nachweisverfahren


In einigen Experimenten wurde zur zeitgleichen Erfassung der Reaktanden im ultraviolett- und sichtbaren Spektralbereich ein Diodenzeilen-Spektrometer (EG&G, Modell 1412 mit Interface 1461) verwendet. Als Strahlungsquelle diente eine Deuteriumlampe (Oriel, 30W), deren Licht durch den Reaktor und anschließend in einen Monochromator (SPEX) geleitet wurde. Die mit dieser Anordnung erreichte optische Weglänge betrug 3,1 m und die spektrale Auflösung lag bei 0,8 nm. Die Wellenlängenkalibrierung wurde mit einer Quecksilberniederdrucklampe durchgeführt.


Die Kalibrierung von NO erfolgte ebenfalls über das Gaseinlaßsystem. Nach Einlaß von NO (p < 12 mbar) in die Glaskugel wurde diese mit N₂ auf 1 atm aufgefüllt und das Gemisch in die
evakuierte Reaktionskammer expandiert. Die Auftragungen der IR-Absorptionen bei 1875,4 cm⁻¹ und 1900 cm⁻¹ gegen die Konzentration lieferten je eine quadratische Anpassung, die zur Bestimmung der NO-Konzentrationen in den Experimenten verwendet wurde.

2.3 Darstellung der untersuchten gasförmigen Verbindungen und Versuchsbedingungen

2.3.1 In-situ-Darstellung von Chlornitrit und Nitrylchlorid

Die Darstellung von Chlornitrit (ClONO⁻) und Nitrylchlorid (ClNO₂⁻) erfolgte in situ durch die Photolyse von Cl₂/NO₂/N₂- bzw. Cl₂/NO₂/N₂/O₂-Mischungen im Wellenlängenbereich von 300 bis 500 nm.

\[
\begin{align*}
(1) & \quad \text{Cl}_2 + h\nu \rightarrow \text{Cl} + \text{Cl} \\
(2a) & \quad \text{Cl} + \text{NO}_2 + M \rightarrow \text{ClNO}_2 + M \\
(2b) & \quad \text{Cl} + \text{NO}_2 + M \rightarrow \text{ClONO} + M
\end{align*}
\]


Zur Dosierung von Cl₂ und NO₂ wurden diese Gase jeweils in dem Glaskolben des Einlaßsystems bei einem gewünschten Druck \( \leq 1 \text{ atm} \) vorgelegt. Nach Auffüllen des Einlaßsystems mit N₂ auf 1 atm wurde das Gasgemisch in den evakuier-ten Reaktor expandiert.

Die Experimente zur Bestimmung des kinetischen Verhaltens von ClONO⁻ und ClNO₂⁻ während und nach der Photolyse wurden in synthetischer Luft bei Drücken zwischen 960 und 1020 mbar durchgeführt. Die Standardausgangskonzentrationen für Chlor lagen im Bereich von 1,3 bis 1,5 \( \times 10^{15} \) Moleküle cm⁻³, die Anfangskonzentration von NO₂ wurde zwischen \( 1 \times 10^{13} \) und \( 1,5 \times 10^{14} \) Moleküle cm⁻³ variert.

In den Experimenten zur Bestimmung der Geschwindigkeitskonstanten der Reaktionen von ClONO⁻ und ClNO₂⁻ mit NO,
(3) \[ \text{ClONO} + \text{NO} \rightarrow \text{CINO} + \text{NO}_2 \]
(4) \[ \text{ClNO}_2 + \text{NO} \rightarrow \text{CINO} + \text{NO}_2 \]

betrugen die Standardausgangskonzentrationen für Chlor 1,3\times10^{15} \text{ Moleküle cm}^{-3} und für \text{NO}_2 \approx 1,5\times10^{14} \text{ Moleküle cm}^{-3}. Die Photolysedauer varierte zwischen 155 s bei 298 K und 600 s bei 273 ± 3 K. Nach Beendigung der Photolyse und einer Wartezeit von ca. 1 Minute erfolgte die NO-Zugabe mit einer gasdichten Spritze durch das Septum. Diese Experimente wurden ausschließlich in N\textsubscript{2} als Badgas durchgeführt. In synthetischer Luft würde der hohe O\textsubscript{2}-Partialdruck eine NO-Oxidation und somit eine Änderung der NO-Konzentration bewirken, so dass die gewünschte Bedingung für eine Reaktion pseudo-1. Ordnung nicht mehr gewährleistet wäre. Die Reaktion (5) würde an der Einlaßstelle des NO wegen des hohen Partialdruckes an NO besonders schnell ablaufen.

(5) \[ 2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2 \]

2.3.2 In-situ-Darstellung von Nitrylbromid

Die Darstellung von Nitrylbromid (BrNO\textsubscript{2}) erfolgte in situ durch die Photolyse von Br\textsubscript{2}/NO\textsubscript{2}/N\textsubscript{2}-bzw. Br\textsubscript{2}/NO\textsubscript{2}/N\textsubscript{2}/O\textsubscript{2}-Mischungen im Wellenlängenbereich von 500 nm bis 700 nm.

(6) \[ \text{Br}_2 + \text{hv} \rightarrow \text{Br} + \text{Br} \]
(7a) \[ \text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_2 + \text{M} \]

BrNO\textsubscript{2} wurde durch Vergleich der Produktspektren mit IR-Spektren von Finlayson-Pitts et al. (1989), Frenzel et al. (1996) und Scheffler et al. (1997) als Reaktionsprodukt identifiziert. Die Dosierung von Br\textsubscript{2} und NO\textsubscript{2} erfolgte nach der oben beschriebenen Methode über das Gas-einlaßsystem. Die typische Ausgangskonzentration an Br\textsubscript{2} betrug 7,0\times10^{14} \text{ Moleküle cm}^{-3}. Die Konzentrationen von NO\textsubscript{2} wurden zwischen 1,7\times10^{14} und 7,1\times10^{14} \text{ Moleküle cm}^{-3} variiert. Die Experimente zur Beobachtung der Bildung des BrNO\textsubscript{2} während der Photolyse sowie zur Bestimmung der Geschwindigkeitskonstanten der Reaktion (8) von BrNO\textsubscript{2} mit NO wurden in 990 ± 10 mbar N\textsubscript{2} durchgeführt.

(8) \[ \text{BrNO}_2 + \text{NO} \rightarrow \text{BrNO} + \text{NO}_2 \]
Bei diesen Messungen wurde das NO nach Beendigung der Photolyse und einer Wartezeit von bis zu zwei Minuten mit einer gasdichten Spritze zudosiert. Die NO-Konzentrationen variierten von $3,2 \times 10^{13}$ bis $1,4 \times 10^{14}$ Moleküle cm$^{-3}$. Dabei wurde BrNO als alleiniges Produkt anhand seiner IR-Absorptionsbande identifiziert (Siebert (1966), Finlayson-Pitts and Johnson (1988)).


2.3.3 In-situ-Darstellung von Iodnitrat

Die Darstellung von IONO$_2$ erfolgte nach der von Barnes et al. (1991) beschriebenen Methode. Dabei wird eine Mischung aus I$_2$, NO$_2$ und N$_2$ im Wellenlängenbereich von 300 nm bis 500 nm photolyisiert. Die bei der Photolyse von NO$_2$ entstehenden O-Atome reagieren sehr schnell mit I$_2$ unter Bildung von IO-Radikalen, die dann von NO$_2$ unter Bildung von IONO$_2$ abgefangen werden.

\[
\begin{align*}
(9) \quad & NO_2 + h\nu \rightarrow NO + O \\
(10) \quad & O + I_2 \rightarrow IO + I \\
(11) \quad & IO + NO_2 + M \rightarrow IONO_2 + M 
\end{align*}
\]

Die durch die Reaktion (10) und die Photolyse von I$_2$ gebildeten Iodatome werden ebenfalls von NO$_2$ abgefangen und bilden als unerwünschtes Nebenprodukt Nitryliodid (INO$_2$).

Die Dosierung des Iods erfolgte über die Sublimation einer genau abgewogenen Menge an Iod direkt in die evakuierte Reaktionskammer. Die Überprüfung der Konzentration erfolgte durch die
Aufnahme der Absorption im Wellenlängenbereich von 400 bis 530 nm unter Berücksichtigung der Absorptionsquerschnitte von Tellinghuisen (1973). Das NO₂ wurde mittels einer gasdichten Spritze dosiert. Die Ausgangskonzentrationen betrugen 0,5x10¹⁵ bis 1,0x10¹⁵ Moleküle cm⁻³ für I₂ und 2,0x10¹⁵ bis 4,0x10¹⁵ Moleküle cm⁻³ für NO₂.

Andere Versuche zur in-situ-Darstellung von Iodnitrat gingen von der selektiven I₂-Photolyse im Wellenlängenbereich von 500 nm bis 700 nm aus. Photolysiert man I₂ in Gegenwart von O₃ bzw. Chlordioxid ( OClO ), so sollten die gebildeten I-Atome mit diesen Edukten zu IO-Radikalen reagieren, die dann durch NO₂ unter der Bildung von IONO₂ abgefangen werden können.

\[
\begin{align*}
(12) & \quad I₂ + hν & \rightarrow & \quad I + I \\
(13) & \quad I + O₃ & \rightarrow & \quad IO + O₂ \\
(14) & \quad I + OClO & \rightarrow & \quad IO + ClO \\
(11) & \quad IO + NO₂ + M & \rightarrow & \quad IONO₂ + M
\end{align*}
\]


2.3.4 In-situ-Darstellung von Nitryliodid

Die selektive Photolyse von I₂ im Wellenlängenbereich von 500 bis 700 nm in Gegenwart von NO₂ führt zur Bildung von Nitryliodid (INO₂),

\[
\begin{align*}
(12) & \quad I₂ + hν & \rightarrow & \quad I + I \\
(15) & \quad I + NO₂ + M & \rightarrow & \quad IONO₂ + M
\end{align*}
\]

welches anhand der IR-Absorptionsbanden durch Vergleich mit Literaturdaten ( Barnes et al. (1991) ) identifiziert wurde. Die Art der Dosierung und die Anfangskonzentrationen der Edukte entsprachen den unter 2.3.3 beschriebenen Bedingungen.
2.4 Bestimmung der Photolysefrequenz von NO₂ im Wellenlängenbereich 300 nm ≤ λ ≤ 500 nm

Die experimentelle Bestimmung der Photolysefrequenz von NO₂ (k₉) im Wellenlängenbereich von 300 bis 500 nm erfolgte nach der von Holmes et al. (1973) beschriebenen Methode. Danach ist eine direkte Ermittlung der Photolysefrequenz k₉ aufgrund von Folge- und Nebenreaktionen nicht möglich. Holmes et al. (1973) definieren für die Anfangszeiten der Photolyse für die Abnahme der NO₂-Konzentration eine scheinbare Geschwindigkeitskonstante 1. Ordnung k_d (Abb. 4), aus der die Konstante k₉ berechnet werden kann. Es läßt sich zeigen, dass der Kehrwert der Geschwindigkeitskonstanten k_d proportional zum Druck ist. Die Auftragung dieses Kehrwertes als Funktion des Inertgasdruckes liefert eine Geradengleichung, aus deren Achsenabschnitt die Photolysefrequenz des NO₂ (k₉) über die Beziehung k_d = 2 k₉ ermittelt werden kann (Abb. 5). Aus diesem Grund wurde k_d für verschiedene N₂-Drücke bestimmt.

In Abb. 4 ist die Zeitabhängigkeit der NO₂-Konzentration während der Photolyse von 8,5x10¹³ Moleküle cm⁻³ NO₂ in 986 mbar N₂ bei T = 293 K dargestellt.

![Graph](image)

Abb. 4: Zeitabhängigkeit der NO₂-Konzentration während der Photolyse im Wellenlängenbereich 300 nm ≤ λ ≤ 500 nm; [NO₂]₀ = 8,5x10¹³ Moleküle cm⁻³; p = 968 mbar; M = N₂; T = 296 K
Die Steigung der Geraden durch die im Zeittintervall von \( t = 50 \) s bis \( t = 300 \) s erfassten Datenpunkte liefert die Konstante \( k_d \). Es ist zu erkennen, dass das Zeitverhalten ab 300 s Photolyse- dauer von einer Kinetik 1. Ordnung abweicht. Die beiden ersten Datenpunkte wurden nicht berücksichtigt, da zu diesen Zeiten die Photolysefrequenz aufgrund des Zeitverhaltens der Photolyselampen (vgl. Abb. 3) nicht konstant ist.

Abb. 5 zeigt die Abhängigkeit des Kehrwertes der Konstanten \( k_d \) vom Inertgasdruck. Mit dieser Methode wurde für die Photolysefrequenz von NO\(_2\) im Wellenlängenbereich 300 nm \( \leq \lambda \leq 500 \) nm ein Wert von \( k_d = 2,4 \times 10^{-3} \) s\(^{-1}\) erhalten.

![Abbildung 5: Abhängigkeit der Konstante \( k_d \) vom Inertgasdruck; \( T = 293 \) K; \( M = N_2 \); \( [ NO_2 ]_0 = 8,5 \times 10^{13} \) Moleküle cm\(^{-3}\)](image)

2.5 Bestimmung der Photolysefrequenz von Cl\(_2\) im Wellenlängenbereich 300 nm \( \leq \lambda \leq 500 \) nm

Zur Bestimmung der Photolysefrequenz von Cl\(_2\) im Wellenlängenbereich 300 nm \( \leq \lambda \leq 500 \) nm wurde Cl\(_2\) in Gegenwart von Acetaldehyd in 992 mbar synthetischer Luft photolysiert. Die Ausgangskonzentrationen betrugen \( 3,9 \times 10^{14} \) Moleküle cm\(^{-3}\) und \( 5,7 \times 10^{14} \) Moleküle cm\(^{-3}\) für Cl\(_2\) und
CH₃CHO. Die zeitliche Abnahme der CH₃CHO-Konzentration folgte einem Geschwindigkeitsgesetz 1. Ordnung. Die experimentell ermittelte Geschwindigkeitskonstante 1. Ordnung betrug 5,6x10⁻⁴ s⁻¹. Da bei der Photolyse eines Cl₂-Moleküls zwei Cl-Atome entstehen, ist diese Geschwindigkeitskonstante 1. Ordnung doppelt so groß wie die Photolysefrequenz des Cl₂, so dass für Cl₂ eine Photolysefrequenz von 2,8x10⁻⁴ s⁻¹ erhalten wurde.

2.6 Bestimmung der Photolysefrequenz von Br₂ im Wellenlängenbereich 500 nm ≤ λ ≤ 700 nm

Für die Ermittlung der Photolysefrequenz von Br₂ im Wellenlängenbereich 500 nm ≤ λ ≤ 700 nm wurde Br₂ in Gegenwart von CH₃CHO in 988 mbar synthetischer Luft photolysiert. Die Ausgangskonzentrationen betrugen 3,8x10¹⁴ Moleküle cm⁻³ und 3,7x10¹⁴ Moleküle cm⁻³ für Br₂ und CH₃CHO. Die zeitliche Abnahme der CH₃CHO-Konzentration folgte einem Geschwindigkeitsgesetz 1. Ordnung. Diese Abnahme ist doppelt so groß wie die Photolysefrequenz des Br₂. Auf diese Art wurde für Br₂ eine Photolysefrequenz von 1,0x10⁻⁴ s⁻¹ erhalten.

2.7 Spezifikation der verwendeten Chemikalien

<table>
<thead>
<tr>
<th>Chemikalie</th>
<th>Hersteller</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstoff</td>
<td>Messer-Griesheim</td>
<td>99,999 %</td>
</tr>
<tr>
<td>Synthetische Luft</td>
<td>Messer-Griesheim</td>
<td>99,995 %</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>Messer-Griesheim</td>
<td>20,5 Vol-% O₂ in N₂</td>
</tr>
<tr>
<td>Chlor</td>
<td>Messer-Griesheim</td>
<td>99,8 %</td>
</tr>
<tr>
<td>Brom</td>
<td>Aldrich</td>
<td>99,9 %</td>
</tr>
<tr>
<td>Iod</td>
<td>Aldrich</td>
<td>99,8 %</td>
</tr>
<tr>
<td>Stickstoffmonoxid</td>
<td>Messer-Griesheim</td>
<td>99,8 %</td>
</tr>
<tr>
<td>Stickstoffdioxid</td>
<td>Messer-Griesheim</td>
<td>99,9 %</td>
</tr>
<tr>
<td>Acetaldehyd</td>
<td>Aldrich</td>
<td>99,8 %</td>
</tr>
<tr>
<td>trans-2-Buten</td>
<td>Messer-Griesheim</td>
<td>99,0 %</td>
</tr>
<tr>
<td>Propan</td>
<td>Messer-Griesheim</td>
<td>99,0 %</td>
</tr>
<tr>
<td>Salpetersäure</td>
<td>Aldrich</td>
<td>67 %</td>
</tr>
<tr>
<td>Iodmonochlorid</td>
<td>Aldrich</td>
<td>98 %</td>
</tr>
<tr>
<td>Fluortrichlormethan</td>
<td>Aldrich</td>
<td>99 %</td>
</tr>
</tbody>
</table>
3. Ergebnisse der Messungen und Diskussion

3.1 Nitrylchlorid (ClNO₂) und Chlornitrit (ClONO)

3.1.1 Photolyse von Cl₂/NO₂-Mischungen

Die Abb. 6 zeigt das IR-Spektrum einer Mischung aus $1,3 \times 10^{15}$ Moleküle cm$^{-3}$ Cl$_2$ und $1,5 \times 10^{14}$ Moleküle cm$^{-3}$ NO$_2$ während der Photolyse im Bereich von 300 bis 500 nm. Die Photolysedauer betrug 168 s. Das Experiment wurde bei 298,4 K in 1018,6 mbar synthetischer Luft durchgeführt.

Abb. 6: IR-Spektrum nach 168 s Photolyse (300 nm $\leq \lambda \leq$ 500 nm) einer Mischung aus Cl$_2$ und NO$_2$ in synthetischer Luft; [Cl$_2$]$_o$ = $1,3 \times 10^{15}$ Moleküle cm$^{-3}$; [NO$_2$]$_o$ = $1,5 \times 10^{14}$ Moleküle cm$^{-3}$; T = 298,4 K; p = 1016,8 mbar

Das Produkt ClNO$_2$ kann anhand der IR-Absorptionsbanden bei 1267 cm$^{-1}$ und 1318 cm$^{-1}$ identifiziert werden. Eine weitere Absorption von ClNO$_2$ bei 1684 cm$^{-1}$ wird von der ClONO-Bande bei 1713 cm$^{-1}$ teilweise überlagert. Weiterhin ist die Ausgangsverbindung NO$_2$ anhand der
Bande bei 1600 cm\textsuperscript{-1} zu erkennen. Unter den gegebenen experimentellen Bedingungen läßt sich die Photolyse von NO\textsubscript{2} zu NO nicht vermeiden. Die dabei gebildeten O-Atome rekombinieren mit O\textsubscript{2} zu Ozon, welches dann den größten Teil des NO zu NO\textsubscript{2} oxidiert. Geringe Konzentrationen an NO (5 \times 10^{12} Moleküle cm\textsuperscript{-3}) und O\textsubscript{3} (1,4 \times 10^{12} Moleküle cm\textsuperscript{-3}) lassen sich anhand der Linien um 1900 cm\textsuperscript{-1} (NO) und der Bande bei 1050 cm\textsuperscript{-1} (O\textsubscript{3}) nachweisen. Darüber hinaus führt die Reaktion von NO mit ClNO\textsubscript{2} und ClONO zur Bildung von ClNO, erkennbar an der Bande bei 1799 cm\textsuperscript{-1}.

![Graphik mit Zeitabhängigkeit der Konzentrationen von NO\textsubscript{2}, ClONO und ClNO\textsubscript{2} während der Photolyse einer NO\textsubscript{2}/Cl\textsubscript{2}-Mischung in synthetischer Luft; T = 298,4 K, p = 1016,8 mbar; [Cl\textsubscript{2}]_o = 1,3 \times 10^{15} Moleküle cm\textsuperscript{-3}; [NO\textsubscript{2}]_o = 1,5 \times 10^{14} Moleküle cm\textsuperscript{-3} (rechte Ordinate gilt für ClONO\textsubscript{2} und ClONO)]

Abb. 7: Konzentrations-Zeit-Profile für NO\textsubscript{2}, ClONO und ClNO\textsubscript{2} während der Photolyse einer NO\textsubscript{2}/Cl\textsubscript{2}-Mischung in synthetischer Luft; T = 298,4 K, p = 1016,8 mbar; [Cl\textsubscript{2}]_o = 1,3 \times 10^{15} Moleküle cm\textsuperscript{-3}; [NO\textsubscript{2}]_o = 1,5 \times 10^{14} Moleküle cm\textsuperscript{-3} (rechte Ordinate gilt für ClINO\textsubscript{2} und ClONO).

Abb. 7 zeigt die Zeitabhängigkeit der Konzentrationen von NO\textsubscript{2}, ClINO\textsubscript{2} und ClONO während dieses Experimentes. Man erkennt die bevorzugte Bildung des thermodynamisch instabilen ClONO gegenüber ClNO\textsubscript{2}. Die Konzentrationsverhältnisse von ClONO zu ClNO\textsubscript{2} betragen 4:1.

Abb. 8: Konzentrationsverhältnisse der Produkte ClONO und ClNO₂ in Abhängigkeit der Photolysedauer für das in Abb. 7 dargestellte Experiment

Es ist keine lineare Abhängigkeit für alle dargestellten Punkte erkennbar. Die Änderung der Konzentrationsverhältnisse verläuft während der ersten 30 s der Photolyse schneller. Ein möglicher Grund könnte das Zeitverhalten der Photolyselampen sein. Die Extrapolation der ersten drei Meßpunkte nach t = 0 s liefert für das Verhältnis [ClONO] / [ClNO₂] einen Wert von 6,5:1. Das entspricht einer ClONO-Ausbeute von 87 % gegenüber 13 % für ClNO₂. Bei einer Extrapolation der Punkte für Zeiten ab 30 s zu t = 0 hin ergeben sich
Ausbeuten von 83 % für ClONO und 17 % für ClNO². Die von Niki. et al. (1978) bzw. Leu (1984) angegebenen Ausbeuten der Reaktionsprodukte betrugen für ClONO ≥ 80 bzw. 75 % und für ClNO² ≤ 20 bzw. 25 %.

Die Massenbilanz dieses Experimentes ist in Abb. 9 gezeigt. Aufgetragen ist der Verbrauch von NO₂ gegen die Summe der Konzentrationen der Reaktionsprodukte ClNO² und ClONO. Man erkennt, dass die Produktausbeute im Rahmen der Fehlergrenzen (hier exemplarisch für zwei Meßpunkte gezeigt) bei 100 % liegt. Die durchgezogene Linie entspricht einer Geraden mit der Steigung eins.

In den Abbildungen 10a und 10b sind die Zeitabhängigkeiten von NO₂, ClNO² und ClONO für drei verschiedene Cl₂/NO₂-Ausgangskonzentrationsverhältnisse dargestellt. Man erkennt, dass die ClONO-Konzentration in allen drei Experimenten ein Maximum durchläuft. Dieses wird um so früher durchlaufen, je kleiner die NO₂-Ausgangskonzentration ist. In dem Experiment mit dem Cl₂/NO₂-Ausgangskonzentrationsverhältnis 10:1 nimmt die NO₂-Konzentration kontinuier-
lich ab, während die ClNO₂-Konzentration einen stetigen Anstieg zeigt. Im Gegensatz dazu erreichen in den Experimenten mit den Verhältnissen 20:1 und 74:1 die Konzentrationen dieser beiden Komponenten nach ca. 200 s bzw. ca. 100 s stationäre Zustände. In einem weiteren, hier nicht dargestellten Experiment mit dem Ausgangskonzentrationsverhältnis von 95:1 wird der stationäre Zustand bereits nach ca. 80 s erreicht.

Abb. 10a: Konzentrations-Zeit-Profile von NO₂ während der Photolyse von Mischungen aus Cl₂ und NO₂ in synthetischer Luft; T = 293 K, p = 988,3 mbar; [ Cl₂ ]₀ = 1,4x10¹⁵ Moleküle cm⁻³
3.1.2 Verhalten von ClNO₂ und ClONO nach Beendigung der Photolyse

Nach Beendigung der Photolyse von Cl₂/NO₂-Mischungen kann während der sich anschließenden Dunkelphase eine Abnahme der ClONO-Konzentration bei einem gleichzeitigen Anstieg der ClNO₂- und NO₂-Konzentrationen beobachtet werden. Abb. 11 zeigt ein Differenzspektrum von zwei während der Dunkelphase aufgenommenen IR-Spektren. Die Zeitdifferenz zwischen den beiden Spektren beträgt 1850 s, wobei die Messung des ersten Spektrums 75 s nach Beendigung der Photolyse erfolgte. Diesem Dunkelphasenexperiment war die Photolyse (Dauer 155 s) einer Cl₂/NO₂-Mischung ([Cl₂]₀ = 1,5x10¹⁵ Moleküle cm⁻³ und [NO₂]₀ = 1,4x10¹⁴ Moleküle cm⁻³) in synthetischer Luft bei 997,4 mbar und 292,8 K vorausgegangen.
Die entstandene Menge an NO₂ kann dabei nur zu einem geringen Anteil aus der Reaktion von ClONO bzw. ClNO₂ mit NO (vgl. 3.1.4) resultieren, da bei diesen Reaktionen gleichzeitig auch jeweils äquivalente Mengen an ClNO entstehen und an NO verbraucht werden müssten.

Während die Umsätze für ClONO, ClNO₂ und NO₂ im gleichen Zeitraum in der Größenordnung von ca. \(4 \times 10^{13}\) Moleküle cm\(^{-3}\) liegen, beträgt die Konzentrationszunahme von ClNO jedoch nur \(6 \times 10^{11}\) Moleküle cm\(^{-3}\), d.h. 1,5 % des ClONO-Verlustes. Ein nennenswerter Umsatz an NO läßt sich in dem Differenzspektrum ebenfalls nicht beobachten. In Abb. 12 sind die Konzentrationen von NO₂, ClNO₂ und ClONO in Abhängigkeit der Zeit aufgetragen. Der in Abb. 12 gezeigte Verlauf der ClONO-Konzentration folgt einem Geschwindigkeitsgesetz 1. Ordnung. Die Geschwindigkeitskonstante beträgt \(8,5 \times 10^{-4}\) s\(^{-1}\). Dies entspricht einer Lebensdauer von 20 min.
Abb. 12: Zeitabhängigkeit der Konzentrationen von NO\textsubscript{2}, ClNO\textsubscript{2} und ClONO während der Dunkelphase nach der Photolyse einer Cl\textsubscript{2}/NO\textsubscript{2}-Mischung ([Cl\textsubscript{2}]\textsubscript{0} = 1,3 \times 10^{15} \text{ Moleküle cm}^{-3}; [NO\textsubscript{2}]\textsubscript{0} = 1,5 \times 10^{14} \text{ Moleküle cm}^{-3}); Photolysedauer 155 s; T = 292,8 K; p = 997,4 mbar synthetische Luft

Niki et al. (1978) beschreiben eine Isomerisierung von ClONO zu ClNO\textsubscript{2} nach Beendigung der Photolyse von Cl\textsubscript{2}/NO\textsubscript{2}-Mischungen als nicht stöchiometrisch und vermuten deshalb eine mögliche heterogene Reaktion. Auch wird dort neben der Bildung von ClNO\textsubscript{2} die von CINO und NO\textsubscript{2} beschrieben, ohne jedoch nähere Angaben zu machen. Man kann deshalb keine Aussage darüber treffen, ob die Bildung von NO\textsubscript{2} ausschließlich aus der Reaktion von ClONO und/oder ClNO\textsubscript{2} mit während der Photolysephase gebildetem NO resultiert oder ob eine heterogene Reaktion des ClONO für einen Teil der NO\textsubscript{2}-Bildung verantwortlich ist. Die Lebensdauer von ClONO während der Dunkelphase wird in der Arbeit von Niki et al. (1978) mit 150 s angegeben. Diese im Vergleich zu dieser Arbeit deutlich geringere Lebensdauer von ClONO läßt die Vermutung zu, dass die Abnahme von ClONO im Wesentlichen auf dessen Reaktion mit NO zurückzuführen ist. Die Beobachtung, dass sich ClONO in ClNO\textsubscript{2} umwandelt, wird in der Literatur mehrfach beschrieben. Sowohl Janowski et al. (1977) als auch Molina und Molina (1977) finden eine voll-

Abb. 13 zeigt die Massenbilanz für das in Abb. 12 dargestellte Experiment. Aufgetragen ist die Summe von gebildetem ClNO₂ und NO₂ gegen den Verlust an ClONO. Die Produktausbeute liegt im Rahmen der Fehlergrenzen (hier exemplarisch für zwei Meßpunkte dargestellt) bei 100 %.
3.1.3 Simulationsrechnungen

In Abb. 14 sind die Konzentrations-Zeit-Profile von NO₂, ClNO₂ und ClONO für ein typisches Photolyseexperiment im Vergleich mit einer Simulationsrechnung dargestellt. Die Simulationsrechnung wurden mit dem Programm LARKIN (Deuflhard and Nowak (1986)) durchgeführt.

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>( k )</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ( \text{Cl}_2 \rightarrow \text{Cl} + \text{Cl} )</td>
<td>2,8 (-4) ( ^1 )</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>(9) ( \text{NO}_2 \rightarrow \text{NO} + \text{O} )</td>
<td>2,4 (-3) ( ^1 )</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>(2a) ( \text{Cl} + \text{NO}_2 + \text{M} \rightarrow \text{ClNO}_2 + \text{M} )</td>
<td>3,7 (-12) ( ^2 )</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>(2b) ( \text{Cl} + \text{NO}_2 + \text{M} \rightarrow \text{ClONO} + \text{M} )</td>
<td>1,7 (-11) ( ^2 )</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>(-2a) ( \text{ClNO}_2 + \text{M} \rightarrow \text{Cl} + \text{NO}_2 + \text{M} )</td>
<td>3,9 (-11) ( ^1 )</td>
<td>3)</td>
</tr>
<tr>
<td>(-2b) ( \text{ClONO} + \text{M} \rightarrow \text{Cl} + \text{NO}_2 + \text{M} )</td>
<td>8,0 (-4) ( ^1 )</td>
<td>3)</td>
</tr>
<tr>
<td>(3) ( \text{ClONO} + \text{NO} \rightarrow \text{ClNO} + \text{NO}_2 )</td>
<td>1,3 (-16) ( ^2 )</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>(4) ( \text{ClNO}_2 + \text{NO} \rightarrow \text{ClNO} + \text{NO}_2 )</td>
<td>8,6 (-18) ( ^2 )</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>(16) ( \text{Cl} + \text{ClNO}_2 \rightarrow \text{Cl}_2 + \text{NO}_2 )</td>
<td>5,5 (-12) ( ^2 )</td>
<td>Nelson und Johnston (1981)</td>
</tr>
<tr>
<td>(17) ( \text{Cl} + \text{NO} + \text{M} \rightarrow \text{ClNO} + \text{M} )</td>
<td>2,3 (-12) ( ^2 )</td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>(18) ( \text{Cl} + \text{ClNO} \rightarrow \text{Cl}_2 + \text{NO} )</td>
<td>8,2 (-11) ( ^2 )</td>
<td>DeMore et al. (1997)</td>
</tr>
</tbody>
</table>

Tab. 2: Reaktionsmechanismus und Geschwindigkeitskonstanten für die in Abb. 14 dargestellte Simulationsrechnung: 1): 2,8 (-4) \( \equiv 2,8 \times 10^{-4} \text{ s}^{-1} \); 2): 3,7 (-12) \( \equiv 3,7 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \); 3): berechnet aus \( k_{\text{rec}} \) (DeMore et al. (1997)) und \( K_{\text{Gl}} \) (Patrick and Golden (1983)); alle Konstanten für \( T = 293 \text{ K} \) und \( p = 988,3 \text{ mbar} \) (\( \text{M} = \text{N}_2 \))

Für die Simulation wurden alle relevanten in der Literatur beschriebenen Reaktionen berücksichtigt. Die Photolysefrequenzen für \( \text{Cl}_2 \) und \( \text{NO}_2 \) wurden experimentell ermittelt. Die Dissoziationskonstanten für \( \text{ClNO}_2 \) und \( \text{ClONO} \) wurden aus den jeweiligen Rekombinationskonstanten (DeMore et al. (1997)) und der Gleichgewichtskonstanten (Patrick and Golden (1983)) berechnet. Für die Reaktionen von \( \text{ClNO}_2 \) und \( \text{ClONO} \) mit NO wurden die im Rahmen dieser Arbeit
(siehe Kap. 3.1.4) ermittelten Geschwindigkeitskonstanten berücksichtigt. Die wichtigsten Reaktionen sind in Tab. 2 aufgeführt.

Unter der Berücksichtigung der in Tab. 2 aufgeführten Reaktionen ergeben sich für die drei Komponenten NO₂, ClNO₂ und ClONO die in Abb. 14 dargestellten drastischen Abweichungen zwischen den experimentellen und den simulierten Konzentrations-Zeitverläufen. Die berechnete Konzentration von ClNO₂ erreicht nach ca. 175 s ein Maximum und nimmt anschließend innerhalb von 3 min bis auf null ab.

Abb. 14: Experimentelles Konzentrations-Zeit-Profil für NO₂, ClNO₂ und ClONO während der Photolyse einer Mischung aus Cl₂ und NO₂ in synthetischer Luft im Vergleich mit einer Simulationsrechnung (Mechanismus aus Tab. 2 zuzüglich der Photolyse von ClNO₂, ClONO und ClNO₂); T = 293 K; p = 988,3 mbar; [Cl₂]₀ = 1,4x10^{15} Moleküle cm⁻³; [NO₂]₀ = 1,4x10^{14} Moleküle cm⁻³

Zum Zeitpunkt t = 350 s sollte die NO₂-Konzentration ebenfalls auf null zurückgegangen sein. Die Simulation beschreibt eine fast vollständige Konvertierung von NO₂ zu ClONO. Die experimentellen Daten hingegen zeigen eine stetige, ab t = 200 s verlangsamt Abnahme der NO₂-Konzentration. Die ClNO₂-Konzentration steigt über den gesamten Zeitraum kontinuierlich.
Die ClONO-Konzentration erreicht nach ca. 300 s ein Maximum und nimmt anschließend langsam ab. Am Ende des Experiments sind alle drei Komponenten vorhanden. Die Abweichungen deuten darauf hin, dass in der Simulationsrechnung Senken für ClONO als zu klein angenommen bzw. nicht berücksichtigt wurden oder die Bildungsrate für ClONO als zu groß angenommen wurde. Als in der Simulation zunächst unberücksichtigte Senken für ClONO kommen die Photolyse, die Reaktion mit Cl-Atomen und Wandverlust in Frage. Im Folgenden sollen die drei Möglichkeiten kurz erörtert werden.

a) Bedeutung der Photolysefrequenz

Das UV-Absorptionsspektrum des ClONO reicht bis zu einer Wellenlänge von 400 nm (Molina and Molina (1977)). Als eine mögliche Senke für ClONO kommt demnach dessen Photolyse in Frage. Die Frequenz für die Photolyse von ClONO wurde relativ zur experimentell ermittelten Photolysefrequenz von NO2 abgeschätzt. Dazu wurden im Wellenlängenbereich von 300 bis 400 nm in 10 nm-Intervallen die UV-Absorptionsquerschnitte beider Moleküle mit der relativen Intensität der Photolyselampen (vgl. Abb. 2) multipliziert und die einzelnen Produkte aufsummiert. Als Quantenausbeute wurde für ClONO für alle Wellenlängen der Wert eins angenommen und für NO2 die in Atkinson et al. (1997) vorgeschlagenen Daten berücksichtigt. Aus dem berechneten Verhältnis der Photolysefrequenzen von NO2 und ClONO und der experimentell ermittelten Photolysefrequenz für NO2 von 2,4x10⁻³ s⁻¹ ergibt sich für die Photolysefrequenz von ClONO ein Wert von 8,0x10⁻⁴ s⁻¹. Nach dem gleichen Verfahren erhält man für die Moleküle ClNO, ClNO₂ und Cl₂ Photolysefrequenzen von 3x10⁻⁴ s⁻¹, 6,5x10⁻⁵ s⁻¹ und 4,4x10⁻⁴ s⁻¹. Im Vergleich dazu liegt der für Chlor ermittelte experimentelle Wert bei 2,8x10⁻⁴ s⁻¹. Um die Bedeutung der Photolysen von ClONO, ClNO₂ und ClNO abzuschätzen, wurde die Simulation einmal mit und einmal ohne diese Reaktionen durchgeführt. Dabei wurde angenommen, dass es sich bei den Photolyseprodukten um Cl-Atome und die entsprechenden Stickoxide handelt. Es zeigt sich, dass die Berücksichtigung der Photolysen von ClNO₂ und ClNO und ClONO die in Abb. 14 dargestellten Abweichungen zwischen den experimentellen und den simulierten Daten nicht erklären können. Die Photolyse von ClONO kann demnach als alleinige Senke ausgeschlossen werden. Die in Abb. 14 gezeigten Simulationsprofile basieren auf einem Mechanismus, der die Photolysen von ClONO, ClNO₂ und ClNO bereits berücksichtigt.
b) Bedeutung der Reaktion ClONO + Cl

In der Literatur werden die sehr schnellen exothermen Reaktionen von ClNO₂, ClNO und ClONO₂ mit Cl-Atomen beschrieben. In Tab. 3 sind die Geschwindigkeitskonstanten und die mit den entsprechenden Bildungsenthalpien aus DeMore et al. (1997) berechneten Reaktionsenthalpien dieser Reaktionen aufgeführt. Es ist naheliegend, eine entsprechende Reaktion auch für ClONO anzunehmen. Die Reaktionsprodukte Cl₂ und NO₂ dieser Reaktion sind allerdings nicht direkt experimentell ermittelt, sondern, in Analogie zu den Reaktionen (16), (18) und (20), als die wahrscheinlichsten angenommen worden.

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>Reaktion</th>
<th>k (293 K) cm³⁻¹ Molekül⁻¹ s⁻¹</th>
<th>ΔH°R,298K [kJ/mol]</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(18) ClNO + Cl → Cl₂ + NO</td>
<td>8,1 (-11)</td>
<td>-83</td>
<td>DeMore et al. (1997)</td>
<td></td>
</tr>
<tr>
<td>(16) ClNO₂ + Cl → Cl₂ + NO₂</td>
<td>5,5 (-12)</td>
<td>-100</td>
<td>Nelson and Johnston (1981)</td>
<td></td>
</tr>
<tr>
<td>(19) ClONO + Cl → Cl₂ + NO₂</td>
<td>7,5 (-12)</td>
<td>-142</td>
<td>diese Arbeit</td>
<td></td>
</tr>
<tr>
<td>(20) ClONO₂ + Cl → Cl₂ + NO₃</td>
<td>1,0 (-12)</td>
<td>-70</td>
<td>DeMore et al. (1997)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3: Vergleich der Geschwindigkeitskonstanten und Reaktionsenthalpien der Reaktion von Cl-Atomen mit Verbindungen des Typs ClNOₓ: k = 8,2 (-11) ≡ k = 8,2x10⁻¹¹ cm³⁻¹ Molekül⁻¹ s⁻¹; ΔH°R,298K berechnet mit ΔH°B,298K aus DeMore et al. (1997)

Eine direkte Bestimmung der Geschwindigkeitskonstanten von Reaktion (19) war mit den zur Verfügung stehenden experimentellen Methoden nicht möglich. Der Wert k₁₉ = 7,5x10⁻¹² cm³⁻¹ Molekül⁻¹ s⁻¹ wurde durch die Anpassung der simulierten an die experimentellen Konzentrations-Zeit-Profilen gewonnen. Wie man in Abb. 15 erkennen kann, reicht die Einführung dieser Reaktion bereits aus, um für alle drei Komponenten eine hervorragende Übereinstimmung zwischen den experimentellen und den simulierten Daten zu erhalten.
Abb. 15: Experimentelle Konzentrations-Zeit-Profile für NO₂, ClNO₂ und ClONO (Symbole) im Vergleich mit einer Simulationsrechnung unter Berücksichtigung der Reaktion ClONO + Cl (durchgezogene Linie); experimentelle Bedingungen wie in Abb. 14

Wendet man den in Tab. 2 gezeigten Mechanismus auf die Simulation der Konzentrations-Zeit-Profilen von NO₂, ClNO₂ und ClONO während der Dunkelphase an, so erkennt man auch hier eine deutliche Abweichung zwischen den experimentellen und den mittels Simulation erhaltenen Konzentrations-Zeit-Profile (siehe Abb. 16): die Umsätze sind für alle drei Komponenten zu gering. Die Abnahme der ClONO-Konzentration ist zu erwarten, da dieses Molekül aufgrund seiner thermischen Instabilität schneller zerfallen sollte als das ClNO₂ (Patrick and Golden (1983)). Die beim thermischen Zerfall gebildeten Cl-Atome werden anschließend nur zum Teil mit NO₂ zu dem kinetisch bevorzugt gebildeten ClONO zurückreagieren. Ein anderer Teil wird entsprechend dem Verhältnis der Rekombinationskonstanten zur Bildung von ClNO₂ führen. Diese Reaktionsfolge entspricht einer Isomerisierung in der Gasphase, deren Zeitkonstante durch k₂b und das Verhältnis k₂b / k₂a bestimmt wird. Wie Abb. 16 zeigt, ist der tatsächliche Abfall von [ClONO] jedoch 2,5 mal schneller als er durch den thermischen Zerfall von ClONO und dessen Reaktionen mit Cl-Atomen und NO erklärt werden kann. Die Reaktion von Cl-Atomen mit
ClNO liefert Cl₂ und NO, dessen Reaktionen mit ClONO und ClNO₂ (siehe 3.1.4) ebenso zur Bildung von NO₂ führen können wie die direkte Reaktion von Cl-Atomen mit ClONO und ClNO₂.

Abb. 16: Experimentelles Konzentrations-Zeit-Profil für NO₂, ClNO₂ und ClONO während eines Dunkleexperimentes im Vergleich mit einer Simulationsrechnung (durchgezogene Linien); Simulation mit dem Mechanismus aus Tab. 2; T = 292,8 K, p = 997,3 mbar; vorangegangene Photolyse: 300 nm ≤ λ ≤ 500 nm, 155 s; [Cl₂]₀ = 1,3x10¹⁵ Moleküle cm⁻³; [NO₂]₀ = 1,5x10¹⁴ Moleküle cm⁻³

Um die Umsätze von NO₂, ClONO und ClNO₂ während der Dunkelphase zu erklären, sind mehrere Reaktionswege denkbar.

Der in den Simulationsrechnungen verwendete Wert für die Geschwindigkeitskonstante des thermischen Zerfalls von ClONO resultiert aus k₂b und berechneten Daten für die Gleichgewichtskonstante K₂b/-2b (Patrick und Golden (1986)). Um einen Hinweis auf die Genauigkeit der Zerfallskonstanten zu erhalten, wurde das Zeitverhalten von ClONO nach Beendigung der Photolyse in Gegenwart von Propan als Cl-Atomfänger untersucht. Dazu wurde bei T = 295 K eine Mischung aus 1,4x10¹⁵ Moleküle cm⁻³ Cl₂ und 8,6x10¹³ Moleküle cm⁻³ NO₂ in 989 mbar
synthetischer Luft photolysiert (300 nm ≤ λ ≤ 500 nm). Nach Beendigung der Photolyse und einer Wartezeit von etwa 420 s erfolgte die Zugabe von 1,1x10^{14} Moleküle cm^{-3} Propan mittels einer gasdichten Spritze. Die bei einem thermischen Zerfall des ClONO entstehenden Cl-Atome werden von Propan unter Bildung von HCl abgefangen. Das dabei entstehende Propyl-Radikal wird von O_2 unter Bildung des entsprechenden Peroxyradikals abgefangen, welches mit NO_2 zu Propylperoxynitrat rekombinieren kann. Zum Zeitpunkt der Propan-Zugabe betrug die NO_2-Konzentration 4,4x10^{13} Moleküle cm^{-3}. Mit einer Geschwindigkeitskonstante für die Reaktion von Propan mit Cl-Atomen von k_{Cl+Propan} = 1,4x10^{-10} cm^3 Molekül^{-1} s^{-1} (Atkinson et al. (1997)) beträgt das Verhältnis der Geschwindigkeiten der Reaktionen von Cl mit Propan und NO_2 20 : 1. Die Abnahme der ClONO-Konzentration folgt, wie in Abb. 17 dargestellt, einer Kinetik 1. Ordnung. Man erkennt keine deutlich beschleunigte Abnahme der ClONO-Konzentration nach der Zugabe von Propan.

Abb. 17: Zeitverhalten von ClONO vor und nach der Zugabe von 1,1x10^{14} Moleküle cm^{-3} Propan zu einer Mischung aus ClONO, ClNO_2 und NO_2 in synthetischer Luft; T = 295 K; p = 989 mbar

Die Zeitkonstante für die ClONO-Abnahme beträgt 1,3x10^{-3} s^{-1}. Da unter den gegebenen experimentellen Bedingungen maximal 5 % der Cl-Atome mit NO_2 zu ClONO rekombinieren können,
kann ein Wert von $1,4 \times 10^{-3} \text{s}^{-1}$ als obere Grenze für den thermischen Zerfall des ClONO angegeben werden, der mit dem Wert aus Tabelle 2 vereinbar ist. Es kann allerdings keine Aussage darüber gemacht werden, ob auch eine Wandreaktion für einen Teil der Abnahme des ClONO verantwortlich ist.

Abb. 18: Experimentelles Konzentration-Zeit-Profil für NO₂, ClNO₂ und ClONO in der Dunkelphase; Zugabe von $1,1 \times 10^{14} \text{Moleküle cm}^{-3}$ Propan nach $t = 420 \text{s}$; $T = 295 \text{K}$; $p = 989 \text{mbar}$ synthetische Luft

Die Konzentrations-Zeit-Profile für NO₂, ClNO₂ und ClONO für dieses Experiment sind in Abb. 18 dargestellt. Die Konzentration von ClNO₂ steigt auch nach der Zugabe von Propan weiterhin an. Die Rekombination von Cl-Atomen mit NO₂ zu ClNO₂ kann diesen Anstieg nicht bewirken, so dass eine weitere Quelle für ClNO₂ vorhanden sein muß. Bei diesem Experiment kann neben der Abnahme der Propankonzentration auch die Bildung von HCl beobachtet werden.

Darüberhinaus lassen sich nach der Zugabe von Propan in den IR-Spektren zwei Banden bei $1298 \text{cm}^{-1}$ und $1719 \text{cm}^{-1}$ nachweisen. Die Lage dieser Banden ist typisch für Peroxynitrinate. Die Abnahme von Propan bei zeitgleicher Bildung von HCl und eines Peroxynitrates belegen die Bildung von Cl-Atomen in dem Reaktionssystem.
Eine Erhöhung der Geschwindigkeitskonstanten für den thermischen Zerfall des ClONO auf 1,4x10^{-3} \text{s}^{-1} reicht jedoch nicht aus, um das in Abb. 16 gezeigte Experiment zu simulieren. Die Simulation des Reaktionsystemes gelingt nur, wenn gleichzeitig auch eine Änderung des Rekombinationsverhältnisses für die Bildung von ClONO und ClNO2 von 4:1 auf 1:1 vorgenommen wird. Dies jedoch führt für die Photolysephase zu einer völlig falschen Wiedergabe der Konzentrationsverläufe und wird deshalb verworfen.

Unter Berücksichtigung der Reaktion (19) von ClONO mit Cl-Atomen als NO2-Quelle wird der Verlauf der NO2-Konzentration gut wiedergegeben (Abb. 19). Die Abnahme der ClONO-Konzentration verläuft zwar schneller, ist aber immer noch zu gering. Die Entwicklung der ClNO2-Konzentration wird gar nicht beeinflußt.

Abb.19: Experimentelles Konzentrations-Zeit-Profil für NO2, ClNO2 und ClONO (Symbole) im Vergleich mit einer Simulationsrechnung (durchgezogene Linien); Mechanismus aus Tab. 2 zuzüglich der Reaktion (19) ClONO + Cl \rightarrow Cl2 + NO2; experimentelle Bedingungen wie in Abb. 16

Eine Reaktion, die eine schnelle Konvertierung von ClONO zu ClNO2 erklären könnte, wäre die bimolekulare exotherme Reaktion (21) von ClONO mit NO2:
Bei dieser Reaktion würde nur ClONO in ClNO₂ umgewandelt werden, die NO₂-Konzentration bliebe unbeeinflusst, in Übereinstimmung mit den experimentellen Konzentrationsprofilen in Abb. 19. Zur Überprüfung der Existenz dieser Reaktion wurden drei Experimente bei gleichem Druck, gleicher Temperatur und gleichen Anfangskonzentrationen durchgeführt. Nach Beendigung der Photolyse der Cl₂/NO₂-Mischung erfolgte im ersten Fall keine, in den beiden anderen Experimenten aber die Zugabe einer zusätzlichen Menge von \(7 \times 10^{14}\) bzw. \(1,5 \times 10^{15}\) Moleküle cm\(^{-3}\) NO₂. Da die NO₂-Konzentration zu Beginn der Dunkelphase bei ca. \(9 \times 10^{13}\) Moleküle cm\(^{-3}\) lag, sollte ClONO in den drei Experimenten sehr unterschiedlich schnell abreagieren. Das Zeitverhalten des ClONO war jedoch in allen drei Fällen gleich und somit unabhängig von der NO₂-Konzentration. Aus diesem Grund kann die Existenz der Reaktion (21) mit Sicherheit ausgeschlossen werden.

Eine weitere Möglichkeit zur Erklärung der im Vergleich zur Simulation schnelleren Umwandlung von ClONO in ClNO₂ und NO₂ besteht in der Existenz der bimolekularen Reaktionen (22) - (24).

\[
\begin{align*}
\text{(21)} 
\text{ClONO} + \text{NO₂} & \rightarrow \text{ClNO}_2 + \text{NO}_2 \\
\Delta H_{R, 298K}^0 &= -43,5 \text{ kJ mol}^{-1}
\end{align*}
\]

Im I₂/NO₂-System wird eine den Reaktionen (22) und (24) analoge bimolekulare Reaktion zwischen zwei INO₂-Molekülen beschrieben (Van den Bergh and Troe (1976)).


\[
(-2b) \quad \text{ClONO} + \text{M} \rightarrow \text{Cl} + \text{NO}_2 + \text{M} \quad k_{\text{dis}} = 8,0 \times 10^{-4} \text{ s}^{-1}
\]

\[
(25) \quad \text{ClONO} \rightarrow \text{ClNO}_2 \quad k_{\text{het.}} = 4,0 \times 10^{-4} \text{ s}^{-1}
\]

\[
(26) \quad \text{ClONO} \rightarrow \text{Cl}_{\text{ads.}} + \text{NO}_2 \quad k_{\text{het.}} = 1,5 \times 10^{-4} \text{ s}^{-1}
\]

Wie der Abb. 20 zu entnehmen ist stimmen mit diesem Mechanismus experimentelle und berechnete Daten hervorragend überein. Die eingetragenen Fehlerbalken sind exemplarisch und gelten analog für die anderen Meßpunkte.

Abb. 20: Experimentelles Konzentrations-Zeit-Profil für NO₂, ClNO₂ und ClONO (Symbole) in der Dunkelphase im Vergleich mit einer Simulationsrechnung (durchgezogene Linien); Mechanismus aus Tab. 2 zuzüglich der Reaktionen (19), (25) und (26); experimentelle Bedingungen wie in Abb. 16
Werden die Wandreaktionen auch bei der Simulation der Photolysephase berücksichtigt, so werden der Verbrauch an ClONO und die Zunahme an ClNO₂ geringfügig zu schnell, wie Abb. 21 zu entnehmen ist.

Abb. 21: Experimentelle Konzentrations-Zeit-Profile für NO₂, ClNO₂ und ClONO (Symbole) in der Photolysephase im Vergleich mit einer Simulationsrechnung; Mechanismus aus Tab. 2 und Berücksichtigung der Reaktionen (19), (25) und (26) (durchgezogene Linie); experimentelle Bedingungen wie in Abb. 14 und Abb. 15.

Dies kann durch eine geringfügige Änderung des Verhältnisses der Geschwindigkeitskonstanten für die Rekombination von Cl mit NO₂ zu ClONO bzw. ClNO₂ korrigiert werden. In der Literatur (DeMore et al. (1997)) wird das Bildungsverhältnis von ClONO zu ClNO₂ für 980 mbar und 293 K mit 80,7 : 19,3 angegeben. Ändert man dieses Verhältnis auf 85,4 : 14,6, so läßt sich das Photolyseexperiment hervorragend simulieren (Abb. 22). Auf die Simulation der Konzentrations-Zeit-Profile während der Dunkelphase hat das geänderte Verzweigungsverhältnis keinen Einfluß.
Abb. 22: Experimentelle Konzentrations-Zeit-Profile für NO₂, ClNO₂ und ClONO ( Symbole ) im Vergleich mit einer Simulationsrechnung; Mechanismus aus Tab. 2 zuzüglich der Reaktionen (19), (25), (26) und geänderten Verzweigungsverhältnis $k_{2a} : k_{2b}$ ( durchgezogene Linie ); experimentelle Bedingungen wie in Abb. 14

In Abb. 23 a) und Abb. 23 b) sind für drei weitere Photolyseexperimente die NO₂-, ClNO₂- und ClONO Konzentrations-Zeit-Profile im Vergleich mit Simulationsrechnungen dargestellt. Die Simulationen wurden unter Berücksichtigung des erweiterten Reaktionsmechanismusses durchgeführt und lassen eine gute Übereinstimmung zwischen den experimentellen und den simulierten Daten erkennen.
Abb. 23: Konzentrations-Zeit-Profile für a) NO₂ sowie b) ClNO₂ (offene Symbole) und ClONO (geschlossene Symbole) während der Photolyse (300 nm ≤ λ ≤ 500 nm) von Cl₂ und NO₂ in synthetischer Luft; [Cl₂]₀ = 1,4x10¹⁵ Moleküle cm⁻³; [NO₂]₀ = 7x10¹³ (▲); 1,9x10¹³ (♦); 1,5x10¹³ (■) Moleküle cm⁻³; T = 293 K; p = 988,3 mbar; im Vergleich mit Simulationsrechnungen (durchgezogene Linien) nach dem erweiterten Mechanismus.

In Abb. 24 a) und Abb. 24 b) sind die Zeitabhängigkeiten der Konzentrationen von NO₂, ClNO₂ und ClONO für zwei Experimente während der Dunkelphase dargestellt. Diesen Experimenten war die Photolyse (300 nm ≤ λ ≤ 500 nm) von Mischungen aus Cl₂ (1,4x10¹⁵ Moleküle cm⁻³) und NO₂ in synthetischer Luft (T = 293 K und p = 990 mbar) vorangegangen. Die Ausgangskonzentrationen von NO₂ betrugen 1,4x10¹⁴ Moleküle cm⁻³ (Abb. 24 a), Photolysedauer 50 s bzw. 7x10¹³ Moleküle cm⁻³ (Abb. 24 b), Photolysedauer 460 s.)
Abb 24: Vergleich von experimentellen Konzentrations-Zeit-Verläufen (Symbole: ●: NO₂, ▲: ClNO₂, ■: ClONO) mit Simulationsrechnungen (durchgezogene Linien) in der Dunkelphase für zwei Experimente bei 293 K und 990 mbar (M = synthetische Luft) mit unterschiedlichen Anfangskonzentrationen; Abb. 24 a): für NO₂ gilt die rechte Abszisse; Konzentration in 10^{14} Moleküle cm^{-3}

Die hier beschriebenen Experimente lassen sich mit folgenden Änderungen bzw. Zusätzen gegenüber Literaturdaten (siehe Mechanismus in Tab. 2) quantitativ beschreiben:

1. Die Einführung der Reaktion von Cl-Atomen mit ClONO

\[ \text{Cl} + \text{ClONO} \rightarrow \text{Cl}_2 + \text{NO}_2; \quad k_{293\text{K}} = \left(7,5 \pm 1,0\right) \times 10^{-12} \text{cm}^3 \text{Molekül}^{-1} \text{s}^{-1} \]

2. Eine heterogene Umwandlung von ClONO in ClNO₂ und NO₂

\[ \text{ClONO} \rightarrow \text{ClNO}_2; \quad k_{\text{het.}} = \left(4,0 \pm 1,0\right) \times 10^{-4} \text{s}^{-1} \]
\[ \text{ClONO} \rightarrow \text{Cl}_{\text{ads.}} + \text{NO}_2; \quad k_{\text{het.}} = \left(1,5 \pm 0,8\right) \times 10^{-4} \text{s}^{-1} \]

3. Korrektur des Verzweigungsverhältnisses \( k_{2b} : k_{2a} \) von 80,7 : 19,3 auf 85,4 : 14,6

Dabei werden mit dem erweiterten Reaktionsmechanismus die Konzentrations-Zeit-Verläufe für NO₂, ClNO₂ und ClONO für die Photolyse- (Abb. 22 und Abb. 23) und die Dunkelphase (Abb. 18, Abb. 20 und Abb. 24) gleichermaßen sehr gut wiedergegeben.
3.1.4 Verhalten von ClONO und ClNO₂ in Gegenwart von NO

3.1.4.1 Temperaturabhängigkeit der Reaktion (3) ClONO + NO

Für die Experimente zur Untersuchung der Reaktion von ClONO mit NO erfolgte die Darstellung des ClONO durch die Photolyse (300 nm ≤ λ ≤ 500 nm) von Mischungen aus Cl₂ und NO₂ in Gegenwart von 990 ± 10 mbar N₂. Die Ausgangskonzentrationen betrugen 1x10¹⁵ Moleküle cm⁻³ für Cl₂ und 1x10¹⁴ Moleküle cm⁻³ für NO₂. Die Photolysedauer varierte je nach Temperatur von 155 s bei 298 K bis 600 s bei 273 K. Nach Beendigung der Photolyse und Zugabe von NO zu der Gasmischung tritt als Folge von Reaktion (3) eine schnelle Abnahme der ClONO-Konzentration ein. Zeitgleich dazu wird die Bildung von NO₂ und ClNO beobachtet. Dies wird durch das in Abb. 25 gezeigte IR-Differenzspektrum verdeutlicht.

![IR-Differenzspektrum](image_url)

Abb. 25: IR-Differenzspektrum während der Dunkelphase nach NO-Zugabe zu einer Reaktionsmischung; Δt = 56 s; T = 283,4 K; p = 997 mbar N₂

Es wurde durch die spektrale Subtraktion von zwei zu verschiedenen Zeiten nach NO-Zugabe aufgenommenen IR-Spektren erhalten. Anhand der Absorptionsbanden bei 1800 cm⁻¹ und 1625 cm⁻¹...
cm⁻¹ können die Reaktionsprodukte ClNO und NO₂ identifiziert werden. Die Konzentrations-
abnahme des ClONO ist anhand der Bande bei 1725 cm⁻¹ zu erkennen.

Die zeitliche Abnahme der ClONO-Konzentration in Gegenwart eines NO-Überschusses folgt
einer Reaktionskinetik 1. Ordnung. Abb. 26 zeigt diese Abhängigkeit für verschiedene NO-Kon-
zentrationen und 273 K.

![Diagram](image)

**Abb. 26: Zeitliche Abhängigkeit der ClONO-Konzentration in Gegenwart von verschiedenen
NO-Konzentrationen; T = 273 K**

Die Angabe „ohne NO-Zugabe“ (geschlossene Kreise in Abb. 26 ) bezieht sich auf die zeitliche
Abnahme von ClONO in Abwesenheit von NO. Diese Abnahme kann ihre Ursachen in einer
Wandreaktion haben. Dazu wurden die Experimente, in Abänderung zu den oben beschriebenen
in synthetischer Luft durchgeführt und außerdem die Photolysezeit herabgesetzt. Unter diesen
Bedingungen wird eine für eine kinetische Messung ausreichend große Menge an ClONO gebil-
det und gleichzeitig die NO-Konzentration gering gehalten. Nach Ausschalten der Photolyselam-
pen und einer entsprechenden Wartezeit konnte eine NO-freie Reaktionsmischung erhalten werden. Wie man in Abb. 26 erkennen kann, ist die Lebensdauer von ClONO unter NO freien Bedingungen deutlich größer als bei Anwesenheit von NO.

Abb. 27: Geschwindigkeitskonstanten pseudo-1. Ordnung der Reaktion von ClONO mit NO für verschiedene Temperaturen als Funktion der NO-Konzentration

Die mittels linearer Regression ermittelten Geradensteigungen ergeben die Geschwindigkeitskonstanten $k_3$ für die Reaktion von ClONO mit NO für die entsprechende Temperatur. Die Auftragung nach Arrhenius (Abb. 28) liefert für die Temperaturabhängigkeit der Reaktion $k_3 = 7,5 \times 10^{-12} \exp[(-26,9 \pm 0,7) \text{kJ mol}^{-1}/\text{RT}] \text{cm}^3 \text{Molekül}^{-1} \text{s}^{-1}(2\sigma)$. 
3.1.4.2 Temperaturabhängigkeit der Reaktion (4) ClNO₂ + NO
ClNO₂ wurde ebenso wie ClONO in situ durch Photolyse von Cl₂/NO₂-Mischungen in Stickstoff hergestellt. Die Untersuchung der Reaktion ClNO₂ + NO erfolgte nach vollständiger Abreaktion des gleichzeitig entstandenen ClONO. In den meisten Fällen konnten beide Reaktionen mit einer Reaktorfüllung gemessen werden. Dabei wurde die schnellere Reaktion (3) ClONO + NO zuerst in Gegenwart einer vergleichsweise kleinen NO-Konzentration untersucht. Nach dem Abbau von ClONO wurde eine größere Menge an NO zugegeben, um die deutlich langsamere Reaktion (4) von ClNO₂ mit NO zu beschleunigen. In einigen Fällen wurde direkt eine größere Menge NO zu der Reaktionsmischung gegeben und mit der zeitlichen Erfassung der ClNO₂-Konzentration erst nach einer geeigneten Wartezeit begonnen.

Abb. 29 zeigt ein typisches IR-Differenzspektrum für die Änderung der Reaktionsmischung nach NO-Zugabe. Man erkennt die Abnahme von ClNO₂ bei 800 cm⁻¹, 1270 cm⁻¹, 1320 cm⁻¹ und 1680 cm⁻¹, sowie die Bildung von NO₂ und ClNO bei 1625 cm⁻¹ und 1800 cm⁻¹.
Abb. 29: IR-Differenzspektrum, Δt = 575 s; T = 282,3 K; p = 998 mbar N₂

Das zeitliche Verhalten der ClNO₂-Konzentration folgt, wie in Abb. 30 exemplarisch für verschiedene NO-Konzentrationen bei 273 K gezeigt, einem Geschwindigkeitsgesetz 1. Ordnung. Im Gegensatz zu den Experimenten mit ClONO sind hier keine Korrekturen der experimentellen Geschwindigkeitskonstanten 1. Ordnung bezüglich ClNO₂-Verlusten auf der Gefäßwand erforderlich, da die Wandverluste sehr gering sind. Die Abnahme der ClNO₂-Konzentration bei Abwesenheit von NO betrug weniger als 1 % pro Stunde. Dazu wurde, wie bereits oben beschrieben, das Experiment bei der betreffenden Temperatur so durchgeführt, dass vor Beginn der Messung eine NO-freie Reaktionsmischung erhalten wurde.
Abb. 30: Zeitliche Änderung der ClNO₂-Konzentrationen in Gegenwart unterschiedlicher Mengen an überschüssigem NO; T = 273 K

Die Geschwindigkeitskonstanten pseudo-1. Ordnung für die ClNO₂-Abnahme in Gegenwart von überschüssigem NO, $k_{1. Ordnung} = k_4 \times [\text{NO}]$, sind in Abb. 31 als Funktion der NO-Konzentration für 298, 293, 283 und 273 K dargestellt.
Abb. 31: Geschwindigkeitskonstanten pseudo-1. Ordnung der ClNO\textsubscript{2}-Abnahme als Funktion der NO-Konzentration für verschiedene Temperaturen

Die mittels linearer Regression ermittelten Geradensteigungen ergeben die Geschwindigkeitskonstanten \( k_4 \) der Reaktion von ClNO\textsubscript{2} mit NO für die jeweilige Temperatur. Die Temperaturabhängigkeit von \( k_4 \) wird durch folgenden Ausdruck wiedergegeben:

\[
k_4 = 1,5 \times 10^{-12} \exp \left[ \left(-29,2 \pm 3,4 \right) \text{kJ mol}^{-1} / RT \right] \text{cm}^3 \text{Molekül}^{-1} \text{s}^{-1} \quad (2\sigma)
\]

Aktivierungsenergie in hervorragendem Einklang, jedoch finden die Autoren einen um den Faktor 1,7 größeren Vorfaktor (Wilkins et al. (1974)).

Abb. 32: Auftragung nach Arrhenius für die Reaktion ClNO$_2$ + NO im Vergleich mit Literaturdaten

<table>
<thead>
<tr>
<th>$k_{298K}$</th>
<th>A</th>
<th>$E_A$</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>[cm$^3$ Molekül$^{-1}$ s$^{-1}$]</td>
<td>[cm$^3$ Molekül$^{-1}$ s$^{-1}$]</td>
<td>[kJ mol$^{-1}$]</td>
<td></td>
</tr>
<tr>
<td>1,2x10$^{-17}$</td>
<td>1,5x10$^{-12}$</td>
<td>29,2 ± 3,4</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1,2x10$^{-17}$</td>
<td>1,4x10$^{-12}$</td>
<td>28,9 ± 1,3</td>
<td>Freiling et al. (1952)</td>
</tr>
<tr>
<td>2,1x10$^{-17}$</td>
<td>2,3x10$^{-12}$</td>
<td>28,8 ± 1,3</td>
<td>Wilkins et al. (1974)</td>
</tr>
</tbody>
</table>

Tab. 4: Vergleich der Ergebnisse dieser Arbeit mit Literaturdaten für die Reaktion ClNO$_2$ + NO
3.2 Nitrylbromid (BrNO₂)

3.2.1 Photolyse von Br₂/NO₂-Mischungen im Wellenlängenbereich 500 nm ≤ λ ≤ 700 nm

Bei der Photolyse (500 nm ≤ λ ≤ 700 nm) von Br₂ in Gegenwart von NO₂ entsteht BrNO₂. Das in Abb. 33 gezeigte IR-Spektrum wurde während der Photolyse einer Mischung aus 8,2x10¹⁴ Moleküle cm⁻³ Br₂ und 7,1x10¹⁴ Moleküle cm⁻³ NO₂ in 989 mbar N₂ bei einer Temperatur von 292 K erhalten.

NO₂ kann anhand der starken Absorptionsbande im Bereich von 1540 bis 1660 cm⁻¹ identifiziert werden. Die beiden Banden bei 1250 und 1730 cm⁻¹ stammen von N₂O₅, die kleine Absorptionsbande bei 1800 cm⁻¹ von BrNO, das als Nebenprodukt entsteht.
Abb. 34: wie Abb. 33; nach der spektralen Subtraktion der Absorptionen von NO₂, N₂O₅ und BrNO; BrNO₂ ist anhand der Absorptionsbanden bei 1200, 1292 und 1667 cm⁻¹ zu identifizieren; die Restabsorption im Bereich von 1540 bis 1660 cm⁻¹ stammt von der nahezu gesättigten NO₂-Bande

Nach der spektralen Subtraktion der von NO₂, N₂O₅ und BrNO stammenden Absorptionen sind drei Banden bei 1200, 1292 und 1667 cm⁻¹ zu erkennen. Anhand der Übereinstimmung dieser Banden im Vergleich mit in der Literatur veröffentlichten Matrix- und Gasphasen-IR-Spektren (Tevault (1979), Feuerhahn et al. (1979), Finlayson-Pitts et al. (1989), Frenzel et al. (1996) und Scheffler et al. (1997)) kann BrNO₂ als alleiniges Produkt im Restspektrum identifiziert werden. Während bei der Photolyse von Cl₂/NO₂-Mischungen neben ClNO₂ auch das Isomere ClONO gebildet wird, kann in dem Br₂/NO₂-System kein BrONO nachgewiesen werden. Dies steht im Einklang mit den Ergebnissen von Yarwood und Niki (1991), die bei FTIR-Produktstudien während der UV-Photolyse von Br₂/NO₂/Luft-Mischungen zwar BrNO₂, nicht aber BrONO nachweisen konnten. Sowohl Tevault (1979) als auch Feuerhahn et al. (1979) erhielten BrONO

Die bei der Photolyse (500 nm ≤ λ ≤ 700 nm) von Br₂ gebildeten Br-Atome reagieren unter Rekombination mit NO₂ zu BrNO₂. NO₂ wird unter diesen Bedingungen nicht photolysiert, da die Grenzwellenlänge für die Photolyse des NO₂ bei 424 nm liegt (Atkinson et al. (1997)). Die wichtigsten Reaktionen in diesem System sind

\[
\begin{align*}
(6) & \quad Br₂ + hν \rightarrow Br + Br \\
(7a) & \quad Br + NO₂ + M \rightarrow BrNO₂ \\
(27) & \quad BrNO₂ + Br \rightarrow Br₂ + NO₂ \\
(8) & \quad BrNO₂ + NO \rightarrow BrNO + NO₂ \\
(28) & \quad BrNO + Br \rightarrow Br₂ + NO
\end{align*}
\]

Nach Photolysezeiten von einigen Minuten erreicht die BrNO₂-Konzentration einen konstanten Endwert. Dies bedeutet, daß auch Verlustreaktionen für BrNO₂ vorhanden sein müssen. In Frage kommen dafür z. B. die Reaktionen von Br-Atomen (27) oder NO (8) mit BrNO₂. In Reaktion (27) entstehen wieder die Ausgangsverbindungen Br₂ und NO₂. Reaktion (8) führt zur Bildung von BrNO, aus dem in einer Folgereaktion (28) mit Br-Atomen NO zurückgebildet wird. Die Reaktion von BrNO₂ mit NO kann in Analogie zu den Reaktionen von ClNO₂ und ClONO betrachtet werden und wird zu einem späteren Zeitpunkt ausführlich beschrieben. Die Untersuchung der Reaktion Br + BrNO erfolgte von Hippler et al. (1978) (k_{28, 298 K} = 3,7 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}) sowie Grimley und Houston (1980) (k_{28, 298 K} = 5,2 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}). In diesem Zyklus fungiert das NO als Katalysator. Das im NO₂ als Verunreinigung enthaltene NO reduziert demnach die Ausbeute an BrNO₂. Aus diesem Grund wurde in den Experimenten über die BrNO₂-Bildung während der Photolyse von Br₂/NO₂-Gemischen und zur Bestimmung der Lebensdauer des BrNO₂ in der Dunkelphase das NO vor Beginn der Photolyse durch die Zugabe von O₃ zu NO₂ oxidiert. Da sich dabei die Reaktion von O₃ mit NO₂ zu NO₃ nicht vermeiden läßt, kommt es, wie in Abb. 33 erkennbar, zur Bildung von N₂O₅. Die Anwesenheit von N₂O₅ hatte allerdings keinen experimentell nachweisbaren Einfluß auf das kinetische Verhalten des BrNO₂. Bedingt durch das im Überschuß vorhandene NO₂ können nur sehr kleine Konzentrationen des reaktiven NO₃-Radikales vorhanden sein.
Nach Vergleich mit der Photolysefrequenz von Br₂ kann die Photolyse als signifikante Senke von BrNO₂ ausgeschlossen werden: Im Wellenlängenbereich von 500 bis 540 nm sind die Absorptionsquerschnitte des BrNO₂ (Scheffler et al. (1997)) um einen Faktor 10 - 20 kleiner als die von Br₂ (Hubinger and Nee (1995)), oberhalb von 540 nm (der Grenzwellenlänge für die Br₂-Photolyse) kleiner als 10⁻²⁰ cm² Molekül⁻¹. Da die Photolysefrequenz des Br₂ in dem Photoreaktor nur 10⁻⁴ s⁻¹ beträgt, kann die Photolyse von BrNO₂ vernachlässigt werden.

In Abb. 35 sind drei Konzentrations-Zeit-Profile für die BrNO₂-Bildung bei verschiedenen NO₂-Ausgangskonzentrationen dargestellt.

Abb. 35: Konzentrations-Zeit-Profile für die BrNO₂-Bildung bei verschiedenen NO₂ Ausgangskonzentrationen: Ausgangskonzentrationen (in Moleküle cm⁻³): ( ▲ ): [Br₂]₀ = 7,1x10¹⁴, [NO₂]₀ = 1,7x10¹⁴; ( ▼ ): [Br₂]₀ = 7,1x10¹⁴, [NO₂]₀ = 3,5x10¹⁴; ( ● ): [Br₂]₀ = 8,2x10¹⁴, [NO₂]₀ = 7,1x10¹⁴; T = 293 ± 1 K, p = 988 ± 2 mbar, M = N₂

Es ist erkennbar, daß die Konzentration des BrNO₂ in allen drei Experimenten einen konstanten Endwert erreicht. Die Dauer für die Einstellung der stationären Konzentrationen hängt von der NO₂-Ausgangskonzentration ab. In dem mit (●) dargestellten Experiment wird nach 800 s eine

Unter der Annahme, dass die Rekombination von Br mit NO₂ die einzige Quelle und die Reaktion von Br mit BrNO₂ die alleinige Senke für BrNO₂ darstellt, sollte für die stationäre BrNO₂-Konzentration folgende Beziehung gelten:

\[
[\text{BrNO}_2]_{\text{ss}} = \left( \frac{k_{\text{7a}}}{k_{\text{27}}} \right) [\text{NO}_2]_{\text{ss}} = \left( \frac{k_{\text{7a}}}{k_{\text{27}}} \right) [\text{NO}_2]_0
\]

[ NO₂ ]ₜ kann näherungsweise mit [ NO₂ ]₀ gleichgesetzt werden, da NO₂ in einem großen Überschuß vorliegt und die Abnahme der NO₂-Konzentration während der Photolyse nur 1,5 bis 2 % beträgt. Mit \( k_{\text{7a}} = 4,57 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \) ( \( T = 293 \text{ K}, p = 988 \text{ mbar}, \text{DeMore et al. (1997)} \)), [ BrNO₂ ]ₜ = 2,4 \times 10^{12} \text{ Moleküle cm}^{-3} \text{ und [ NO₂ ]₀ = 1,7 \times 10^{14} \text{ Moleküle cm}^{-3} \text{ ergibt sich für die Geschwindigkeitskonstante der Reaktion von BrNO₂ mit Br-Atomen (27) } k_{\text{27}} = 3,2 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}. \text{ Dieser Wert für } k_{\text{27}} \text{ liegt deutlich oberhalb der von Mellouki et al. (1989) angegebenen Grenzen ( } k_{\text{27}} = 1 \times 10^{-10} - 1 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \) für die Reaktion (27). Mit einem einfachen Reaktionsmechanismus wurde eine Simulation der in Abb. 35 dargestellten Experimente durchgeführt. Der Mechanismus enthält die Photolyse von Br₂ (6), als Quelle für BrNO₂ die Rekombination von Br-Atomen mit NO₂ (7a) und als Senke die Reaktion von Br-Atomen mit BrNO₂ (27). Eine weitere Senke für BrNO₂ fand keine Berücksichtigung, da dieses in den Zeitdauern dieser Experimente stabil ist, wie im nachfolgenden Abschnitt erläutert wird.

**Mechanismus I:** (6) \[ \text{Br}_2 + h\nu \rightarrow \text{Br} + \text{Br} \quad k_6 = 1 \times 10^{-4} \text{ s}^{-1} \]

(7a) \[ \text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_2 + \text{M} \quad k_{\text{7a}} = 4,57 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \]

(27) \[ \text{BrNO}_2 + \text{Br} \rightarrow \text{Br}_2 + \text{NO}_2 \quad k_{\text{27}} = 3 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \]

In Abb. 36 werden die in Abb. 35 gezeigten experimentellen Daten mit den nach Mechanismus I berechneten Zeitverläufen für BrNO₂ verglichen. Der in den simulierten Verläufen im Vergleich zu den experimentellen Daten schnellere Anstieg der Konzentration ist darauf zurückzuführen,
daß in den Experimenten die Intensität des Photolyselichtes und damit die Br₂-Photolyseskonstante zunächst anwächst und erst verzögert den in der Simulation verwendeten stationären Endwert erreicht. Die simulierten Daten geben in Bezug auf die Einstellzeit und die Endwerte der stationären BrNO₂ Konzentrationen qualitativ die richtigen Verläufe wieder. Für das mit den ( ) dargestellte Experiment ist der Endwert der BrNO₂ Konzentration aber deutlich zu klein. Die Ursache dafür kann in einer Überschätzung der Bedeutung der Reaktion (27) liegen.

Abb. 36: Vergleich der experimentellen (Symbole) mit den nach Mechanismus I simulierten Zeitverläufen (durchgezogene Linien) der BrNO₂-Konzentration; experimentelle Daten wie in Abb. 35

Mellouki et al. (1989) erhalten in Simulationsrechnungen ihrer Experimente bezüglich der Rekombination von Br-Atomen mit NO₂ unter Berücksichtigung eines Wertes von \( k_{27} = 1,7 \cdot 3,0 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \) die besten Übereinstimmungen zwischen experimentellen und simulierten Daten. Verwendet man den Mittelwert von \( k_{27} = 2,4 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \), ergibt sich nach Gleichung (I) für die Rekombination von Br mit NO₂ \( k_{7a} = 3,4 \times 10^{-13} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \). Dieser Wert für die Geschwindigkeitskonstante der Rekombination ist um einen Faktor 13 kleiner als der experimentelle Wert von Kreutter et al. (1991), der von DeMore et al. (1997) und
Atkinson et al. (1997) berücksichtigt wird. Unter der Annahme, daß der Wert für $k_27$ richtig ist, läßt sich die kleinere Rekombinationskonstante $k_{7a}$ mit den Ergebnissen von Kreutter et al. (1991) nur unter der Annahme vereinbaren, daß bei der Rekombination von Br-Atomen mit NO$_2$ überwiegend das Isomere BrONO gebildet wird.

\[
\begin{align*}
(7a) & \quad \text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_2 + \text{M} \quad \text{(Nebenprodukt)} \\
(7b) & \quad \text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrONO} + \text{M} \quad \text{(Hauptprodukt)}
\end{align*}
\]

Die von Kreutter et al. (1991) gemessene Rekombinationskonstante muß dann als $k_7 = k_{7a} + k_{7b}$ interpretiert werden. Aus $k_7 = 4,57 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}$ (DeMore et al. (1997)) und $k_{7a} = 3,4 \times 10^{-13} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}$ folgt dann $k_{7b} = 4,23 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}$. Für die Rekombination von Br-Atomen mit NO$_2$ ergibt sich daraus ein Verzweigungsverhältnis von 92,5 % zu 7,5 % zugunsten der Bildung von BrONO. Demnach muß die von Mellouki et al. (1989) bestimmte Konstante für die Reaktion von Br-Atomen eher der Reaktion

\[
(29) \quad \text{BrONO} + \text{Br} \rightarrow \text{Br}_2 + \text{NO}_2
\]

zugeordnet werden. Unter Berücksichtigung der Bildung von BrONO läßt sich der Reaktionsmechanismus I zu folgendem Mechanismus II erweitern:

\[\text{Mechanismus II: (6) } \quad \text{Br}_2 + h\nu \rightarrow \text{Br} + \text{Br} \quad k_6 = 1 \times 10^{-4} \text{ s}^{-1} \]

\[
\begin{align*}
(7a) & \quad \text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_2 + \text{M} \quad k_{7a} = 3,4 \times 10^{-13} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \\
(-7a) & \quad \text{BrNO}_2 + \text{M} \rightarrow \text{Br} + \text{NO}_2 + \text{M} \quad k_{-7a} = 2,1 \times 10^{-5} \text{ s}^{-1} \\
(7b) & \quad \text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrONO} + \text{M} \quad k_{7b} = 4,2 \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \\
(-7b) & \quad \text{BrONO} + \text{M} \rightarrow \text{Br} + \text{NO}_2 + \text{M} \quad k_{-7b} = 1,2 \text{ s}^{-1} \\
(27) & \quad \text{BrNO}_2 + \text{Br} \rightarrow \text{Br}_2 + \text{NO}_2 \quad k_{27} = 2,4 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \\
(29) & \quad \text{BrONO} + \text{Br} \rightarrow \text{Br}_2 + \text{NO}_2 \quad k_{29} = 2,4 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}
\end{align*}
\]

In der nach dem Mechanismus II durchgeführten Simulationsrechnung wurden für die Rekombinationskonstanten $k_{7a}$ und $k_{7b}$ die oben berechneten Werte berücksichtigt. Die Berechnung der Konstanten für die Dissoziationen $k_{-7a}$ erfolgte aus den von Frenzel et al. (1996) vorgeschlagenen
Arrhenius-Parametern. Die Dissoziationskonstante $k_{7b}$ wurde aus den von Kreutter et al. (1991) angegebenen Daten für die Rekombination von Br-Atomen mit NO$_2$ und der Gleichgewichtskonstanten $K_{7/7}$ berechnet (Kreutter et al. (1991)). Für die Reaktionen der Isomeren BrNO$_2$ und BrONO mit Br-Atomen wurde der Wert von Mellouki et al. (1989) $k_{27} = k_{29} = 2.4 \times 10^{-11}$ cm$^3$ Molekül$^{-1}$ s$^{-1}$ verwendet.

Die Ergebnisse der Simulationen sind in Abb. 37 dargestellt. Qualitativ ergibt sich das gleiche Bild wie bereits in Abb. 36 gezeigt. Die Einstellzeiten für die stationären BrNO$_2$-Konzentrationen werden mit zunehmender NO$_2$-Ausgangskonzentration größer, aber auch hier bleiben die Endkonzentrationen für die mit (●) und (■) dargestellten Experimente unterbestimmt. Die Berücksichtigung des BrONO führt dazu, daß die BrNO$_2$-Endkonzentrationen sogar noch geringfügig kleiner sind als in den Simulationen nach Mechanismus I.

Abb. 37: Vergleich der experimentellen zeitlichen Entwicklung der BrNO$_2$-Konzentration (Symbole) mit simulierten Konzentrations-Zeit-Verläufen (durchgezogene Linien) nach Mechanismus II; experimentelle Daten wie in Abb. 35

Die Variation der Geschwindigkeitskonstanten für die Reaktion von Br-Atomen mit BrONO (29) in den von Mellouki et al. (1989) vorgeschlagenen Grenzen hat keinen Einfluß auf die simulier-
ten Verläufe. Die Konzentrationen an BrONO werden nur durch die Geschwindigkeiten der Rekombination zu BrONO und der Dissoziation von BrONO bestimmt. Da BrONO nur in kleinen Konzentrationen vorliegt, kann der Beitrag von Reaktion (29) in dem Mechanismus II unberücksichtigt bleiben. Variiert man die Konstante \( k_{27} \) für die Reaktion von Br-Atomen mit BrNO\(_2\) in den gleichen Grenzen wie \( k_{29} \), so ergeben sich nach Gleichung (1) gleichzeitig andere Konstanten für die Rekombination (7a) von Br-Atomen mit NO\(_2\) zu BrNO\(_2\). Für \( k_{27} = 1 \times 10^{-10} \) cm\(^3\) Molekül\(^{-1}\) s\(^{-1}\) ergibt sich \( k_{7a} / k_{7b} = (1.4 / 3.17) \times 10^{-12} \) cm\(^3\) Molekül\(^{-1}\) s\(^{-1}\), also ein Verzweigungsverhältnis von 31 % BrNO\(_2\)- und 69 % BrONO-Bildung. Entsprechend erhält man mit \( k_{27} = 1 \times 10^{-11} \) cm\(^3\) Molekül\(^{-1}\) s\(^{-1}\) ein Verhältnis von 3 % zu 97 %. Unabhängig von den gewählten Konstanten führt die Simulation immer zu den in Abb. 37 gezeigten Verläufen.

Die von Mellouki et al. (1989) angegebenen Grenzen für die Geschwindigkeitskonstante der Reaktion von Br-Atomen mit BrNO\(_2\) sind als Summe von \( k_{27} \) und \( k_{29} \) zu betrachten. Da die einzelnen Anteile unbekannt sind, kann auch das Verzweigungsverhältnis \( k_{7a} / k_{7b} \) im Rahmen dieser Arbeit nicht eindeutig bestimmt werden.

Die Tatsache, daß sich die experimentellen Daten so unzureichend durch Simulationen (vgl. Abb. 37) reproduzieren lassen, kann nicht alleine durch die fehlende Kenntnis der genauen Geschwindigkeitskonstanten erklärt werden.

Eine Auftragung von \([\text{BrNO}_2]_{ss}\) gegen \([\text{NO}_2]_0\) ergibt eine Proportionalität von \([\text{BrNO}_2]_{ss}\) zu \(([\text{NO}_2]_0)^{1.3}\). Dies deutet auf eine Unvollständigkeit des Reaktionsmechanismus II hin. Mit einer Reaktion von BrONO mit NO\(_2\) (30) als weitere Quelle für BrNO\(_2\) könnte die überproportional große BrNO\(_2\)-Bildung erklärt werden; mit dem Wert \( k_{30} = 2 \times 10^{-16} \) cm\(^3\) Molekül\(^{-1}\) s\(^{-1}\) können alle Konzentrationsprofile in Abb. 37 innerhalb der Fehlergrenzen erklärt werden.

\[
\text{(30) BrONO + NO}_2 \rightarrow \text{BrNO}_2 + \text{NO}_2; k_{30} = 2.0 \times 10^{-16} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}
\]

Die Abweichungen zwischen experimentellen und berechneten Profilen bei kurzen Reaktionszeiten könnten auf die Einstellzeit der Lichtintensität und damit der Photolysekonstante von Br₂ auf ihren stationären Endwert zurückzuführen sein.

Abb. 38: Vergleich der experimentellen (Symbole) mit simulierten (durchgezogene Linien) zeitlichen BrNO₂-Konzentrationsverläufen; gleiche Experimente wie in Abb. 34; Simulationen nach Mechanismus II zuzüglich der Reaktion (30) \( \text{BrONO} + \text{NO}_2 \rightarrow \text{BrNO}_2 + \text{NO}_2 \) mit \( k_{30} = 2 \times 10^{-16} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \).

Für das mit (●) gekennzeichnete Experiment erfolgte die Simulation mit \( k_{27} = 1,9 \times 10^{11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \). Variert man die Konstante \( k_{27} \) in den Grenzen \( 10^{-10} - 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \), so können die experimentellen Profile in Abb. 38 zufriedenstellend wiedergegeben werden, wenn gleichzeitig \( k_{30} \) zwischen \( 4,2 \times 10^{15} \) und \( 2,5 \times 10^{16} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \) verändert wird.

3.2.2 Kinetisches Verhalten von BrNO₂ nach Beendigung der Photolyse

Die Lebensdauern von BrNO₂ nach Beendigung der Photolyse betragen in Abwesenheit von NO bis zu einigen Stunden. Diese Lebensdauern sind unter Berücksichtigung des oben beschriebenen
Reaktionsmechanismusses und der von Kreutter et al. (1991) vorgeschlagenen hohen Werte für die Geschwindigkeitskonstanten \( k_{7a} \) für den thermischen Zerfall des \( \text{BrNO}_2 \) nicht durch Simulationsrechnungen reproduzierbar. Kreutter et al. (1991) bestimmten in ihrer Arbeit die Kinetik der Rekombination von \( \text{Br} \) mit \( \text{NO}_2 \) über einen sehr großen Temperatur- und Druckbereich für verschiedene Badgase. Für Temperaturen oberhalb von 350 K konnten die experimentellen \( \text{Br} \)-Atom-Konzentrationsprofile nur unter der Berücksichtigung einer schnellen Dissoziation von \( \text{BrNO}_2 \) als Quelle für \( \text{Br} \)-Atome erklärt werden.

Frenzel et al. (1996) fanden in ihrem System Lebensdauern für \( \text{BrNO}_2 \) von bis zu 1 h und gaben daraufhin für den thermischen Zerfall von \( \text{BrNO}_2 \) eine Dissoziationskonstante an, die um mehrere Größenordnungen kleiner ist als der von Kreutter et al. (1991) vorgeschlagene Wert von etwa 1 s.

Zur Klärung dieser Frage bezüglich des thermischen Zerfalls von \( \text{BrNO}_2 \) wurden in dieser Arbeit Experimente ähnlich denen von Frenzel et al. (1996) durchgeführt. Um die bei der Dissoziation entstehenden \( \text{Br} \)-Atome quantitativ abzufangen und somit eine irreversible Störung des Gleichgewichtes zu gewährleisten, wurde nach Beendigung der Photolyse \( \text{trans}-2\text{-Buten} \) als Radikalfänger zu der Reaktionsmischung zugegeben. Der Temperaturbereich dieser Experimente lag zwischen 300 und 265 K. Diese Experimente wurden in synthetischer Luft (\( p = 988 \pm 2 \text{ mbar} \)) durchgeführt, damit das in Reaktion (31) gebildete Olefin-\( \text{Br} \)-Addukt mit \( \text{O}_2 \) nach (32) weiterreagiert. Eine H-Atom-Abstraktion kann unter den hier gegebenen experimentellen Bedingungen ausgeschlossen werden (Bierbach et al. (1997)), obwohl diese Reaktion von Bedjanian et al. (1998) für die Reaktion von \( \text{Br} \)-Atomen mit Propen beschrieben wird. Das Olefin-\( \text{Br} \)-Addukt kann allerdings ebenfalls nach Reaktion (-31) thermisch zerfallen oder nach Reaktion (33) mit \( \text{Br}_2 \) weiterreagieren. Solche Reaktionen wurden von Timonen et al. (1990) für Alkyl- und halogenierte Alkyllradikale untersucht (Timonen et al. (1991)). Bei beiden Reaktionen werden \( \text{Br} \)-Atome freigesetzt.

\[
\begin{align*}
\text{( -7a )} & \quad \text{BrNO}_2 + M \rightarrow \text{Br} + \text{NO}_2 + M \\
\text{( 7a )} & \quad \text{Br} + \text{NO}_2 + M \rightarrow \text{BrNO}_2 + M \\
\text{( 31 )} & \quad \text{CH}_3\text{-CH=CH-CH}_3 + \text{Br} + M \rightarrow \text{CH}_3\text{-CH(Br)-CH-CH}_3 + M \\
\text{( 32 )} & \quad \text{CH}_3\text{-CH(Br)-CH-CH}_3 + \text{O}_2 + M \rightarrow \text{CH}_3\text{-CH(Br)-C(O_2)H-CH}_3 + M \\
\text{( -31 )} & \quad \text{CH}_3\text{-CH(Br)-CH-CH}_3 + M \rightarrow \text{CH}_3\text{-CH=CH-CH}_3 + \text{Br} + M \\
\text{( 33 )} & \quad \text{CH}_3\text{-CH(Br)-CH-CH}_3 + \text{Br}_2 + M \rightarrow \text{CH}_3\text{-CH(Br)-C(Br)H-CH}_3 + \text{Br} + M
\end{align*}
\]
Diese würden zum Teil (10%) mit NO₂ rekombinieren und eine langsamere BrNO₂-Abnahme zur Folge haben.

Mit einer trans-2-Buten-Konzentration von 8,6x10^{14} Molekül cm⁻³, k₃₁ (298K) = 9,3x10⁻¹² cm³ Molekül⁻¹ s⁻¹ (Bierbach et al. (1996)), NO₂-Konzentrationen von 1,6x10^{14} Moleküle cm⁻³ und k₇₋ₐ (293K) = 4,6x10⁻¹² cm³ Molekül⁻¹ s⁻¹ bei 987 mbar (DeMore et al. (1997)) berechnet sich ein Verhältnis von k₃₁ / k₇₋ₐ = 11. Dies sollte groß genug sein, um einen messbaren Unterschied im Zeitverhalten des BrNO₂ feststellen zu können, wenn die von Kreutter et al. (1991) vorgeschlagene Dissoziationskonstante der Reaktion (-7a) zuzuschreiben wäre. In Abb. 39 ist das Zeitverhalten von BrNO₂ für ein Experiment mit trans-2-Buten-Zugabe dargestellt. Dabei wurde die Abnahme des BrNO₂ nach Beendigung der Photolyse zunächst ohne Radikalfänger verfolgt. Nach der Zugabe von trans-2-Buten ist kein Unterschied im Zeitverhalten nachweisbar.

Abb. 39: Auftragung der BrNO₂-Konzentration nach Beendigung der Photolyse nach einer Kinetik 1. Ordnung; (■): Zugabe von 8,6x10^{14} Moleküle cm⁻³ trans-2-Buten, T = 293 K, p = 987 mbar; (▲): Zugabe von 3,5x10^{15} Moleküle cm⁻³ CH₃CHO, T = 293 K, p = 800 mbar; beide Experimente: [M] = synthetische Luft
Aus diesem Grund wurden auch Experimente mit CH₃CHO als Radikalfänger durchgeführt. CH₃CHO reagiert nach Reaktion (34) mit Br-Atomen zu HBr und Acetyl-Radikalen. Diese wiederum werden in den Reaktionen (35) und (36) in PAN umgewandelt. Weil diese Experimente in synthetischer Luft durchgeführt wurden, besitzt die sehr schnelle Reaktion (37) des Acetyl-Radikals mit Br₂ (k₃₇(298K) = 1,08x10⁻¹⁰ cm³ Molekül⁻¹ s⁻¹ (Nicovich et al. (1990))) keine Bedeutung. Diese Reaktion kann demnach keine Quelle für Br-Atome sein und keine Dunkelquelle für BrNO₂ darstellen.

\[
\begin{align*}
\text{( -7a )} & \quad \text{BrNO}_2 + M & \to & \text{Br} + \text{NO}_2 + M \\
\text{( 7a )} & \quad \text{Br} + \text{NO}_2 + M & \to & \text{BrNO}_2 + M \\
\text{( 34 )} & \quad \text{CH}_3\text{CHO} + \text{Br} & \to & \text{CH}_3\text{CO} + \text{HBr} \\
\text{( 35 )} & \quad \text{CH}_3\text{CO} + \text{O}_2 + M & \to & \text{CH}_3\text{C(O)O}_2 + M \\
\text{( 36 )} & \quad \text{CH}_3\text{C(O)O}_2 + \text{NO}_2 + M & \to & \text{CH}_3\text{C(O)O}_2\text{NO}_2 + M \\
\text{( 37 )} & \quad \text{CH}_3\text{CO} + \text{Br}_2 & \to & \text{CH}_3\text{C(O)Br} + \text{Br} \\
\end{align*}
\]

Mit einer CH₃CHO-Konzentration von 3,5x10¹⁵ Moleküle cm⁻³ und k₃₄ (298K) = 3,9x10⁻¹² cm³ Molekül⁻¹ s⁻¹ (Atkinson et al. (1997)), einer NO₂-Konzentration von 1,6x10¹⁴ Moleküle cm⁻³ und k₇ₐ (293K) = 4,1x10⁻¹² cm³ Molekül⁻¹ s⁻¹ bei 800 mbar (DeMore et al. (1997)) ergibt sich für die Reaktionen (34) und (7a) k₃₄ / k₇ₐ = 21. Die Existenz eines schnellen thermischen Zerfalls (-7a) sollte also unter den gegebenen experimentellen Bedingungen nachweisbar sein, zumal bei der Verwendung von CH₃CHO die Regeneration von Br-Atomen auszuschließen ist. Wie in Abb. 39 für ein Experiment dargestellt, ist aber auch bei der Verwendung von CH₃CHO als Br-Atomfänger keine Änderung der zeitlichen Abnahme von BrNO₂ nachweisbar. Die in den mit CH₃CHO bei Temperaturen von 300 und 293 K und einem Druck von 805 ± 5 mbar durchgeführten Experimenten erhaltene Zeitkonstante für die Abnahme von BrNO₂ beträgt 5x10⁻⁴ s⁻¹. Sie ist damit um etwa einen Faktor 3 größer als die Zeitkonstanten, die für diese Temperaturen in den Experimenten mit trans-2-Buten erhalten wurden. Ob die unterschiedlichen Zeitkonstanten auf eine etwas größere Wandrate oder auf die Rückbildung von Br-Atomen zurückführbar sind, konnte nicht geklärt werden. Da in dem System mit CH₃CHO als Radikalfänger eine Rückbildung von Br-Atomen auszuschließen ist, wird der Wert von 5x10⁻⁴ s⁻¹ als sichere obere Grenze für die Dissoziationskonstante k₇ₐ des BrNO₂ bei 298 K und Atmosphärendruck (M = synthetische Luft) angesehen.

68

Abb. 40: Geschwindigkeitskonstanten für den thermischen Zerfall von BrNO\textsubscript{2} (BrONO); (+): Kreutter et al. (1991), \( p = 267 \) mbar, \( M = \text{N}_2 \); (Linie): berechnet für 1 bar (x): Frenzel et al. (1996), \( p = 1000 \) mbar, \( M = \text{He}, \text{Propen} \) als Br-Atomfänger; (♦): diese Arbeit, \( p = 988 \pm 2 \) mbar, \( M = \text{synthetische Luft}, \text{trans-2-Buten} \) als Br-Atomfänger; (■): diese Arbeit, \( p = 805 \pm 5 \) mbar, \( M = \text{synthetische Luft}, \text{CH}_3\text{CHO} \) als Br-Atomfänger

Die von Kreutter et al. (1991) durchgeführte „second law“-Analyse liefert für die Reaktionsenthalpie des thermischen Zerfalls von BrNO\textsubscript{2} \( \Delta H_{R,298K}^o \approx \Delta H_{R,401K}^o = (78 \pm 3) \) kJ mol\textsuperscript{-1}. Ordnet man diese Reaktionsenthalpie dem Zerfall von \textit{cis}-BrONO zu, dann ergibt sich für dessen Bildungsenthalpie \( \Delta H_{B,298K}^o = (67 \pm 3) \) kJ mol\textsuperscript{-1} (mit \( \Delta H_{B,298K}^o (\text{NO}_2) = 33 \) kJ mol\textsuperscript{-1}, \( \Delta H_{B,298K}^o (\text{Br}) = 112 \) kJ mol\textsuperscript{-1} nach DeMore et al. (1997)). Für die Dissoziationskonstante des BrONO kann ein Wert von \( k_{-7b,298K} = 1,2 \) s\textsuperscript{-1} für \( p = 1 \) bar N\textsubscript{2} berechnet werden. Die Berechnung der thermischen Zerfallskonstante von BrNO\textsubscript{2} mit den bei Frenzel et al. (1996) angegebenen Arrhenius-Parametern liefert \( k_{-7a,298K} = 4 \times 10^{-5} \) s\textsuperscript{-1} für 1 bar in He. Für das Verhältnis der Rekombinations-
konstanten von Br + NO₂ in N₂ und He errechnete Kreutter et al. (1991) den Wert 1,7. Für den Fall, daß dieses Verhältnis für beide Isomere gültig ist, folgt für N₂ als Stoßpartner \( k_{-7a,298K} = 6,6 \times 10^{-5} \, \text{s}^{-1} \) für 1 bar in N₂. Die Differenz der beiden Zerfallskonstanten \( k_{-7a} \) und \( k_{-7b} \) sollte im wesentlichen die Differenz der Bindungsenergien der beiden Isomeren \( \textit{cis}-\text{BrONO} \) und BrNO₂ widerspiegeln.

Mit \( \ln \left( \frac{k_{-7b}}{k_{-7a}} \right) = \ln \left( \frac{1,2}{6,6 \times 10^{-5}} \right) = \Delta \left( \Delta H_{B,298K}^0 \right) / RT \)

folgt

\[
\Delta H_{R,298K}^0 (\text{Br-NO₂}) - \Delta H_{R,298K}^0 (\text{Br-ONO}) = \\
\Delta H_{B,298K}^0 (\text{Br-ONO}) - \Delta H_{B,298K}^0 (\text{Br-NO₂}) \approx (24 \pm 3) \, \text{kJ mol}^{-1}.
\]

Dieses Ergebnis steht in sehr guter Übereinstimmung mit dem von Lee (1996) in \textit{ab-initio}-Rechnungen erhaltenen Wert für die Differenz der Reaktionsenthalpien bezüglich der thermischen Zerfälle von BrNO₂ und \( \textit{cis}-\text{BrONO} \) von \((27 \pm 4) \, \text{kJ mol}^{-1} \). In der nachfolgenden Tab. 5 sind die Bildungsenthalpien und Reaktionsenthalpien der verschiedenen BrNO₂-Isomeren nach Lee (1996) aufgeführt. In der vierten Spalte finden sich die Differenzen der Bindungsenergien zwischen BrNO₂ und \( \textit{cis} \)-BrONO bzw. \( \textit{trans} \)-BrONO.

<table>
<thead>
<tr>
<th></th>
<th>( \Delta H_{B,298K}^0 ) [kJ mol(^{-1})]</th>
<th>( \Delta H_{R,298K}^0 ) [kJ mol(^{-1})]</th>
<th>( \Delta(\Delta H_{R,298K}^0) ) [kJ mol(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrNO₂</td>
<td>50,6</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>\textit{cis} - BrONO</td>
<td>77,4</td>
<td>67</td>
<td>27 ± 4</td>
</tr>
<tr>
<td>\textit{trans} - BrONO</td>
<td>93,8</td>
<td>51</td>
<td>43 ± 4</td>
</tr>
</tbody>
</table>

Tab. 5: Thermochemische Daten für die drei BrNO₂-Isomeren nach Lee (1996)

Die von Kreutter et al. (1991) ermittelten Reaktionsenthalpien betragen \( \Delta H_{R,298K}^0 \approx \Delta H_{R,401K}^0 = (78 \pm 3) \, \text{kJ mol}^{-1} \) nach einer „second law“- und \( \Delta H_{R,298K}^0 = \Delta H_{R,401K}^0 = 87 \, \text{kJ mol}^{-1} \) nach einer „third law“-Analyse. Die daraus berechneten Bildungsenthalpien betragen \( \Delta H_{B,298K}^0 = (67 \pm 3) \, \text{kJ mol}^{-1} \) bzw. \( \Delta H_{B,298K}^0 = 76 \, \text{kJ mol}^{-1} \). Diese Enthalpien stimmen eher mit dem von Lee (1996) berechneten Wert für die Bildungsenthalpie von \( \textit{cis}-\text{BrONO} \) überein als mit dem Wert für das Isomere BrNO₂. Werden die beiden Werte für \( \Delta H_{B,298K}^0 \) von BrNO₂ von Kreutter et al. (1991)
der Verbindung \textit{cis}-BrONO zugeordnet, so erhält man mit der in dieser Arbeit ermittelten Differenz der Bindungsentnergien die Werte $\Delta H^{\circ}_{B,298K} = (43 \pm 6) \text{ kJ mol}^{-1}$ bzw. $\Delta H^{\circ}_{B,298K} = (52 \pm 3) \text{ kJ mol}^{-1}$. Diese Ergebnisse für die Bildungsenthalpie von BrNO2 stehen in sehr guter Übereinstimmung mit der von Lee (1996) ermittelten Bildungsenthalpie von 50,6 kJ mol$^{-1}$.


3.2.3 Verhalten von BrNO2 in Gegenwart von NO

In Analogie zu den Reaktionen von ClONO und ClNO2 mit NO wurde im Rahmen dieser Arbeit die Reaktion von BrNO2 mit NO untersucht. Die Darstellung von BrNO2 erfolgte wie oben beschrieben, allerdings unter der Verwendung von N2 als Badgas und ohne Zugabe von O3.


\[ (8) \quad \text{BrNO}_2 + \text{NO} \rightarrow \text{BrNO} + \text{NO}_2 \]

zurückzuführen.
Abb. 41: Zeitverhalten von BrNO₂ in Anwesenheit von NO-Überschußkonzentrationen; T = 294 K

Parallel zur BrNO₂-Abnahme läßt sich die Bildung der Reaktionsprodukte BrNO und NO₂ nachweisen. Abb. 42 zeigt ein IR-Differenzspektrum von zwei nach der NO-Zugabe aufgenommenen IR-Spektren. Die Reaktionszeit zwischen den Aufnahmen der beiden Spektren betrug ungefähr 76 s. Anhand der positiven Absorptionsbande bei 1800 cm⁻¹ ist BrNO als Reaktionsprodukt zu identifizieren. Anhand der Absorptionsbande im Bereich von 1580 bis 1640 cm⁻¹ kann NO₂ als Reaktionsprodukt identifiziert werden. Die Banden mit der negativen Absorption bei 1667 cm⁻¹ und 1292 cm⁻¹ stammen von BrNO₂.
Abb. 42: IR-Differenzspektrum einer BrNO₂/NO/N₂-Mischung nach Beendigung der Photolyse; das Spektrum wurde durch Subtraktion zweier Spektren nach NO-Zugabe; T = 283 K; p = 988 mbar; M = N₂; Δt = 76 s; 1800 cm⁻¹: BrNO, 1667 cm⁻¹ und 1292 cm⁻¹: BrNO₂

In Abb. 43 sind die Konzentrations-Zeit-Profile für BrNO₂ (▲) und BrNO (■) für dieses Experiment dargestellt. Zum Zeitpunkt t = 0 s waren die Lampen ausgeschaltet, die NO-Zugabe erfolgte zwischen 0 und 10 s, erkennbar an den Wendepunkten in den Profilen. Die Zeitkonstanten für die BrNO₂-Abnahme und die BrNO-Zunahme sind identisch. Die Auftragung nach 1. Ordnung für BrNO₂ liefert in diesem Beispiel ab dem 2. Meßpunkt eine Geschwindigkeitskonstante $k_{1.\text{Ord}} = k_8 \ [\text{NO}]$, wie in Abb. 41 bereits für 294 K gezeigt.
Eine Reaktionsfolge aus dem thermischen Zerfall des BrNO₂ als erstem Reaktionschritt (-7a) und der anschließenden Rekombination der Br-Atome mit NO (38) kann aufgrund der langen Lebensdauer des BrNO₂ ausgeschlossen werden.

\[
\begin{align*}
\text{-7a)} & \quad \text{BrNO}_2 + M \rightarrow \text{Br} + \text{NO}_2 + M \\
\text{38)} & \quad \text{Br} + \text{NO} + M \rightarrow \text{BrNO} + M
\end{align*}
\]

Ebenso ist eine bimolekulare Selbstreaktion des BrNO₂ auszuschließen, wie sie für INO₂ in der Literatur beschrieben wurde (van den Bergh and Troe (1976)). Reaktion (39) hätte eine Abnahme des BrNO₂ nach einer Kinetik 2. Ordnung zur Folge, die nicht beobachtet werden konnte.
Reaktion (39) müßte auch in den im vorangegangenen Kapitel beschriebenen Experimenten in Anwesenheit eines Br-Radikalfängers stattfinden. Auch dafür gab es keine Hinweise, so dass die Reaktion, falls sie stattfindet, zu langsam abläuft, um in den hier vorgestellten Experimenten eine Rolle zu spielen.

In Abb. 44 sind die Geschwindigkeitskonstanten pseudo-1. Ordnung für T = 294, 283, 273 und 263 K als Funktion der NO-Konzentration dargestellt. Die Fehlerbalken gelten exemplarisch für alle Meßpunkte. Die Geradensteigungen liefern für die entsprechende Temperatur die Geschwindigkeitskonstante $k_8$ für die Reaktion von BrNO$_2$ mit NO.

$\text{(39) \quad BrNO}_2 + \text{BrNO}_2 \rightarrow \text{Br}_2 + 2 \text{NO}_2$
Eine Auftragung nach Arrhenius ist in Abb. 45 gezeigt.

Abb. 45: Arrhenius-Auftragung für die Reaktion BrNO₂ + NO → BrNO + NO₂

Die Temperaturabhängigkeit der Geschwindigkeitskonstanten \( k_8 \) für die Reaktion von BrNO₂ mit NO liefert

\[
k_8 = 2,3 \times 10^{-12} \exp \left[ ( -17,8 \pm 2,1 ) \text{ kJ mol}^{-1} / \text{RT} \right] \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \ (2\sigma).
\]
3.3 Nitryliodid (INO₂)

3.3.1 Das UV-Spektrum von INO₂

Die Darstellung von Nitryliodid (INO₂) erfolgte durch die Photolyse von I₂ im Wellenlängenbereich von 500 bis 700 nm in Gegenwart von NO₂ und N₂ (Barnes et al. (1991)) bei Drücken von 985 ± 15 mbar und Temperaturen von 296 ± 3 K. Da die Photolyse von NO₂ nur durch Licht mit Wellengängen unterhalb von 424 nm stattfindet, wird unter den experimentellen Bedingungen ausschließlich I₂ photolysiert. Die Rekombination der I-Atome mit NO₂ führt zur Bildung von INO₂.

\[
\text{(12)} \quad I₂ + hν \rightarrow I + I \\
\text{(15)} \quad I + NO₂ + M \rightarrow INO₂ + M
\]

Mit dem FTIR-Spektrometer konnte nur INO₂ als Reaktionsprodukt nachgewiesen werden, erkennbar anhand der Absorptionsbanden bei 1282 cm⁻¹ und 778 cm⁻¹ (Barnes et al. (1991)). Eine weitere, von Barnes et al. (1991) nicht angegebene Bande bei 654 cm⁻¹ könnte ebenfalls dem INO₂ zugeordnet werden. Der Grund hierfür ist die gute Übereinstimmung mit der von Feuerhahn et al. (1979) angegebenen Lage der ν₆-Bande bei 650 cm⁻¹. Abb. 46 zeigt ein IR-Spektrum von INO₂ im Wellenzahlbereich von 1400 bis 600 cm⁻¹. Die Absorptionen von NO₂, N₂O₄ und HNO₃ wurden aus dem IR-Produktspektrum spektral subtrahiert. Das Experiment wurde bei einem Druck von 992 mbar und einer Temperatur von 293 K durchgeführt. Die Aufnahme des Spektrums erfolgte im Zeitraum von 130 bis 160 s nach Einschalten der Photolyselampen. Die Ausgangskonzentration von I₂ betrug 1,1x10¹⁵ Moleküle cm⁻³, die von NO₂ 3,0x10¹⁵ Moleküle cm⁻³. In dem in Abb. 46 gezeigten Spektrum wurde durch spektrale Subtraktion der NO₂-Bande bei 2900 cm⁻¹ die NO₂-Konzentration zu (99,6 ± 0,3) % der NO₂-Ausgangskonzentration ermittelt. Weil nur INO₂ als Reaktionsprodukt nachgewiesen werden konnte, kann die Konzentrationsabnahme von NO₂ mit der Bildung von INO₂ gleichgesetzt werden. Die INO₂-Konzentration beträgt nach dieser Massenbilanz (1,2 ± 0,9) x10¹³ Moleküle cm⁻³.
In dem zeitgleich im UV-Bereich aufgenommenen Spektrum (Abb. 47) erkennt man eine Absorption mit zwei Maxima bei 242 und 280 nm. Zur Berechnung dieses Spektrums wurde die Intensität des Analyselichtes bei Vorhandensein der Ausgangsmischung als \( I_0 \) verwendet. Die Aufnahme von \( I \) erfolgte dann während der Photolyse des Reaktionsgemisches. Dieses Verfahren ist zulässig, weil die Änderung der NO\(_2\)-Konzentration so gering ausfällt, dass die damit verbundene Änderung der Absorption im UV-Bereich unterhalb der Nachweigrenze liegt. Da INO\(_2\) in dem IR-Spektrum das einzige erkennbare Reaktionsprodukt ist, sollte die UV-Absorption ebenfalls der Verbindung INO\(_2\) zugeordnet werden dürfen.

Da das Diodenarray bei einer gegebenen Gitterposition einen Wellenlängenbereich von 68 nm erfasst, wurde das Gesamtspektrum aus Messungen in vier verschiedenen Wellenlängenbereichen zusammengesetzt, die sich jeweils um 20 nm überlappten.
In Abb. 48 ist das UV-Absorptionsspektrum des INO\(_2\) im Bereich von 210 bis 400 nm dargestellt. Es zeigt drei Absorptionsmaxima bei 242 nm (\(\sigma = 1,05\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)), 280 nm (\(\sigma = 0,24\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)) und 345 nm (\(\sigma = 0,098\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)) nm. Das UV-Absorptionsspektrum des BrNO\(_2\) (Scheffler et al. (1997)) besitzt ebenfalls drei Maxima, dessen Lagen bei 200 nm (\(\sigma = 5,4\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)), 245 nm (\(\sigma = 0,39\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)) und 365 nm (\(\sigma = 0,02\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)) angegeben sind. Im Vergleich mit dem in der Literatur beschriebenen UV-Absorptionsspektrum von BrNO\(_2\) zeigt das Spektrum des INO\(_2\) für die beiden kurzwelligen Banden eine Rotverschiebung. Das UV Spektrum des ClNO\(_2\) zeigt oberhalb von 200 nm ein Maximum bei 216 nm (\(\sigma = 0,35\times10^{-17}\ \text{cm}^2\ \text{Molekül}^{-1}\)).
Die in Abb. 48 gezeigten Absorptionsquerschnitte von INO₂ wurden unter Verwendung des Lambert-Beer’schen-Gesetzes nach 
\[ \ln \left( \frac{I_o}{I} \right) = \sigma c l, \]
mit \( l = \text{optische Weglänge} = 313 \text{ cm} \)
berechnet. Für die Konzentration des INO₂ wurde der aus der Massenbilanz von NO₂ ermittelte Wert von \( (1,2 \pm 0,9) \times 10^{13} \text{ Moleküle cm}^{-3} \)
verwendet. Der Fehler der Massenbilanz führt zu einer entsprechenden Ungenauigkeit der Absorptionsquerschnitte. Diese können einen Faktor vier größer beziehungsweise um einen Faktor 0,57 kleiner sein als in Abb. 48 dargestellt.

Die aus den in Abb. 48 gezeigten Absorptionsquerschnitten für INO₂ berechnete Photolysefrequenz \( J_{\text{INO₂}} \) beträgt für den 1. Juli, 12 h und 50° N:

\[
J_{\text{INO₂}} = \sigma(\lambda) \cdot J(\lambda) \cdot \phi(\lambda) \cdot \Delta \lambda = 7,1 \times 10^{-3} \text{ s}^{-1}
\]

mit 290 nm \( \leq \lambda \leq 385 \text{ nm} \)

Die Berechnung erfolgte unter Berücksichtigung der in Finnlayson-Pitts und Pitts (1986) aufgeführten Parameter zur Berechnung des aktinischen Flusses \( J(\lambda) \) und einer angenommenen Quantenausbeute \( \phi(\lambda) \) von eins. Man erhält für die photolytische Lebensdauer von INO₂ den
Wert $\tau = (2.3 \pm 1.7)$ min. Der Fehler der photolytischen Lebensdauer resultiert aus der Ungenauigkeit der Absorptionsquerschnitte. Im Vergleich dazu betragen die photolytischen Lebensdauern von ClNO$_2$ $\tau = 51$ min, ClONO $\tau = 4.5$ min und BrNO$_2$ $\tau = 3.3$ min.

3.3.2 Das Zeitverhalten von INO$_2$ während und nach der Photolyse im Wellenlängenbereich $500 \text{ nm} \leq \lambda \leq 700 \text{ nm}$

Das Zeitverhalten des INO$_2$ während und vor allem nach der Photolyse unterscheidet sich deutlich von dem zeitlichen Verhalten der Verbindungen ClNO$_2$ und BrNO$_2$. In Abb. 49 ist ein typisches Konzentrations-Zeit-Profil für INO$_2$ während der Photolysephase ($500 \text{ nm} \leq \lambda \leq 700 \text{ nm}$) und nach dem Ausschalten der Lampen dargestellt.

![Diagramm INO$_2$-Konzentration](image)

Abb. 49: INO$_2$-Konzentration während und nach der Photolyse ($500 \text{ nm} \leq \lambda \leq 700 \text{ nm}$) im Vergleich mit Simulationsrechnungen (I + INO$_2$: $k_{41} = 1 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}$ (gestrichelt); $k_{41} = 2 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}$ (durchgezogen); $[I_2]_0 = 7.5 \times 10^{14} \text{ Moleküle cm}^{-3}$; $[NO_2]_0 = 3 \times 10^{15} \text{ Moleküle cm}^{-3}$; $T = 293 \text{ K}$; $p = 985 \text{ mbar}$ N$_2$; Photolysedauer 14 s
Das Experiment wurde bei 293 K und einem Druck von 985 mbar N₂ durchgeführt. Die Ausgangskonzentrationen für I₂ und NO₂ betrugen $7,5 \times 10^{14}$ bzw. $3 \times 10^{15}$ Moleküle cm$^{-3}$.


Während der Photolyse stellt sich für INO₂ innerhalb von einigen Sekunden eine stationäre Konzentration ein. Nach dem Ausschalten der Photolyselampen nimmt die Konzentration mit einer Halbwertszeit von 2 - 3 s ab.

Anhand der Literaturdaten kann der in Tab. 6 aufgeführte einfache Reaktionsmechanismus zur Simulation der INO₂-Bildung während der Photolyse und des INO₂-Verlustes nach Ausschalten der Photolyselampen aufgestellt werden. Für die der I₂-Photolyse folgenden Rekombination von I-Atomen mit NO₂ wurde die Geschwindigkeitskonstante mit den in DeMore et al. (1997) angegebenen Parametern berechnet. Gleiches gilt für die Temperaturabhängigkeit der von van den Bergh und Troe beschriebenen bimolekularen Selbstreaktion von INO₂ (van den Bergh and Troe (1976)).

<table>
<thead>
<tr>
<th></th>
<th>Reaktion</th>
<th>$k$ (293 K, 985 mbar)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12)</td>
<td>$I₂ + h\nu \rightarrow I + I$</td>
<td>$2,5 (-3) - 4,5 (-4)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>diese Arbeit</em></td>
</tr>
<tr>
<td>(15)</td>
<td>$I + NO₂ + M \rightarrow INO₂ + M$</td>
<td>$5,13 (-12)$</td>
<td><em>DeMore et al. (1997)</em></td>
</tr>
<tr>
<td>(-15)</td>
<td>$INO₂ + M \rightarrow I + NO₂ + M$</td>
<td>$2,34$</td>
<td><em>van den Bergh and Troe (1976)</em></td>
</tr>
<tr>
<td>(40)</td>
<td>$INO₂ + INO₂ \rightarrow I₂ + 2 NO₂$</td>
<td>$4,06 (-15)$</td>
<td><em>DeMore et al. (1997)</em></td>
</tr>
<tr>
<td>(41)</td>
<td>$I + INO₂ \rightarrow I₂ + NO₂$</td>
<td>$2 (-10) - 1 (-11)$</td>
<td><em>Mellouki et al. (1989)</em></td>
</tr>
</tbody>
</table>

Tab. 6: Reaktionsmechanismus zur Simulation des zeitlichen Verhaltens von INO₂; 1): Konstanten in s$^{-1}$; 2): $5,13 (-12) \equiv 5,13 \times 10^{-12}$ cm$^3$ Molekül$^{-1}$ s$^{-1}$
Die Dissoziationskonstante des INO₂ wurde mit der Gleichgewichtskonstanten des Gleichgewichtes (15, -15) (van den Bergh and Troe (1976)) und der Rekombinationskonstanten \(k_{15}\) von DeMore et al. (1997) berechnet.

Sowohl Mellouki et al. (1989) als auch van den Bergh und Troe (1976) geben für die Geschwindigkeitskonstante der Reaktion von I-Atomen mit INO₂ bei Zimmertemperatur einen Bereich an. In dem Mechanismus wurde die Geschwindigkeitskonstante in den von Mellouki et al. (1989) angegebenen Grenzen \(2,0 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \geq k_{41} \geq 1,0 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}\) variiert, da dieser Bereich die von van den Bergh und Troe angegebenen Grenzen für \(k_{41}\) von \(1,6 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}\) einschließt.

Für die Dunkelphase findet man für \(k_{41} = 2 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}\) eine sehr gute Übereinstimmung zwischen den experimentellen und berechneten (durchgezogene Linie ab \(t = 15\) s in Abb. 49) INO₂-Konzentrationen. Mit einem Wert \(k_{41} = 1 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}\) verläuft die INO₂-Abnahme zu langsam (gestrichelte Linie ab \(t = 15\) s in Abb. 49).


Die Photolysefrequenz des I₂ wurde so angepaßt, daß die berechnete Konzentration von INO₂ zum Zeitpunkt \(t = 14\) s mit dem experimentellen Wert übereinstimmt. Mit \(k_{41} = 2 \times 10^{-10} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}\) und einer Photolysefrequenz für I₂ \(k_{12} = 2,5 \times 10^{-3} \text{ s}^{-1}\) erhält man den in Abb. 49 als durchgezogene Linie gezeigten Verlauf. Ein solches Konzentrations-Zeit-Profil wäre für die experimentellen Daten zu erwarten, wenn die Intensität der Photolyselampen ihren Endwert nicht zeitverzögert erreichen würde. Der in Abb. 49 als gestrichelte Linie dargestellte Verlauf der INO₂-Konzentration ergibt sich aus der Kombination von \(k_{41} = 1 \times 10^{-11} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}\) und \(k_{12} = 4,5 \times 10^{-4} \text{ s}^{-1}\). Die Simulation mit diesen Parametern ergibt zwar für \(t = 14\) s die erwünschte INO₂-Konzentration von \(8 \times 10^{12} \text{ Moleküle cm}^{-3}\), ein konstanter Endwert von \(9 \times 10^{12} \text{ Moleküle cm}^{-3}\) wird allerdings erst nach \(t = 30\) s erreicht.

Ebenso wie für die Nitrilhalogenide und Chlornitril läßt sich auch für INO₂ eine Reaktion mit NO erwarten.

\[
(42) \quad \text{INO}_2 + \text{NO} \rightarrow \text{INO} + \text{NO}_2
\]
Diese Reaktion würde eine weitere Senke für INO2 darstellen. NO ist als Verunreinigung in NO2 vorhanden und kann auch durch die Photolyse von NO2 mit dem Licht der D2-Lampe entstehen. Die NO-Konzentrationen unter den gewählten Reaktionsbedingungen lagen bei etwa 1,7x10^{13} Moleküle cm^{-3}.

Eine direkte experimentelle Bestimmung von k_{42} über die Zugabe von überschüssigem NO, wie sie bei den Reaktionen von NO mit ClNO2, ClONO und BrNO2 angewandt wurde, ist aufgrund der geringen Lebensdauer des INO2 unter den in dieser Arbeit verwendeten Bedingungen nicht möglich.

Bedingt durch die Tatsache, dass weder die Geschwindigkeitskonstante für Reaktion (41) noch die Konzentration von INO2 genau bekannt sind, kann die Geschwindigkeitskonstante von Reaktion (42) mit Simulationsrechnungen nicht ermittelt werden.

Die für die Dunkelphase sehr gute Übereinstimmung zwischen den experimentellen Daten und den Simulationsrechnungen kann lediglich als Hinweis dafür dienen, dass sich die abgeschätzten INO2-Konzentrationen in der richtigen Größenordnung bewegen.

3.4 Iodnitrat ( IONO₂ )

3.4.1 Photolyse von I₂/NO₂-Mischungen im Wellenlängenbereich 300 nm ≤ λ ≤ 500 nm

Die Photolyse einer Mischung aus I₂, NO₂ und N₂ im Wellenlängenbereich von 300 bis 500 nm führt zur Bildung von Iodnitrat ( IONO₂ ) (Barnes et al. (1991)). In Abb. 50 ist ein IR-Produktspektrum (a) im Wellenzahlbereich von 700 bis 1400 cm⁻¹ gezeigt, welches nach 15 s Photolyse einer Reaktionsmischung von 1,1x10¹⁵ Moleküle cm⁻³ I₂ und 3,3x10¹⁵ Moleküle cm⁻³ NO₂ in 989,4 mbar N₂ bei 293,6 K erhalten wurde.

Abb. 50: Produktspektrum (a) nach 15 s Photolyse (300 nm ≤ λ ≤ 500 nm) einer Reaktionsmischung aus 1,1x10¹⁵ Moleküle cm⁻³ I₂ und 3,3x10¹⁵ Moleküle cm⁻³ NO₂; p = 989,4 mbar N₂; T = 293,6 K; sowie die Anteile der Einzelkomponenten (b:NO₂/N₂O₄; c:HNO₃; d:N₂O₅; e:IONO₂; f:INO₂) und Restabsorption nach der spektralen Subtraktion der Absorptionsanteile aller identifizierten Komponenten (g)
In den weiteren Spektren (b-f) in Abb. 50 sind die jeweiligen Anteile der einzelnen Komponenten der Reaktionsmischung am Gesamtspektrum aufgezeigt. Zur besseren Übersicht sind die Grundlinien der einzelnen Spektren verschoben.

Das unterste Spektrum (g) in Abb. 50 zeigt die Restabsorption nach der spektralen Subtraktion aller Absorptionsanteile der in dem Reaktionsgemisch identifizierten Komponenten.

Aufgrund der bei dieser Darstellungsmethode des IONO2 notwendigen hohen NO$_2$-Ausgangskonzentration kommt es zu einer messbaren Bildung des NO$_2$-Dimeren N$_2$O$_4$,

\begin{equation}
2 \text{NO}_2 + M \rightarrow \text{N}_2\text{O}_4 + M
\end{equation}

welches in dem Spektrum b) der Abb. 50 anhand der IR-Absorptionsbande bei 1262 cm$^{-1}$ identifiziert werden kann (Melen and Herman (1992)). Unter Verwendung des von Wängberg et al. (1997) angegebenen IR-Absorptionskoeffizienten für N$_2$O$_4$ ($\varepsilon = 1 \times 10^{18}$ cm$^2$ Molekül$^{-1}$; 1261 cm$^{-1}$, Basis 10) läßt sich die Konzentration von N$_2$O$_4$ in der Ausgangsmischung zu 4x10$^{12}$ Moleküle cm$^{-3}$ berechnen. Eine weitere N$_2$O$_4$-Bande bei 750 cm$^{-1}$ wird von der $\nu_2$-Bande des NO$_2$ überlagert und ist hier nicht zu erkennen.

HNO$_3$ (Spektrum c) in Abb. 50 ist zwar bereits zu einem Teil in der Ausgangsmischung vorhanden, wird aber auch im Verlauf der Experimente zusätzlich gebildet. Diese Bildung von HNO$_3$ kann ihre Ursache in den Umsetzungen von N$_2$O$_5$ und/oder IONO$_2$ auf der Reaktorwand oder auf eventuell in der Gasphase vorhandenen Aerosolen haben. Die Konzentrationsbestimmung von HNO$_3$ erfolgte unter Verwendung des von Wängberg et al. (1997) angegebenen Absorptionsquerschnittes von $\varepsilon = 9,29 \times 10^{-19}$ cm$^2$ Molekül$^{-1}$ (1326 cm$^{-1}$, Basis 10). Die Banden bei 1245 cm$^{-1}$ und 743 cm$^{-1}$ (Spektrum d) in Abb. 50 lassen sich der Verbindung N$_2$O$_5$ zuordnen. IONO$_2$ kann anhand der Absorptionsbanden bei 1275 cm$^{-1}$ und 815 cm$^{-1}$ (Spektrum e) in Abb. 50 als Reaktionsprodukt identifiziert werden (Barnes et al (1991)). Weiterhin wird in dem Reaktionssystem Nitriliodid (INO$_2$) gebildet (Spektrum f) in Abb. 50, zu erkennen an den schwachen Banden bei 1281 cm$^{-1}$ und 779 cm$^{-1}$ (Barnes et al (1991)). Die nach der Subtraktion der Absorptionen aller identifizierten Verbindungen verbleibenden Restabsorptionen bei 1260 cm$^{-1}$ und 750 cm$^{-1}$ stammen von N$_2$O$_4$ (Spektrum g) in Abb. 50.

Die Reaktionsprodukte IONO$_2$, INO$_2$ und N$_2$O$_5$ werden über die folgenden Reaktionen gebildet:

\begin{align}
(9) \quad \text{NO}_2 + \text{hv} & \rightarrow \text{NO} + \text{O} \\
(10) \quad \text{I}_2 + \text{O} & \rightarrow \text{IO} + \text{I}
\end{align}
(11) \[ \text{IO} + \text{NO}_2 + \text{M} \rightarrow \text{IONO}_2 + \text{M} \]
(15) \[ \text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M} \]
(44) \[ \text{NO}_2 + \text{NO}_3 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M} \]

Eine Diskussion bezüglich der Bildung von \( \text{N}_2\text{O}_5 \) und des dazu notwendigen \( \text{NO}_3 \)-Radikals folgt zu einem späteren Zeitpunkt.

Die Konzentrations-Zeit-Profile von \( \text{IONO}_2 \), \( \text{N}_2\text{O}_5 \) und \( \text{HNO}_3 \) in diesem Reaktionssystem sind nicht reproduzierbar. Dies wird in Abb. 51 demonstriert, in der für zwei, unter gleichen Anfangsbedingungen durchgeführte Photolyseexperimente (\( 300 \text{ nm} \leq \lambda \leq 500 \text{ nm} \), \( [\text{I}_2]_0 = 1,2 \times 10^{15} \text{ Moleküle cm}^{-3} \), \( [\text{NO}_2]_0 = 3,2 \times 10^{15} \text{ Moleküle cm}^{-3} \), \( \text{M} = \text{N}_2 \)) die Konzentrations-Zeit-Profile für die Produkte \( \text{IONO}_2 \), \( \text{N}_2\text{O}_5 \) und \( \text{HNO}_3 \) dargestellt sind. Die Konzentration des \( \text{IONO}_2 \) erreicht nach 15 bis 20 s ein unterschiedlich hohes Maximum. Die anschließende Abnahme der Konzentration verläuft unterschiedlich schnell, wobei die Lebensdauern von \( \text{IONO}_2 \) bei 5 s beziehungsweise 30 s liegen.

Abb. 51: \( \text{IONO}_2 \)-, \( \text{N}_2\text{O}_5 \)- und \( \text{HNO}_3 \)-Konzentrationsverläufe für zwei Experimente mit gleichen Anfangsbedingungen während der Photolyse (\( 300 \text{ nm} \leq \lambda \leq 500 \text{ nm} \)) von \( \text{I}_2/\text{NO}_2/\text{N}_2 \)-Mischungen; \( [\text{I}_2]_0 = 1,2 \times 10^{15} \text{ Moleküle cm}^{-3} \), \( [\text{NO}_2]_0 = 3,2 \times 10^{15} \text{ Moleküle cm}^{-3} \); \( p = 992 \text{ mbar} \); \( T = 294,2 \text{ K} \); (\( \blacktriangle \)): \( \text{IONO}_2 \), (\( \blacksquare \)): \( \text{N}_2\text{O}_5 \) und (\( \blacklozenge \)): \( \text{HNO}_3 \);

Die gegenüber der IONO\(_2\)-Bildung zeitversetzte Bildung des N\(_2\)O\(_5\) während der Photolyse ist ein Hinweis darauf, dass IONO\(_2\) einen Vorläufer für N\(_2\)O\(_5\) darstellt. Folgereaktionen des IONO\(_2\) könnten zur Bildung von NO\(_3\)-Radikalen führen, die dann mit NO\(_2\) zu N\(_2\)O\(_5\) rekombinieren.

Einen weiteren Hinweis darauf liefern Photolyseexperimente von Mischungen aus NO\(_2\) in N\(_2\). Mit NO\(_2\)-Ausgangskonzentrationen von 3,2\(\times\)10\(^{15}\) Moleküle cm\(^{-3}\) werden vergleichbar hohe N\(_2\)O\(_5\)-Konzentrationen erhalten wie bei der Photolyse von I\(_2\)/NO\(_2\)-Mischungen in N\(_2\). Die bei der Photolyse von NO\(_2\) gebildeten O-Atome reagieren größtenteils mit NO\(_2\) zu NO und O\(_2\) (45), ein Teil führt aber über die Rekombination (46) zur Bildung von NO\(_3\)-Radikalen.

\[
\begin{align*}
(9) \quad \text{NO}_2 + h\nu & \rightarrow \text{NO} + \text{O} \\
(45) \quad \text{NO}_2 + \text{O} & \rightarrow \text{NO} + \text{O}_2 & 77\% \\
(46) \quad \text{NO}_2 + \text{O} + \text{M} & \rightarrow \text{NO}_3 + \text{M} & 23\% \\
(44) \quad \text{NO}_2 + \text{NO}_3 + \text{M} & \rightarrow \text{N}_2\text{O}_5 + \text{M}
\end{align*}
\]

Die Reaktion (46) hat in Gegenwart von I\(_2\)-Konzentrationen von 1\(\times\)10\(^{15}\) Moleküle cm\(^{-3}\) keine Bedeutung, weil deren Geschwindigkeit zwanzigmal langsamer ist als die der Reaktion (10) von O-Atomen mit I\(_2\). Die Bildung von N\(_2\)O\(_5\) kann in dem I\(_2\)/NO\(_2\)-System nicht über Reaktion (46) stattfinden. Auch dies ist ein Hinweis darauf, dass IONO\(_2\) die Quelle für NO\(_3\)-Radikale darstellt und somit für die N\(_2\)O\(_5\)-Bildung verantwortlich ist.


Die Reaktion von O-Atomen mit IONO\(_2\) (47) kann keine Quelle für NO\(_3\)-Radikale sein, da die Geschwindigkeit dieser Reaktion kleiner ist als die der sehr schnellen Reaktion (10) (\(k_{10} = 1,4\times 10^{-10}\) cm\(^3\) Molekül\(^{-1}\) s\(^{-1}\) (DeMore et al. (1997))). Mit einer IONO\(_2\)-Konzentration in der Größenordnung von 1\(\times\)10\(^{13}\) Moleküle cm\(^{-3}\) würden sich selbst bei ähnlich großen Geschwindigkeitskonstanten \(k_{47}\) und \(k_{10}\) nur 1 % der O-Atome mit IONO\(_2\) umsetzen.
\[
(47) \quad \text{IONO}_2 + \text{O} \rightarrow \text{IO} + \text{NO}_3
\]

Zudem reagieren die O-Atome noch nach (45) und (46) mit NO\(_2\), so dass die Reaktion (47) keine Bedeutung haben kann. Es ist außerdem anzunehmen, dass als Reaktionsprodukt IO-Radikale entstehen, die unter Rekombination mit NO\(_2\) zu IONO\(_2\) zurückreagieren. Die Reaktion (47) würde zwar eine Quelle für NO\(_3\)-Radikale und somit auch für N\(_2\)O\(_5\) darstellen, wäre aber keine Senke für IONO\(_2\).

Von Barnes et al. (1991) wird die Reaktion von I-Atomen mit IONO\(_2\) als mögliche Quelle für NO\(_3\) vorgeschlagen:

\[
(48) \quad \text{I} + \text{IONO}_2 \rightarrow \text{NO}_3 + \text{I}_2
\]

Reaktion (48) findet in Konkurrenz zur Reaktion (15) statt:

\[
(15) \quad \text{I} + \text{NO}_2 + \text{M} \rightarrow \text{INO}_2 + \text{M}
\]

Mit einer IONO\(_2\)-Konzentration in der Größenordnung von \(1 \times 10^{13}\) Moleküle cm\(^{-3}\) und einer angenommenen Geschwindigkeitskonstante \(k_{48} = 1 \times 10^{-10}\) cm\(^3\) Molekül\(^{-1}\) s\(^{-1}\) würden 6 % der I-Atome mit IONO\(_2\) reagieren.

Die Photolyse von IONO\(_2\) liefert, sofern sie nach Reaktion (49) und nicht nach anderen Reaktionskanälen abläuft, ebenfalls NO\(_3\) Radikale:

\[
(49) \quad \text{IONO}_2 + h\nu \rightarrow \text{NO}_3 + \text{I}
\]

\[
(50) \quad \text{NO}_3 + h\nu \rightarrow \text{NO}_2 + \text{O} \text{ oder } \text{NO} + \text{O}_2
\]

Die folgenden Reaktionen des IONO$_2$ können ebenfalls zu einer Bildung von NO$_3$-Radikalen führen:

\begin{align*}
(51) \quad & \text{IONO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{INO}_2 \\
(52) \quad & 2 \text{IONO}_2 \rightarrow 2 \text{NO}_3 + \text{I}_2 \\
(53) \quad & \text{IONO}_2 + \text{NO} \rightarrow \text{NO}_3 + \text{INO}
\end{align*}

Eine Diskussion dieser Reaktionen folgt im anschließenden Kapitel.

Der auffälligste Unterschied zwischen den beiden Experimenten in Abb. 51 ist das zeitliche Verhalten von HNO$_3$. In dem Experiment, in dem das IONO$_2$ eine relativ kurze Lebensdauer aufweist (Abb. 51a)), findet sich eine zeitliche Korrelation mit der Bildung von HNO$_3$. Man erkennt in Abb. 51 a), dass die Konzentration von HNO$_3$ zunächst konstant bleibt. Die Zunahme an HNO$_3$ beginnt nach etwa 15 s und erreicht nach etwa 60 s einen konstanten Endwert. Parallel dazu erfolgt eine schnelle Abnahme der IONO$_2$-Konzentration nach ca. 15 s. In dem in Abb. 51 b) gezeigten Experiment beginnt die HNO$_3$-Bildung erst nach etwa 30 s und verläuft mit einem deutlich langsameren Anstieg.

Erklärbar wären diese Verläufe über einen Ablauf einer heterogenen Reaktion von IONO$_2$ mit Wasser auf Aerosolen, die sich während der Photolyse im Reaktor bilden.

\begin{align*}
(54) \quad & \text{IONO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HOI}
\end{align*}

Diese Aerosole könnten aus höheren Iodoxiden bestehen, die durch Reaktionen ausgehend von IO-Radikalen gebildet werden. Während der für die Sublimation des I$_2$ in die evakuierte Reaktionskammer benötigten Zeitdauer von etwa 45 min steigt der Druck in der Reaktionskammer auf ca. 0,8 mbar an. Dieser Druckanstieg ist fast ausschließlich durch die Leckrate des Reaktors gegeben. Der Partialdruck des in die Reaktionskammer sublimierten I$_2$ beträgt in etwa 0,05 mbar. Es läßt sich abschätzen, dass somit zu Beginn eines Experimentes in der Reaktionsmi-schung auch etwa 4x10$^{15}$ Moleküle cm$^{-3}$ O$_2$ vorhanden sind, die an der Bildung von Aerosolen mitwirken können. Ein Teil der bei der NO$_2$-Photolyse entstehenden O-Atome kann mit O$_2$ zu O$_3$ rekombinieren, das sich dann mit I$_2$ zu höheren Iodoxiden ( Vikis and McFarlane (1985) ) umsetzt.

Die Reaktion (54) sollte zur Bildung von HOI führen. Dieses ließ sich anhand seiner Absorptionsbanden bei 3620 cm$^{-1}$ und 1068 cm$^{-1}$ (Barnes et al. (1992)) allerdings nicht als Reaktions-
produkt identifizieren. In der Arbeit von Barnes et al. (1992) wurde HOI \textit{in situ} durch die UV-Photolyse von H$_2$O$_2$ in Gegenwart von I$_2$ zur Darstellung von HOI verwendet. Bei einer Weglänge von 492 m wurden für beide Banden nur Absorptionen von unter 0,03 gemessen. Da die Weglänge in dem in dieser Arbeit verwendeten System nur 50,4 m beträgt, besteht die Möglichkeit, dass die gemäß Reaktion (54) gebildete Menge an HOI unterhalb der Nachweissgrenze liegt. Das Fehlen der HOI-Absorptionsbanden muß demnach kein Hinweis darauf sein, dass die Reaktion (54) nicht stattfindet.

Als typisches Beispiel für die Umsätze von NO$_2$ und NO in den durchgeführten Messungen sind in Tab. 7 die Massenbilanzen des in Abb. 51 b) dargestellten Experimentes für vier verschiedene Zeitpunkte aufgeführt. Berücksichtigt wurden hierbei nur die Moleküle NO$_2$, NO und N$_2$O$_5$. Keine Berücksichtigung fand die Konzentration von HNO$_3$, da diese, wie aus Abb. 51 b) entnommen werden kann, zu allen Zeitpunkten unterhalb von 5x10$^{12}$ Moleküle cm$^{-3}$ liegt und somit einen vernachlässigbar kleinen Beitrag zur Massenbilanz liefert. Ebenfalls nicht berücksichtigt wurde die etwa 4x10$^{12}$ Moleküle cm$^{-3}$ betragende Konzentration an N$_2$O$_4$. Die Angaben für den Zeitpunkt t = 0 s beziehen sich auf die Konzentrationen der Ausgangsmischung vor Beginn der Photolyse, in der bereits NO als Verunreinigung des NO$_2$ vorhanden ist.

<table>
<thead>
<tr>
<th>Molekül</th>
<th>t = 0 s</th>
<th>t = 22 s</th>
<th>t = 49,2 s</th>
<th>t = 76,5 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_2$</td>
<td>316 ± 8</td>
<td>308 ± 8</td>
<td>302 ± 8</td>
<td>294 ± 7</td>
</tr>
<tr>
<td>NO</td>
<td>5 ± 2</td>
<td>11 ± 3</td>
<td>17 ± 5</td>
<td>23 ± 6</td>
</tr>
<tr>
<td>N$_2$O$_5$</td>
<td>0 ± 0</td>
<td>0,7 ± 0,1</td>
<td>1,4 ± 0,1</td>
<td>1,2 ± 0,1</td>
</tr>
<tr>
<td>Summe N</td>
<td>321 ± 10</td>
<td>320 ± 11</td>
<td>322 ± 13</td>
<td>319 ± 13</td>
</tr>
</tbody>
</table>

Tab. 7: Massenbilanz für NO$_2$, NO und N$_2$O$_5$ für einige Zeiten des in Abb. 51 b) dargestellten Experimentes; alle Konzentrationen in 10$^{13}$ Moleküle cm$^{-3}$

Im Verlauf der Photolyse nimmt wie zu erwarten die Konzentration an NO$_2$ kontinuierlich ab und die an NO zu. Im Rahmen der gemeinsamen Fehler wird die Massenbilanz alleine mit der Berücksichtigung dieser beiden Bestandteile erfüllt. Als Verlustreaktionen für NO$_2$ kommen also fast ausschließlich die Photolyse und die Reaktion mit O-Atomen in Frage. Beide Senken führen zu einer Bildung von NO. Die Rekombinationen von NO$_2$ mit IO- und NO$_3$-Radikalen tragen unter diesen Reaktionsbedingungen nur einen kleinen Anteil an dem NO$_2$-Abbau bei. Die Konzentrationsbestimmung von IONO$_2$ konnte daher nicht auf der Basis einer Massenbilanz von
Stickstoff erfolgen. Mit den in Tab. 7 gezeigten Daten kann aus der NO₂-Abnahme eine obere Grenze für die IONO₂-Konzentration im Maximum bei \( t = 22 \) s abgeschätzt werden. Die maximale Abnahme der NO₂-Konzentration beträgt unter Berücksichtigung der entsprechenden Fehlerränder 2,4x10^{14} Moleküle cm\(^{-3}\). Als untere Grenze für die Konzentrationszunahme der Produkte NO und N₂O₅ erhält man entsprechend für NO 0,1x10^{14} Moleküle cm\(^{-3}\) und für N₂O₅ 0,13x10^{14} Moleküle cm\(^{-3}\). Damit ergibt sich aus der Massenbilanz für Stickstoff zum Zeitpunkt \( t = 22 \) s eine IONO₂-Konzentration von maximal 2,0x10^{14} Moleküle cm\(^{-3}\). Der mit dieser Art von Massenbilanz erhaltene Konzentrationswert dürfte aber deutlich zu hoch sein.

Mit einer Simulationrechnung des Reaktionssystems wurde für den Zeitpunkt \( t = 22 \) s eine IONO₂-Konzentration von 8x10^{13} Moleküle cm\(^{-3}\) erhalten. Diese Berechnung berücksichtigte die Reaktionen (9 - 11), (15) und keine Abbaureaktionen für IONO₂. Sie sollte daher eine zuverlässigere obere Grenze für die IONO₂-Konzentration wiedergeben als die Massenbilanz.

Da keine hinreichend genaue Massenbilanz durchgeführt werden konnte und sowohl die IR- als auch UV-Absorptionsquerschnitte von IONO₂ in der Literatur nicht beschrieben sind, können die tatsächlichen Konzentrationen von IONO₂ nicht bestimmt werden. Basierend auf IR-Absorptionsquerschnitten von ClONO₂ (Davidson et al. (1987), \( \sigma = 1,5\times10^{-18} \) cm\(^2\) Molekül\(^{-1}\), 1300 cm\(^{-1}\)) und BrONO₂ (Burkholder and Orlando (1998), \( \sigma = 2,0\times10^{-18} \) cm\(^2\) Molekül\(^{-1}\), 1279 cm\(^{-1}\)) wurde für den Absorptionsquerschnitt von IONO₂ ein ähnlich großer Wert von (2 ± 1) \( 10^{-18} \) cm\(^2\) Molekül\(^{-1}\) (Basis e, 1280,4 cm\(^{-1}\)) angenommen. Auf dieser Abschätzung basieren die in Abb. 51a) und b) und im Folgenden genannten Konzentrationsangaben bezüglich des IONO₂.

3.4.2 Verhalten von IONO₂ nach Beendigung der Photolyse

Die Photolysexperimente zeigen, dass die optimale Photolysezeit zur in-situ-Darstellung von IONO₂ 15 bis 20 s beträgt. Zu diesen Zeiten erreicht die IONO₂-Konzentration ein Maximum. Das Verhalten des IONO₂ zu späteren Zeiten verläuft sehr unterschiedlich und deutet stark auf das Vorhandensein von heterogenen Einflüssen hin. Die Konzentrationen von IONO₂ und N₂O₅ sinken nach Beendigung der Photolyse näherungsweise nach einem Geschwindigkeitsgesetz 1. Ordnung. Die effektiven Geschwindigkeitskonstanten 1. Ordnung für die Abnahme von IONO₂ und N₂O₅ in der Dunkelphase, \( k_{\text{INO}2} \) und \( k_{\text{N2O5}} \), sowie die Reaktionsbedingungen sind in Tab. 8 zusammengestellt.
<table>
<thead>
<tr>
<th>Nr</th>
<th>T [K]</th>
<th>p[bar]</th>
<th>[I₂]₀</th>
<th>[NO₂]₀</th>
<th>[IONO₂]</th>
<th>[N₂O₅]</th>
<th>k_{IONO₂}</th>
<th>k_{N₂O₅}</th>
<th>[NO]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>297,6</td>
<td>1000,0</td>
<td>101</td>
<td>230</td>
<td>2,1</td>
<td>1,2</td>
<td>4,0</td>
<td>2,1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>297,5</td>
<td>1011,8</td>
<td>107</td>
<td>325</td>
<td>1,1</td>
<td>1,5</td>
<td>5,7</td>
<td>2,2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>297,1</td>
<td>1000,0</td>
<td>115</td>
<td>330</td>
<td>2,3</td>
<td>1,5</td>
<td>4,0</td>
<td>2,1</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>297,0</td>
<td>985,0</td>
<td>115</td>
<td>270</td>
<td>1,0</td>
<td>0,9</td>
<td>8,0</td>
<td>3,0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>294,9</td>
<td>975,0</td>
<td>106</td>
<td>280</td>
<td>1,2</td>
<td>0,71</td>
<td>7,7</td>
<td>1,37</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>294,9</td>
<td>974,9</td>
<td>107</td>
<td>270</td>
<td>1,2</td>
<td>0,52</td>
<td>6,7</td>
<td>1,44</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>293,95</td>
<td>989,5</td>
<td>115</td>
<td>570</td>
<td>1,3</td>
<td>0,88</td>
<td>19</td>
<td>1,64</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>298,0</td>
<td>500,0</td>
<td>120</td>
<td>300</td>
<td>2,5</td>
<td>1,52</td>
<td>10,8</td>
<td>2,0</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>297,5</td>
<td>500,5</td>
<td>66</td>
<td>185</td>
<td>0,5</td>
<td>0,41</td>
<td>7,5</td>
<td>2,5</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>294,9</td>
<td>505,3</td>
<td>110</td>
<td>290</td>
<td>0,6</td>
<td>0,63</td>
<td>9,2</td>
<td>1,26</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>293,8</td>
<td>500,0</td>
<td>110</td>
<td>290</td>
<td>1,1</td>
<td>0,45</td>
<td>11,4</td>
<td>1,27</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>297,9</td>
<td>248,9</td>
<td>60</td>
<td>180</td>
<td>1,0</td>
<td>0,63</td>
<td>8,9</td>
<td>1,9</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>297,1</td>
<td>251,0</td>
<td>130</td>
<td>180</td>
<td>0,8</td>
<td>0,73</td>
<td>5,4</td>
<td>3,25</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>296,7</td>
<td>250,6</td>
<td>106</td>
<td>180</td>
<td>1,4</td>
<td>0,80</td>
<td>5,1</td>
<td>1,48</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>296,9</td>
<td>251,2</td>
<td>110</td>
<td>100</td>
<td>0,3</td>
<td>0,36</td>
<td>5,7</td>
<td>1,8</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>296,9</td>
<td>248,8</td>
<td>60</td>
<td>180</td>
<td>1,4</td>
<td>0,68</td>
<td>5,0</td>
<td>1,6</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>298,0</td>
<td>70,7</td>
<td>97</td>
<td>190</td>
<td>0,5</td>
<td>0,51</td>
<td>14</td>
<td>1,43</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>297,6</td>
<td>72,0</td>
<td>98</td>
<td>310</td>
<td>0,8</td>
<td>0,97</td>
<td>17,5</td>
<td>1,32</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>297,0</td>
<td>75,6</td>
<td>60</td>
<td>180</td>
<td>0,7</td>
<td>0,5</td>
<td>11,7</td>
<td>1,15</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>296,6</td>
<td>71,5</td>
<td>73</td>
<td>180</td>
<td>0,6</td>
<td>0,55</td>
<td>14,3</td>
<td>1,0</td>
<td>4</td>
</tr>
</tbody>
</table>

Tab. 8: Versuchsbedingungen und Ergebnisse zur Darstellung von IONO₂ durch Photolyse von I₂/NO₂/N₂-Mischungen; Photolysezeit 16 ± 2 s; Ausgangskonzentrationen [I₂]₀ und [NO₂]₀; [IONO₂] und [N₂O₅]: Konzentrationen im ersten Spektrum nach Abschluß der Photolyse; k_{IONO₂} und k_{N₂O₅}: Geschwindigkeitskonstanten 1. Ordnung für die Abnahme von IONO₂ und N₂O₅ in 10⁻² s⁻¹; NO-Konzentration nach Beendigung der Photolyse; alle Konzentrationen in 10¹³ Moleküle cm⁻³
Anhand der Daten in Tab. 8 kann man erkennen, dass die Experimente keine reproduzierbaren Ergebnisse für das Verhalten von IONO₂ nach der Beendigung der Photolyse zeigen. In allen Experimenten erfolgte die Abnahme des IONO₂ im Dunkeln nach einer Kinetik 1. Ordnung. Die Geschwindigkeitskonstanten lagen im Bereich von $4 \cdot 10^{-2}$ s⁻¹. Barnes et al. (1991) fanden in ihren Experimenten für die Abnahme der IONO₂-Konzentration nach einer Kinetik 1. Ordnung mit $k_{\text{IONO}_2} \approx 3,2 \times 10^{-2}$ s⁻¹ ähnlich hohe Geschwindigkeitskonstanten.

Obwohl für die bei Drücken um 1000 mbar durchgeführten Experimente die I₂-Ausgangskonzentrationen nur im Bereich $(1,01 \cdot 1,15) \times 10^{15}$ Moleküle cm⁻³ schwanken, variieren die maximalen Ausbeuten an IONO₂ um einen Faktor 2. Eine Abhängigkeit der IONO₂-Ausbeute von der NO₂-Konzentration ist dabei nicht feststellbar. Es wäre zu erwarten gewesen, dass mit einer deutlich höheren NO₂-Ausgangskonzentration (Experiment Nr. 7 in Tab. 8) auch größere Umsätze und damit höhere Ausbeuten an IONO₂ erzielt würden. Allerdings zeigte sich bei dieser Messung auch ein sehr schneller Abfall des IONO₂ mit einer Geschwindigkeitskonstanten 1. Ordnung von 0,19 s⁻¹. Dass diese schnelle Abnahme auf einer bimolekularen Reaktion gemäß

\begin{equation}
(51) \quad \text{IONO}_2 + \text{NO}_2 \rightarrow \text{INO}_2 + \text{NO}_3
\end{equation}

beruht, wird durch die anderen Experimente widerlegt, bei denen kein Zusammenhang zwischen dem Zeitverhalten der Abnahme des IONO₂ und der NO₂-Konzentration nachweisbar ist. Die bimolekulare Selbstreaktion des IONO₂ nach einer Kinetik 2. Ordnung,

\begin{equation}
(52) \quad \text{IONO}_2 + \text{IONO}_2 \rightarrow \text{I}_2 + 2 \text{NO}_3
\end{equation}

cann als Ursache für die schnelle Abnahme der IONO₂-Konzentration ausgeschlossen werden, da die Halbwertszeit sich nicht systematisch mit zunehmender IONO₂-Ausgangskonzentration verringert (Tab. 8).

Von Experiment Nr. 7 abgesehen liegen die Lebensdauern des IONO₂ bei Drücken um 1000 mbar zwischen 13 und 25 s. Ebenfalls nicht erkennbar ist eine Abhängigkeit zwischen dem zeitlichen Verhalten von IONO₂ und der NO-Konzentration. Es kann deshalb keine Aussage bezüglich der Reaktion

\begin{equation}
(53) \quad \text{IONO}_2 + \text{NO} \rightarrow \text{NO}_3 + \text{INO}
\end{equation}

cannot be made. Finally, the reaction

\begin{equation}
(51) \quad \text{IONO}_2 + \text{NO}_2 \rightarrow \text{INO}_2 + \text{NO}_3
\end{equation}

can be excluded as the cause of the fast decay of the IONO₂ concentration, since the half-life did not systematically decrease with increasing IONO₂ starting concentration (Tab. 8).

From Experiment Nr. 7, the lifetimes of IONO₂ at pressures around 1000 mbar are between 13 and 25 s. Also, no correlation exists between the time behavior of IONO₂ and the NO concentration. Therefore, no statement can be made about the reaction

\begin{equation}
(53) \quad \text{IONO}_2 + \text{NO} \rightarrow \text{NO}_3 + \text{INO}
\end{equation}

getroffen werden.
Für die Experimente bei Drücken um 500, 250 und 70 mbar läßt sich ebenfalls keine systematische Abhängigkeit zwischen dem zeitlichen Verhalten von IONO$_2$ und dem Gesamtdruck sowie den Konzentrationen von NO$_2$ und NO erkennen. Ein Experiment bei 10 mbar ließ sich wegen der geringen Ausbeute an IONO$_2$ nicht auswerten.

Zwei Messungen wurden bei Temperaturen von 283 ± 2 K und Drücken von 985 mbar N$_2$ ausgeführt. Mit den Ausgangskonzentrationen von 1x10$^{15}$ Moleküle cm$^{-3}$ für I$_2$ und 3,1x10$^{15}$ Moleküle cm$^{-3}$ für NO$_2$ fielen die Ausbeuten an IONO$_2$ etwas geringer aus als in den Experimenten bei 296 K. Die Konzentrations-Zeit-Verläufe waren qualitativ identisch mit denen bei höheren Temperaturen. Die Konzentration des IONO$_2$ durchlief nach einer Photolysezeit von ca. 17 s ein Maximum, die Bildung von N$_2$O$_5$ erfolgte auch hier zeitversetzt. Nach Abschalten der Photolyselampen konnte die zeitliche Änderung der IONO$_2$-Konzentration wegen des zu schwachen Absorptionssignals nicht gemessen werden.

In Abb. 52 sind die Konzentrations-Zeit-Verläufe für zwei unter gleichen Reaktionsbedingungen durchgeführte Experimente dargestellt. Bei den in Abb. 52 dargestellten Experimenten wurden die Photolyselampen zum Zeitpunkt $t = 0$ s eingeschaltet, die Photolysedauer betrug 16 s. Bei beiden Experimenten war der Rührer nicht eingeschaltet.

Abb. 52: IONO$_2$-, N$_2$O$_5$- und HNO$_3$-Konzentrationsverläufe während der Photolyse (300 nm ≤ λ ≤ 500 nm) von I$_2$/NO$_2$/N$_2$-Mischungen und anschließende Dunkelphase; [I$_2$]$_0$ = 1,2x10$^{15}$ Moleküle cm$^{-3}$, [NO$_2$]$_0$ = 3,2x10$^{15}$ Moleküle cm$^{-3}$, $p$ = 992 mbar, $T$ = 294,2 K; Lampen aus bei $t = 16$ s; (▲): IONO$_2$, (■): N$_2$O$_5$ und (♦) HNO$_3$;
Man erkennt, dass die Ausbeuten an IONO_2 und N_2O_5 am Ende der Photolysephase in beiden Experimenten in etwa identisch sind, die Weiterreaktion des IONO_2 in der Dunkelphase jedoch mit sehr unterschiedlichen Zeitkonstanten verläuft.


3.4.3 Verhalten von IONO_2 in Gegenwart von NO

Für die Messung des thermischen Zerfalls von IONO_2 sollte NO als Fänger für IO-Radikale verwendet werden. Dabei muß die Konzentration an NO so groß sein, dass die Geschwindigkeit der Reaktion von IO mit NO (47) die der Rekombination von IO mit NO_2 (11) deutlich übersteigt.

\[
\begin{align*}
(-11) & \quad \text{IONO}_2 + M \rightarrow \text{IO} + \text{NO}_2 + M \\
(11) & \quad \text{IO} + \text{NO}_2 + M \rightarrow \text{IONO}_2 + M \\
(47) & \quad \text{IO} + \text{NO} \rightarrow \text{I} + \text{NO}_2
\end{align*}
\]


Aufgrund der schnellen Abnahme des IONO_2 verbunden mit der geringen zeitlichen Auflösung der Spektrenfassung von 6 s pro Spektrum konnte keine Bestimmung des kinetischen Verhaltens von IONO_2 nach Beendigung der Photolyse, aber vor der NO-Zugabe durchgeführt werden. Die Absorption des IONO_2 nimmt während dieser Zeit auf eine zu geringe Intensität ab, um nach der NO-Zugabe eine hinreichend genaue Messung durchführen zu können.
In den Experimenten, die zur Bestimmung der Geschwindigkeitskonstanten des thermischen Zerfalls von IONO$_2$ dienen sollten, erfolgte deshalb der Start der kinetischen Messung direkt nach der NO-Zugabe mittels einer gasdichten Spritze.

Der thermische Zerfall (-44) des nach Beendigung der Photolyse in der Reaktionsmischung vorhandenen N$_2$O$_5$ führt zur Bildung von NO$_2$ und NO$_3$. Bei Anwesenheit einer hinreichend hohen NO-Konzentration wird die Geschwindigkeit der Reaktion (48) des NO$_3$-Radikals mit NO deutlich größer als die der Rekombination von NO$_2$ mit NO$_3$ (44). Wegen der Störung des Gleichgewichtes $k_{44} / k_{-44}$ läßt sich der thermische Zerfall von N$_2$O$_5$ messen.

(-44) N$_2$O$_5$ + M $\rightarrow$ NO$_2$ + NO$_3$ + M  
(45) NO$_2$ + NO$_3$ + M $\rightarrow$ N$_2$O$_5$ + M  
(48) NO + NO$_3$ $\rightarrow$ NO$_2$ + NO$_2$

In Abb. 53 sind die Konzentrationsabnahmen von IONO$_2$ und N$_2$O$_5$ nach Beendigung der Photolyse in Abhängigkeit von der Zeit nach einem Geschwindigkeitsgesetz 1. Ordnung aufgetragen.

Abb. 53: Auftragung nach einer Kinetik 1. Ordnung für IONO$_2$ (geschlossene Symbole) und N$_2$O$_5$ (offene Symbole) für verschiedene NO-Konzentrationen: [NO]$_o$ = 7x10$^{13}$ Moleküle cm$^{-3}$ (Dreiecke) und [NO]$_o$ = 5,1x10$^{14}$ Moleküle cm$^{-3}$ (Quadrate); [NO$_2$]$_o$ = 1,8x10$^{15}$ Moleküle cm$^{-3}$ für beide Experimente; $T = 297$ K; $p = 251$ mbar N$_2$
In dem durch die Dreiecke dargestellten Experiment wurde kein zusätzliches NO zudosiert, in dem durch die Quadrate dargestellten Experiment betrug die NO-Konzentration zu Beginn der Messung 5,1x10^{14} Moleküle cm^{-3}. In Tab. 9 werden die Geschwindigkeitskonstanten für T = 297 K und p = 251 mbar (Atkinson et al. (1997)) für die Rekombination von IO-Radikalen mit NO_2 (11) und der Konkurrenzreaktion von IO-Radikalen mit NO (47) verglichen. In dem Experiment mit zusätzlicher NO-Dosierung ist die NO-Ausgangskonzentration siebenmal größer und das Verhältnis der Reaktionsgeschwindigkeiten k_{11} [IO] [NO_2] : k_{47} [IO] [NO] beträgt 1 : 3,5. Dennoch kann in dem Zeitverhalten von IONO_2 keine schnellere Konzentrationsabnahme festgestellt werden. Die Konzentrationsabnahme des N_2O_5 verläuft in dem Experiment mit der größeren NO-Konzentration deutlich schneller als in dem Experiment ohne zusätzliche NO-Zugabe. In diesem Fall erhöht sich das Verhältnis der Reaktionsgeschwindigkeiten k_{44} [NO_3] [NO_2] : k_{48} [NO_3] [NO] von 1 : 1 auf 1 : 7,5.

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>k_{Lit.}</th>
<th>k_{11}</th>
<th>R_{11} : R_{47}</th>
<th>k_{-11}</th>
<th>R_{11} : R_{47}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11) IO + NO_2 + M</td>
<td>1,8 (-12) 1)</td>
<td>1 : 0,5</td>
<td></td>
<td>1 : 3,5</td>
<td></td>
</tr>
<tr>
<td>(47) IO + NO</td>
<td>2,2 (-11) 1)</td>
<td></td>
<td>k_{-44}</td>
<td>R_{44} : R_{48}</td>
<td></td>
</tr>
<tr>
<td>(-11) IONO_2 + M</td>
<td>5,1 ± 0,2 3)</td>
<td>5,4 ± 0,7 3)</td>
<td></td>
<td>k_{44}</td>
<td>R_{44} : R_{48}</td>
</tr>
<tr>
<td>(44) NO_3 + NO_2 + M</td>
<td>9,9 (-13) 1)</td>
<td>1 : 1</td>
<td>1 : 7,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(48) NO_3 + NO</td>
<td>2,6 (-11) 1)</td>
<td></td>
<td>3,03 (-2) 2)</td>
<td>1,48 ± 0,11 3)</td>
<td>3,25 ± 0,3 3)</td>
</tr>
</tbody>
</table>

Tab. 9: Vergleich der in Abb. 52 dargestellten Experimente bezüglich des Verhaltens von IONO_2 und N_2O_5 in Gegenwart unterschiedlicher NO-Konzentrationen; [NO_2]_o und [NO]_o in Moleküle cm^{-3}; k_{Lit.}: Geschwindigkeitskonstanten aus Atkinson et al. (1997); 1) 1,8 (-12) \equiv 1,8x10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1}; 2) 3,03 (-2) \equiv 3,03x10^{-2} \text{ s}^{-1}; 3) k_{Exp.} [10^{-2} \text{ s}^{-1}], 2\sigma \text{ Fehler}; NO_2- und NO-Konzentrationen in Moleküle cm^{-3}; T = 297 K; p = 251 mbar; M = N_2
Die experimentell ermittelte Geschwindigkeitskonstante 1. Ordnung für die Konzentrationsabnahme des N₂O₅ stimmt innerhalb der Fehlergrenzen mit dem Literaturwert für die Dissoziationskonstante des N₂O₅ \( k_{-44} = 3,03 \times 10^{-2} \text{ s}^{-1} \) überein (Atkinson et al. (1997)).

Mit der hier verwendeten Methode ist also eine Ermittlung der Geschwindigkeitskonstanten für den thermischen Zerfall des N₂O₅ möglich. Die Tatsache, dass im Falle des IONO₂ keine Änderung nachweisbar ist, läßt nur den Schluss zu, dass dessen Zeitverhalten unter den experimentellen Bedingungen nicht auf dem thermischen Zerfall beruht, sondern dass hier eine gegenüber dem thermischen Zerfall deutlich schneller ablaufende Konkurrenzreaktion stattfindet.

Die in Tab. 8 für N₂O₅ aufgeführten Zeitkonstanten nach einem Geschwindigkeitsgesetz 1. Ordnung sind wie zu erwarten kleiner als die nach Atkinson et al. (1997) berechneten Konstanten für die thermische Dissoziation des N₂O₅. Sie stehen aber in Einklang mit Simulationsrechnungen, die unter Berücksichtigung der Geschwindigkeitskonstanten der Reaktionen (-44), (44) und (48) nach Atkinson et al. (1997) und den experimentellen Anfangskonzentrationen für NO₂, NO und N₂O₅ durchgeführt wurden.

3.4.4. Vergleich der thermischen Zerfälle von Iodnitrat (IONO₂), Bromnitrat (BrONO₂) und Chlornitrat (ClONO₂)


<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knauth (1978 a)</td>
<td>333 - 363</td>
<td>27 - 500</td>
<td>N₂</td>
<td>IR-Absorption</td>
</tr>
<tr>
<td>Schönle et al. (1979)</td>
<td>313 - 333</td>
<td>1 - 240</td>
<td>N₂</td>
<td>IR-Absorption</td>
</tr>
<tr>
<td>Anderson und Fahey (1990)</td>
<td>353 - 413</td>
<td>88 - 213</td>
<td>N₂ / O₂</td>
<td>NO-Chemiluminiszenz</td>
</tr>
</tbody>
</table>

Tab. 10: Untersuchungen zum thermischen Zerfall von ClONO₂

\[
\begin{align*}
(-I) & \quad \text{XONO}_2 + M \rightarrow \text{XO} + \text{NO}_2 + M \\
(II) & \quad \text{XO} + \text{NO} \rightarrow \text{X} + \text{NO}_2 \\
(III) & \quad \text{X} + \text{XONO}_2 \rightarrow \text{X}_2 + \text{NO}_3 \\
(IV) & \quad \text{NO}_3 + \text{NO} \rightarrow \text{NO}_2 + \text{NO}_2 \\
\text{Netto:} & \quad 2 \text{XONO}_2 + 2 \text{NO} \rightarrow \text{X}_2 + 4 \text{NO}_2
\end{align*}
\]

Mit diesem einfachen Mechanismus erfolgt also als Nettoreaktion pro Dissoziationschritt die Umwandlung von zwei Molekülen XONO2.

Zur Ermittlung der Geschwindigkeitskonstante des thermischen Zerfalls der Halogennitrate ist demnach die Kenntnis der Geschwindigkeitskonstanten (III) notwendig. Orlando und Tyndall (1996) bestimmten die entsprechende Konstante für X = Br über eine Relativmessung unter Verwendung von Acetaldehyd als Referenzsubstanz. Der erhaltene Wert von \( k_{\text{III,Br}} = (4,9 \pm 1,5) \times 10^{11} \text{ cm}^3 \text{Molekül}^{-1} \text{s}^{-1} \) bei 298 K steht in guter Übereinstimmung mit dem Ergebnis \( k_{\text{III,Br}} = (6,7 \pm 0,7) \times 10^{11} \text{ cm}^3 \text{Molekül}^{-1} \text{s}^{-1} \) von Harwood et al. (1998).

Weiterhin können folgende Nebenreaktionen zu zusätzlichen XONO2-Verlusten führen:

\[
\begin{align*}
(V) & \quad \text{NO} + \text{XONO}_2 \rightarrow \text{XNO} + \text{NO}_3 \\
(VI) & \quad \text{XNO} + \text{XONO}_2 \rightarrow \text{X}_2 + 2 \text{NO}_2
\end{align*}
\]

Bei Untersuchungen über das Verhalten von ClONO2 in Gegenwart von NO konnte Knauth die Bildung von ClNO nach Reaktion (V) nachweisen. In den Experimenten zum thermischen Zerfall von ClONO2 verwendete Knauth (1978 a) ClNO als Cl-Atomfänger. Die dabei festgestellte
Abhängigkeit der Lebensdauer des ClONO₂ von der ClNO-Konzentration führte zur Einführung der Reaktion ( VI ). Die Geschwindigkeitskonstanten der Reaktionen ( V ) und ( VI ) für X = Cl wurden von Knauth (1978 b) experimentell bestimmt und sind in Tab. 11 aufgeführt.

Bei ihren Experimenten zum thermischen Zerfall des BrONO₂ konnten Orlando und Tyndall (1996) in Gegenwart hoher NO-Konzentrationen die Bildung von BrNO gemäß ( V ) nachweisen. Diese blieb aber bei der Verwendung von geringeren NO-Konzentrationen aus. Dieser Sachverhalt wird durch die Folgereaktion ( VI ) des BrNO erklärt. Orlando und Tyndall geben für die Geschwindigkeitskonstante der Reaktion von BrNO mit BrONO₂ einen Wert von $k_{VI} \geq 1 \times 10^{-16}$ cm³ Molekül⁻¹ s⁻¹ und für die Reaktion von NO mit BrONO₂ $k_{V} = 3 \times 10^{-19}$ cm³ Molekül⁻¹ s⁻¹ an ( Orlando and Tyndall (1996) ).


Aufgrund der Nebenreaktionen führten die gemessenen Daten nicht unmittelbar zur Dissoziationskonstanten des Halogenitrates, sondern mußten in allen Arbeiten mit Hilfe von Simulationsrechnungen durch Anpassung der berechneten an die experimentellen Konzentrations-Zeit-Verläufe ermittelt werden.

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>$k_X = \text{Cl}$</th>
<th>$\Delta H^0_R$ (298 K)</th>
<th>$k_X = \text{Br}$</th>
<th>$\Delta H^0_R$ (298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V ) NO + XONO₂ → XNO + NO₃</td>
<td>5,9 (-20) ¹)</td>
<td>12,3 kJ/mol</td>
<td>3 (-19) ¹)</td>
<td>23,6 kJ/mol</td>
</tr>
<tr>
<td>( VI ) XNO + XONO₂ → X₂ + 2 NO₂</td>
<td>2,0 (-20) ¹)</td>
<td>-8,8 kJ/mol</td>
<td>$\geq 1$ (-16) ¹)</td>
<td>-27,7 kJ/mol</td>
</tr>
</tbody>
</table>

Tab. 11: Vergleich der Geschwindigkeitskonstanten der Reaktionen ( V ) und ( VI ) für X = Cl, Br ( T = 343 K ); ¹): 5,9 (-20) $\equiv 5,9 \times 10^{-20}$ cm³ Molekül⁻¹ s⁻¹

DeMore et al. (1997) berechnet. Für die Gleichgewichtskonstante des BrONO₂ wurden die von Orlando und Tyndall ermittelten Parameter verwendet (Orlando and Tyndall (1996)). Die Gleichgewichtskonstante für IONO₂ wurde folgendermaßen abgeschätzt. Chambers et al. (1992) bestimmten eine Geschwindigkeitskonstante von 1,5x10⁻¹² cm³ Molekül⁻¹ s⁻¹ für die Reaktion von I₂ mit NO₃ zu IONO₂ und I. Der Annahme von Chambers et al. (1992) folgend, dass eine so schnelle Reaktion entweder exotherm oder zumindestens thermochemisch neutral sein sollte, gelangt man unter Verwendung der in DeMore et al. (1997) angegebenen Bildungsenthalpien zu folgender Abschätzung für die Bildungsenthalpie des IONO₂:

\[
\Delta H^\circ_B (\text{IONO}_2) + \Delta H^\circ_B (I) - \Delta H^\circ_B (I_2) - \Delta H^\circ_B (\text{NO}_3) \leq 0
\]

⇒ \[\Delta H^\circ_B (\text{IONO}_2) \leq 29,3 \pm 4,2 \text{ kJ/mol}.

Mit dieser oberen Grenze für die Bildungsenthalpie von IONO₂ erhält man für die Dissoziation des IONO₂ in IO und NO₂ eine untere Grenze von \(\Delta H^\circ_R \geq 131,4 \pm 12,6 \text{ kJ/mol}.

Wie bei Orlando und Tyndall (1996) ausführlich gezeigt wird, beträgt das Verhältnis der Bindungsenthalpien der Bindungen X-ONO₂ und X-O 0,64 für X = F, Cl und 0,61 für X = Br. Mit den Bildungsenthalpien von IO, I und O läßt sich die Reaktionsenthalpie für die Dissoziation des IO und somit die X-O Bindungsenergie zu 228,6 kJ/mol berechnen. Multipliziert man diesen Wert mit 0,64 bzw. 0,61, so ergibt sich für die I-ONO₂-Bindungsenergie ein Mittelwert von 143 ± 4 kJ/mol. Daraus erhält man mit den Bildungsenthalpien für I und NO₃ die Bildungsenthalpie von IONO₂: \(\Delta H^\circ_B (\text{IONO}_2) = 37,5 \pm 8,4 \text{ kJ/mol}.

Für die IO-NO₂ Bindungsenergie ergibt sich damit: \(\Delta H^\circ_R = 123,2 \pm 16,8 \text{ kJ/mol}.

Die beiden berechneten Werte für \(\Delta H^\circ_R\) stimmen innerhalb der Fehlergrenzen überein. Diese wurden unter Berücksichtigung der in DeMore et al. (1997) angegebenen Fehlergrenzen für die Bildungsenthalpien von IO (± 8,2 kJ/mol) und NO₃ (± 4,2 kJ/mol) erhalten. In Tab. 12 sind zur Berechnung der Dissoziationskonstanten beide Werte für \(\Delta H^\circ_R\) berücksichtigt.

Die Bildungsentropie für IONO₂ wurde durch einen Vergleich der Entropien von Iodverbindungen mit denen der entsprechenden Verbindungen des Broms abgeschätzt (DeMore et al. (1997)). Die Differenzen der Entropien betragen etwa 10 J mol⁻¹ K⁻¹. Unter Berücksichtigung von \(S^\circ\) (BrONO₂) = 320 J mol⁻¹ K⁻¹ (Orlando and Tyndall (1996)) wurde für \(S^\circ\) (IONO₂) ein Wert von (330 ± 10) J mol⁻¹ K⁻¹ angenommen.

Die auf diesen Abschätzungen basierenden Werte für \(k_{\text{dis}}\) sind um 4 Größenordnungen kleiner als die in Tabelle 8 aufgeführten effektiven Geschwindigkeitskonstanten 1. Ordnung \(k_{\text{eff}}\) für die Abnahme der IONO₂-Konzentration.
Eine Unsicherheit von \( \Delta S^0(\text{IONO}_2) = \pm 10 \text{ J mol}^{-1} \text{ K}^{-1} \) führt zu einer Änderung von \( k_{\text{dis}} \) um lediglich einen Faktor 3,3. Die abgeschätzten Fehlergrenzen für \( \Delta C_p^0 \) bewirken für \( \Delta \Delta H^0_R = \pm 16,8 \text{ kJ/mol} \) eine Änderung von \( k_{\text{dis}} \) um einen Faktor 880. Der daraus resultierende maximale Wert für \( k_{\text{dis}} \) von \( 2,7 \times 10^{-3} \text{ s}^{-1} \) ist aber immer noch um mindestens einen Faktor 15 kleiner als die in Tab. 8 aufgeführten experimentellen Konstanten. Die Abweichungen zwischen dem abgeschätzten maximalen Wert für \( k_{\text{dis}} \) und den experimentellen Geschwindigkeitskonstanten \( k_{\text{eff}} \) für den Verlust von IONO2 erhöhen sich für 500, 250 und 70 mbar auf einen Faktor 40 bzw. 185.

<table>
<thead>
<tr>
<th></th>
<th>( K_{\text{Gl}} ) [cm\text{³} \text{Molekül}^{-1}]</th>
<th>( k_{\text{rec}} ) [cm\text{³} \text{Molekül}^{-1} \text{ s}^{-1}]</th>
<th>( k_{\text{dis}} ) [s^{-1}]</th>
<th>( \Delta H^0_B \text{ (298 K)} ) [kJ \text{ mol}^{-1}]</th>
<th>( S^0 \text{ (298 K)} ) [J \text{ mol}^{-1} \text{ K}^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONO2</td>
<td>4,7 ((-6))</td>
<td>3,2 ((-12))</td>
<td>6,3 ((-7))</td>
<td>13 (^1)</td>
<td>293 (^1)</td>
</tr>
<tr>
<td>ClONO2</td>
<td>1,2 ((-8))</td>
<td>2,3 ((-12))</td>
<td>1,9 ((-4))</td>
<td>23 (^1)</td>
<td>310 (^1)</td>
</tr>
<tr>
<td>BrONO2</td>
<td>1,1 ((-7))</td>
<td>2,8 ((-12))</td>
<td>2,6 ((-5))</td>
<td>42,3 (^2)</td>
<td>320 (^2)</td>
</tr>
<tr>
<td>IONO2</td>
<td>3,2 ((-5))</td>
<td>3,5 ((-12))</td>
<td>1,1 ((-7))</td>
<td>29,3 (^3)</td>
<td>330 (^3)</td>
</tr>
<tr>
<td>IONO2</td>
<td>1,2 ((-6))</td>
<td>3,5 ((-12))</td>
<td>3,0 ((-6))</td>
<td>37,5 (^3)</td>
<td>330 (^3)</td>
</tr>
</tbody>
</table>

Tab. 12: Vergleich von \( K_{\text{Gl}}, k_{\text{rec}}, k_{\text{dis}}, \Delta H^0_B \text{ (298 K)} \) und \( S^0 \text{ (298 K)} \) für die Halogennitrate;

\( 1,2(-8) \equiv 1,2 \times 10^{-8}; K_{\text{Gl}} \) berechnet; \( k_{\text{rec}} \): DeMore et al. (1997); \( k_{\text{dis}} = k_{\text{rec}} / K_{\text{Gl}}; \)

DeMore et al. (1997); \(^2\): Orlando und Tyndall (1996); \(^3\): diese Arbeit (siehe Text)

Es kann also davon ausgegangen werden, dass die experimentellen Geschwindigkeitskonstanten \( k_{\text{eff}} \) für den Verlust von IONO2 nicht auf dessen thermischen Zerfall sondern auf Nebenreaktionen zurückzuführen sind.

Dieses Ergebnis wurde auch für das Verhalten von BrONO2 erhalten. Die Photolyse \( 300 \text{ nm} \leq \lambda \leq 500 \text{ nm} \) von Mischungen aus \( 1 \times 10^{15} \text{ Moleküle cm}^{-3} \text{ Br}_2 \) und \( 3,2 \times 10^{15} \text{ Moleküle cm}^{-3} \text{ NO}_2 \) in \( \text{N}_2 \) \( \text{p} = 990 \text{ mbar}, T = 296 \text{ K} \) führte zur Bildung von BrONO2. Darüberhinaus konnten die Reaktionsprodukte NO, N\textsubscript{2}O\textsubscript{5}, BrNO\textsubscript{2} und BrNO nachgewiesen werden. Nach Beendigung der Photolyse erfolgte die Abnahme von BrONO2 nach einer Kinetik 1. Ordnung mit der Geschwindigkeitskonstanten \( k_{\text{eff}} = 6,5 \times 10^{-2} \text{ s}^{-1}. \) Dieser Wert ist um 3 Größenordnungen größer als die Geschwindigkeitskonstanten \( k_{\text{dis}} \) für den thermischen Zerfall des BrONO2. In der Arbeit von Orlando und Tyndall lag das Verhältnis von \( k_{\text{eff}} : k_{\text{dis}} \) bei \( 1,8 - 1,9 \) : 1. Eine bimolekulare Selbsteraktion des BrONO2 oder eine Reaktion mit NO\textsubscript{2} können als Ursache für den schnellen
Abbau des BrONO\(_2\) ausgeschlossen werden. Orlando und Tyndall führten Experimente zur Be-

stimmung einer Wandkonstanten für BrONO\(_2\) durch. Die Lebensdauer von BrONO\(_2\) ( \(4 - 10 \times 10^{13}\) Moleküle cm\(^{-3}\) ) in Gegenwart von NO\(_2\) ( \(2 \times 10^{15}\) Moleküle cm\(^{-3}\) ) betrug unter diesen 

Bedingungen 16 min ( Orlando and Tyndall (1996) ).

Das Zeitverhalten von ClONO\(_2\) unterschied sich drastisch von dem der beiden anderen Halogen-

nitrate. Für diese Experimente erfolgte die Darstellung des ClONO\(_2\) in situ durch die Photolyse 

( 300 nm \(\leq \lambda \leq 500\) nm ) von Mischungen aus OClO ( \(3,9 \times 10^{14}\) Moleküle cm\(^{-3}\) ) und NO\(_2\) ( \(1,5 \times 10^{14}\) Moleküle cm\(^{-3}\) ) in N\(_2\) ( \(p = 990\) mbar, \(T = 295\) K ). Die Photolysekütter betrug 40 s. Zu 

diesem Zeitpunkt war die Ausgangsmenge an NO\(_2\) vollständig abgebaut. Die Abnahme von 

ClONO\(_2\) im Dunkeln erfolgte nach einer Kinetik 1.Ordnung mit \(k_{\text{eff1}} = 7,4 \times 10^{-4}\) s\(^{-1}\). Nach Zugabe 

von NO ( \(2,3 \times 10^{14}\) Moleküle cm\(^{-3}\) ) beschleunigte sich die Abnahme auf \(k_{\text{eff2}} = 10,4 \times 10^{-4}\) s\(^{-1}\). Die 

Differenz \(\Delta k_{\text{eff}} = 3 \times 10^{-4}\) s\(^{-1}\) entspricht in etwa dem doppelten Wert der Zerfallskonstanten \(k_{\text{dis}}\) für 

ClONO\(_2\). Das Verhältnis von \(k_{\text{eff}} : k_{\text{dis}}\) variierte bei Knauth (1978a) je nach Versuchsbedingun-

gen von 4,4 : 1 bis 1 : 1.

Die Messung der Geschwindigkeitskonstante des thermischen Zerfalls von IONO\(_2\) in der Gas-

phase konnte im Rahmen dieser Arbeit aus folgenden Gründen nicht durchgeführt werden:

- die Unreproduzierbarkeit der Experimente
- die sehr kurze Lebensdauer des IONO\(_2\) unter den hier verwendeten Reaktionsbedingungen
- die sehr geringe Ausbeute an IONO\(_2\) bei tieferen Temperaturen

3.4.5 Das UV-Spektrum von IONO\(_2\)

In Abb. 54 sind zwei IR-Spektren im Bereich von 1400 - 700 cm\(^{-1}\) dargestellt. Das obere der bei-

den Spektren wurde nach 15 s Photolyse ( 300 nm \(\leq \lambda \leq 500\) nm ) einer Mischung aus \(1 \times 10^{15}\) 

Moleküle cm\(^{-3}\) I\(_2\) und \(3 \times 10^{15}\) Moleküle cm\(^{-3}\) NO\(_2\) in 980 mbar N\(_2\) bei 294 K erhalten. Die von 

NO\(_2\)/N\(_2\)O\(_4\) und HNO\(_3\) resultierenden Absorptionen wurden in beiden Spektren subtrahiert. 

Anhand ihrer charakteristischen Absorptionsbanden können die Reaktionsprodukte IONO\(_2\), N\(_2\)O\(_5\) 

t und INO\(_2\) identifiziert werden (Abb. 54, oberes Spektrum). Es sollte daher möglich sein, die UV-

Absorption des IONO\(_2\) nachzuweisen.

Das untere Spektrum in Abb. 54 wurde unter identischen Versuchsbedingungen bei der Photoly-

se im Bereich 500 nm \(\leq \lambda \leq 700\) nm erhalten. Unter diesen Bedingungen kann keine Photolyse 

von NO\(_2\) und damit auch keine Bildung von IO und IONO\(_2\) stattfinden. Anhand der Absorptio-

nen kann INO\(_2\) als Reaktionsprodukt identifiziert werden.
Abb. 54: IR-Produktspektren nach 15 s Photolyse einer I$_2$/NO$_2$-Mischung; T = 294 K, p = 980 mbar, M = N$_2$; [I$_2$]$_0$ = 1x10$^{15}$ Moleküle cm$^{-3}$, [NO$_2$]$_0$ = 3x10$^{15}$ Moleküle cm$^{-3}$; oberes Spektrum (300 nm $\leq \lambda \leq$ 500 nm): IONO$_2$, N$_2$O$_5$ und INO$_2$; unteres Spektrum (500 nm $\leq \lambda \leq$ 700 nm): INO$_2$; beide Spektren nach Subtraktion der Absorptionen von NO$_2$/N$_2$O$_4$ und HNO$_3$.

In Abb. 55 sind zwei UV-Spektren im Bereich von 230 - 300 nm dargestellt. Diese UV-Spektren wurden in den gleichen Experimenten wie die in Abb. 54 gezeigten IR-Spektren aufgenommen. Das obere der beiden Spekten wurde nach 15 s Photolyse im Bereich 300 - 500 nm gemessen. Das mittlere Spektrum zeigt die Absorption, die unter identischen Versuchsbedingungen bei der Photolyse im Bereich 500 - 700 nm erhalten wurde.
Abb. 55: UV-Produktspektren; gleiche Experimente wie in Abb. 54; oberes Spektrum (A): Photolyse im Bereich 300 - 500 nm; mittleres Spektrum (B): Photolyse im Bereich 500 - 700 nm; unteres Spektrum: A - 1,85xB

Die Absorption in dem mittleren Spektrum ist nur der Verbindung INO$\text{_2}$ zuzuordnen. In dem oberen Spektrum resultiert die Absorption aus Anteilen der Einzelabsorptionen der Verbindungen INO$\text{_2}$, N$_2$O$_5$ und IONO$\text{_2}$. Die Ähnlichkeit des oberen mit dem mittleren Absorptionsspektrum zeigt, dass auch das Produktspektrum der kurzwelligen Photolyse im Wesentlichen aus der von INO$\text{_2}$ herrührenden Absorption besteht. Das Verhältnis der INO$\text{_2}$-Ausbeute in den UV-Spektren (Abb. 55) entspricht nicht dem Verhältnis der INO$\text{_2}$-Absorptionen in den IR-Spektren (Abb. 54). Dies ist jedoch kein Zeichen für eine unterschiedliche Herkunft der Absorptionen in den Produktspektren der kurzwelligen und der langwelligen Photolyse, da sich UV- und IR-Nachweis nicht exakt synchronisieren lassen.

Die aus der zeitlichen Änderung der UV-Absorption bestimmte Halbwertszeit des INO$\text{_2}$ nach der Beendigung der Photolyse beträgt $\tau_{0.5} = 2 - 3 \text{ s}$. Diese Abnahme ist deutlich schneller als die mit einer Halbwertszeit von $\tau_{0.5} = 17 \text{ s}$ ablauende Abnahme der dem IONO$\text{_2}$ zugeordneten IR-Absorption. Auch aus diesem Grund kann die Absorption des oberen Spektrums in Abb. 55 nicht

Da in dem IR-Spektrum der Reaktionsprodukte der kurzwelligen Photolyse (Abb. 54) IONO₂ und N₂O₅ als Reaktionsprodukte identifiziert werden konnten, sollte die Restabsorption des UV-Produktspektrums (unteres Spektrum in Abb. 55) eine Überlagerung aus den UV-Absorptionen dieser beiden Verbindungen darstellen. Der von der UV-Absorption des N₂O₅ stammende Anteil an der Restabsorption wurde unter Berücksichtigung der Absorptionsquerschnitte von Harwood et al. (1998) berechnet; er nimmt von 1x10⁻³ bei 230 nm auf 0,1x10⁻³ bei 248 nm ab. Die danach verbleibende Absorption mit einem Maximum von etwa 0,001 bei 260 nm ist zu klein, um sie dem IONO₂ zuordnen zu können.

4. Zusammenfassung

Da die in der Literatur beschriebenen kinetischen und spektroskopischen Eigenschaften der Nitrylhalogenide, Halogennitrite und Halogennitraten unvollständig und teilweise widersprüchlich sind, sollten im Rahmen dieser Arbeit ausgewählte Reaktionen und UV-Spektren der Verbindungen XONO und XNO₂ (X = Cl, Br und I) sowie von IONO₂ untersucht werden. Bei der Photolyse von Mischungen aus Cl₂ und NO₂ im Wellenlängenbereich 300 bis 500 nm führt die Rekombination von Cl-Atomen mit NO₂ zur Bildung von ClONO und ClNO₂. Die im Rahmen dieser Arbeit gemessenen Produktausbeuten von 87 % ClONO gegenüber 13 % ClNO₂ stehen in guter Übereinstimmung mit den Ergebnissen von Niki et al. (1978) (ClONO ≥ 80 % und ClNO₂ ≤ 20 %) und Leu (1984) (ClONO ≥ 75 % und ClNO₂ ≤ 25 %). Nach Beendigung der Photolyse konnte eine Umwandlung von ClONO in ClNO₂ und NO₂ nachgewiesen werden. Die experimentellen Konzentrations-Zeit-Profil für NO₂, ClONO und ClNO₂ lassen sich sowohl für die Photolysephase als auch für das Verhalten nach Beendigung der Photolyse sehr gut mit Simulationsrechnungen in Einklang bringen. In dem dazu verwendeten Reaktionsmechanismus sind gegenüber den Literaturdaten folgende Erweiterungen beziehungsweise Änderungen notwendig:

1.) Die Einführung der Reaktion von Cl-Atomen mit ClONO

\[ \text{Cl} + \text{ClONO} \rightarrow \text{Cl}_2 + \text{NO}_2 \quad k_{293 K} = (7.5 \pm 1.0) \times 10^{-12} \text{ cm}^3 \text{ Molekül}^{-1} \text{ s}^{-1} \]
2.) Die heterogene Umwandlung von ClONO in ClNO₂ und NO₂

\[
\begin{align*}
\text{ClONO} & \rightarrow \text{ClNO}_2 \quad k_{\text{het}} = 4,0 \times 10^{-4} \text{ s}^{-1} \\
\text{ClONO} & \rightarrow \text{Cl}_{\text{ads}} + \text{NO}_2 \quad k_{\text{het}} = 1,5 \times 10^{-4} \text{ s}^{-1}
\end{align*}
\]

3.) Die Änderung des Verzweigungsverhältnisses für die Rekombination von Cl-Atomen mit NO₂ zu ClONO (2b) und ClNO₂ (2a) von 81 : 19 auf 85 : 15

Bei der Photolyse von Br₂ in Gegenwart von NO₂ im Wellenlängenbereich 500 bis 700 nm führt die Rekombination von Br-Atomen mit NO₂ zur Bildung von BrNO₂. Die Geschwindigkeitskonstante für den thermischen Zerfall von BrNO₂ bei 298 K und 1 atm synthetischer Luft wurde in Anwesenheit von CH₃CHO beziehungsweise trans-2-Buten als Br-Radikalfänger bestimmt. Der ermittelte Wert von 5 \times 10^{-4} \text{ s}^{-1} stellt eine sichere obere Grenze für die Dissoziationskonstante kₗₐ des BrNO₂ dar und steht in guter Übereinstimmung mit den zu tieferen Temperaturen hin extrapolierten Daten von Frenzel et al. (1996). Der von Kreutter et al. (1991) vorgeschlagene Wert von kₗₐ = 1,2 \text{ s}^{-1} ist dagegen um mehrere Größenordnungen größer als diese obere Grenze. Diese Abweichung kann dadurch erklärt werden, dass bei der Rekombination von Br-Atomen mit NO₂ als Hauptprodukt das Isomere BrONO gebildet wird

\[
\begin{align*}
(7a) \quad \text{Br} + \text{NO}_2 + M & \rightarrow \text{BrNO}_2 + M \quad (\text{Nebenprodukt}) \\
(7b) \quad \text{Br} + \text{NO}_2 + M & \rightarrow \text{BrONO} + M \quad (\text{Hauptprodukt})
\end{align*}
\]

welches aufgrund seiner gegenüber BrNO₂ größeren thermischen Instabilität eine deutlich gerin

Die in DeMore et al. (1997) und Atkinson et al. (1997) vorgeschlagenen Parameter für die Re-
kombination von Br-Atomen mit NO₂ sollten danach der Summe der beiden Geschwindigkeits-
konstanten für die Reaktionen (7a) und (7b) entsprechen, wobei das genaue Verzweigungsver-
hältnis kₗₐ / kₗ₇ bislang noch unbekannt ist. Eine Abschätzung mittels Simulationsrechnungen liefert eine Produktausbeute von 92,5 % BrONO und 7,5 % BrNO₂.

Bei der Photolyse von Mischungen aus I₂ und NO₂ in N₂ im Wellenlängenbereich von 500 bis 700 nm konnte ausschließlich INO₂ als Reaktionsprodukt nachgewiesen werden. Das im Rah-
men dieser Arbeit erstmalig gemessene UV-Absorptionsspektrum des INO₂ zeigt drei Maxima
bei 242, 280 und 345 nm. Mit den aus der NO₂-Massenbilanz abgeschätzten oberen Grenzen für
die UV-Absorptionsquerschnitte wurde für den 1. Juli, 12 h und 50°N eine photolytische Lebensdauer von $\tau = 6$ min berechnet. Aufgrund der kurzen Halbwertszeit des INO$_2$ nach Beendigung der Photolyse von $\tau_{1/2} = 2 - 3$ s konnte eine Bestimmung der Geschwindigkeitskonstante der Reaktion von INO$_2$ mit NO nicht durchgeführt werden.

Die Darstellung von IONO$_2$ erfolgte durch die Photolyse von Mischungen aus I$_2$ und NO$_2$ in N$_2$ im Wellenlängenbereich von 300 bis 500 nm. Nebenreaktionen führen zur Bildung der Produkte N$_2$O$_3$ und INO$_2$.


Bei der verwendeten Darstellungsmethode des IONO$_2$ läßt sich die Bildung von INO$_2$ nicht vermeiden. Der von INO$_2$ herrührende Anteil an der Gesamtabsorption des Produktgemisches im UV-Spektralbereich ließ sich nicht spektral subtrahieren. Aus diesem Grund konnte das UV-Absorptionsspektrum des IONO$_2$ im Rahmen dieser Arbeit nicht bestimmt werden.


Die Kinetik der Reaktion von BrNO$_2$ mit NO wurde im Rahmen dieser Arbeit erstmals bestimmt. Die entsprechende Reaktion für INO$_2$ konnte aufgrund der kurzen Lebensdauer des INO$_2$ nicht gemessen werden. Die Geschwindigkeitskonstante für die Reaktion mit NO nimmt in der Reihenfolge ClNO$_2$, ClONO und BrNO$_2$ zu.
\[
\text{Tab. 13: Vergleich der kinetischen und thermodynamischen Daten für die Reaktion XNO}_2 + \text{NO} \\
\rightarrow \text{XNO} + \text{NO}_2 \quad (X = \text{Cl, Br, I}, \ \Delta H^0_{R,298K} \text{ aus DeMore et al. (1997)}, \ \Delta H^0_{R,298K} \text{ für BrNO}_2 \text{ siehe Kap. 3.2.2)}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Molekül} & \Delta H^0_{R,298K} & k_{298K} \text{ [cm}^3\text{ Molekül}^{-1} \text{ s}^{-1}] & A \text{ [cm}^3\text{ Molekül}^{-1} \text{ s}^{-1}] & E_A \text{ [kJ mol}^{-1} \text{]} & \text{Literatur} \\
\hline
\text{ClNO}_2 & -17,9 & 1,2 \times 10^{-17} & 1,5 \times 10^{-12} & 29,2 \pm 3,4 & \text{diese Arbeit} \\
\text{ClNO}_2 & -17,9 & 1,2 \times 10^{-17} & 1,4 \times 10^{-12} & 28,9 \pm 1,3 & \text{Freiling et al. (1952)} \\
\text{ClNO}_2 & -17,9 & 2,1 \times 10^{-17} & 2,3 \times 10^{-12} & 28,8 \pm 1,3 & \text{Wilkins et al. (1974)} \\
\text{ClONO} & -59,7 & 1,4 \times 10^{-16} & 7,5 \times 10^{-12} & 26,9 \pm 0,7 & \text{diese Arbeit} \\
\text{BrNO}_2 & -18 \pm 6 & 1,7 \times 10^{-15} & 2,3 \times 10^{-12} & 17,8 \pm 2,1 & \text{diese Arbeit} \\
\text{INO}_2 & 3,9 & & & & \\
\hline
\end{array}
\]

In Tab. 14 werden die thermischen Lebensdauern für die Moleküle ClNO\(_2\), ClONO, BrNO\(_2\) und INO\(_2\) miteinander verglichen. Die Lebensdauern bezüglich der Reaktion mit NO beziehen sich auf 298 K und ein NO-Mischungsverhältnis von 1 ppb. Der thermische Zerfall wurde für 1 atm und 298 K berechnet. Die photolytische Lebensdauer gilt für den 1. Juli, 12 h und 50°N.

\[
\begin{array}{|c|c|c|c|}
\hline
& \tau_{X+\text{NO}} \text{ [min]} & \tau_{\text{dis}} \text{ [min]} & \tau_{\text{hv}} \text{ [min]} \\
\hline
\text{ClNO}_2 & 5,6 \times 10^4 & 4 \times 10^8 & 51 \\
\text{ClONO} & 4839 & <12 & 4,5 \\
\text{BrNO}_2 & 399 & <33 & 3,3 \\
\text{INO}_2 & 0,007 & 2,3 \pm 1,7 & \\
\hline
\end{array}
\]

Tab. 14: Vergleich der Lebensdauern von ClNO\(_2\), ClONO, BrNO\(_2\) und INO\(_2\) bezüglich der Reaktion mit NO (\(\tau_{X+\text{NO}}\)), dem thermischen Zerfall (\(\tau_{\text{dis}}\)) und der Photolyse (\(\tau_{\text{hv}}\)); \(\tau_{\text{hv}}\) für 1. Juli, 12 h, 50°N

Hohe Konzentrationen an Nitrylhalogeniden und ClONO sind in der marinen Troposphäre zu erwarten. In diesen Regionen liegt die NO-Konzentration unterhalb von 1 ppb. Daher stellt die
Photolyse die wichtigste Senke für Nitrilhalogenide und ClONO dar. Bei fehlender Sonneneinstrahlung ist für ClONO, BrNO₂ und INO₂ der thermische Zerfall als atmosphärenchemische Senke von größerer Bedeutung als die Reaktion mit NO.

5. Literatur

Kinetics and mechanism of $X + ClNO \rightarrow XCl + NO$ ( $X = Cl$, F, Br, OH, O, N ) from 220 to 450 K. Correlation of reactivity and activation energy with electron affinity of $X$

Anderson, L.C., and Fahey, D.W.
Studies with ClONO$_2$: thermal dissociation rate and catalytic conversion to NO using an NO/O$_3$ chemiluminescence detector

Measurements of C$_2$ - C$_7$ hydrocarbons during the polar sunrise experiment 1994: further evidence for halogen chemistry in the troposphere

Polar sunrise experiment 1995: hydrocarbon measurements and tropospheric Cl- and Br-atoms chemistry
Atmos. Environ. 33, 931-938 (1999)

Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV.

Barnes, I., Bastian, V., Becker, K.H., Fink, E.H., Klein, T., Kriesche, V., Nelson, W., Reimer, A., Zabel, F.
BMFT-Projekt UC/FKW23, Abschlußbericht 1984, Hrsg. GSF München, BPT-Bericht 11/84, ISSN 0176/0777
Barnes, I., Becker, K.H., and Starcke, J.
Fourier-Transform IR spectroscopic observation of gaseous Nitrosyl Iodine, Nitryl Iodine, and Iodine Nitrate
J. Phys. Chem. 95, 9736-9740 (1991)

Barnes, I., Becker, K.H., and Starcke, J.
FTIR spectroscopic observation of gaseous HOI

Ozone destruction and photochemical reactions at polar sunrise in the lower arctic atmosphere


Bedjanian, Y., Poulet, G., and Le Bras, G.
Low-pressure study of the reactions of Br atoms with alkenes. 1. Reaction with propene

Behnke, W., Scheer, V., and Zetzsch, C.
Production of BrNO2, Br2 and ClNO2 from the reaction between sea-spray aerosol and N2O5

Behnke, W., George, C., Scheer, V., and Zetzsch, C.
Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments
J. Geophys. Res. 102, 3795-3804 (1997)

Bernitt, D.L., Miller, R.H., and Hisatsune, I.C.
Infrared spectra of isotopic nitryl halides
Bierbach, A., Barnes, I., and Becker, K.H.
Rate coefficients for the gas-phase reactions of bromine radicals with a series of alkenes, dienes, and aromatic hydrocarbons at 298 ± 2 K

Bierbach, A., Barnes, I., and Becker, K.H.
FT-IR product study of the gas-phase Br-initiated oxidation of trans-2-butene under atmospheric conditions between 246 and 298 K
Tellus 49B, 566-582 (1997)

Bierbach, A.
persönliche Mitteilung (1998)

Depletion of lower tropospheric ozone during arctic spring
J. Geophys. Res. 95, 18555-18568 (1990)

Burkholder, J.B., Talukdar, R.K., and Ravishankara, A.R.
Temperature dependence of the ClONO₂ UV absorption

Burkholder, J.B., Ravishankara, A.R., and Solomon, S.
UV/visible and IR absorption cross sections of BrONO₂

Burkholder, J.B., and Orlando, J.J.
Rate coefficient upper limits for the BrONO₂ and ClONO₂ + O₃ reactions

Caloz, F., Seisel, S., Fenter, F.F., and Rossi, M.J.
Reactivity of BrNO₂ and ClNO₂ with solid alkali salt substrates
Chambers, R.M., Heard, R.C., and Wayne, R.P.
Inorganic gas-phase reactions of the nitrate radical: I$_2$ + NO$_3$ and I + NO$_3$

Chang, J.S., Baldwin, A.C., and Golden, D.M.
An explanation of the preferential formation of less stable isomers in three-body reactions: Cl + NO$_2$ + M; ClO + NO$_2$ + M

zitiert in Watson; R.T. (1977)

Absolute infrared cross sections for ClONO$_2$ at 296 and 223 K
J. Geophys. Res. 92, 10921-10925 (1987)

Daykin, E.P., and Wine, P.H.
Kinetics of the reactions of IO radicals with NO and NO$_2$

Ravishankara, A.R., Kolb, C.E., and Molina, M.J.
Chemical kinetics and photochemical data for use in stratospheric modeling
JPL publication 97-4; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 1997

Deuflhard, P., and Nowak, U.
Efficient numerical simulation and identification of large chemical reaction systems

Fan, S.-M., and Jacob, D.J.
Surface ozone depletion in arctic spring sustained by bromine reactions on aerosols
Nature 359, 522-524 (1992)
Fenter, F.F., Caloz, F., and Rossi, M.J.
Heterogeneous kinetics of N$_2$O$_5$ uptake on salt, with a systematic study of the role of surface presentation (for N$_2$O$_5$ and HNO$_3$)

Feuerhahn, M., Minkwitz, R., and Engelhardt, U.
On the formation of nitryl bromide and nitryl iodide and the infrared spectra of the matrix isolated molecules

Fickert, S., Helleis, F., Adams, J.W., Moortgat, G.K., and Crowley, J.N.
Reactive uptake of ClNO$_2$ on aqueous bromide solutions

Finlayson-Pitts, B.J.
Reaction of NO$_2$ with NaCl and atmospheric implications of NOCl formation

Finlayson-Pitts, B.J., and Pitts, Jr., J.N.
Atmospheric chemistry: fundamentals and experimental techniques
John Wiley & Sons, New York, 1986

Finlayson-Pitts, B.J., and Johnson, S.N.
The reaction of NO$_2$ with NaBr: possible source of BrNO in polluted marine atmospheres

Finlayson-Pitts, B.J., Ezell, M.J., and Pitts, Jr., J.N.
Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N$_2$O$_5$ and ClONO$_2$
Nature **337**, 241-244 (1989 a)
Finlayson-Pitts, B.J., Livingston, F.E., and Berko, H.N.
Synthesis and identification by infrared spectroscopy of gaseous nitryl bromide, BrNO₂
J. Phys. Chem. 93, 4397-4400 (1989 b)

Finlayson-Pitts, B.J., Livingston, F.E., and Berko, H.N.
Ozone destruction and bromine photochemistry at ground level in the Arctic spring
Nature 343, 622-625 (1990)

Freiling, E.C., Johnston, H.S., and Ogg, Jr., R.A.
The kinetics of the fast gas-phase reaction between nitryl chloride and nitric oxide
J. Chem. Phys. 20, 327-330 (1952)

Frenzel, A., Scheer, V., Behnke, W., and Zetzsch, C.
Synthesis and Mid-IR absorption cross sections of BrNO₂

Frenzel, A., Scheer, V., Sikorski, R., George, Ch., Behnke, W., and Zetzsch, C.
Heterogeneous interconversion reactions of BrNO₂, ClNO₂, Br₂ and Cl₂

Ganske, J.A., Berko, H.N., and Finlayson-Pitts, B.J.
Absorption cross sections for gaseous ClNO₂ and Cl₂ at 298 K: Potential organic oxidant source
in the marine troposphere
J. Geophys. Res. 97, 7651-7656 (1992)

George, C., Ponche, J.L., Mirabel, Ph., Behnke, W., Scheer, V., and Zetzsch, C.
Study of the uptake of N₂O₅ by water and NaCl solutions

George, C., Behnke, W., Scheer, V., Zetzsch, C., Magi, L., Ponche, J.L., and Mirabel, Ph.
Fate of ClNO₂ over aqueous solutions containing iodide
Grimley, A.J., and Houston, P.L.
The photochemistry of nitrosyl halides: The $X + NOX \rightarrow X_2 + NO(\nu)$ reaction ($X=Cl,Br$)

Harwood, M.H., and Jones, R.L.
Temperature dependent ultraviolet-visible absorption cross sections of NO$_2$ and N$_2$O$_4$: Low-temperature measurements of the equilibrium constant for $2 \text{NO}_2 \leftrightarrow \text{N}_2\text{O}_4$

Harwood, M. H., Burkholder, J. B., and Ravishankara, A. R.
Photodissociation of BrONO$_2$ and N$_2$O$_5$: quantum yields for NO$_3$ production at 248, 308, and 325.5 nm

Hausmann, M., and Platt, U.
Spectroscopic measurement of bromine oxide and ozone in the high arctic during polar sunrise experiment 1992

Hippler, H., Luu, S.H., Teitelbaum, H., and Troe, J.
Flash photolysis study of the NO-catalyzed recombination of bromine atoms

Holmes, J.R., O’Brian, R.J., Crabtree, J.H., Hecht, T.A., and Seinfeld, J.H.
Measurement of ultraviolet radiation intensity in photochemical smog studies

Houel, N., and van den Bergh, H.
BrNO - Thermodynamic properties, the ultraviolet/vis spectrum, and the kinetics of its formation
Int. J. Chem. Kinet. 9, 867-874 (1977)
Hubinger, S., and Nee, J.B.
Absorption spectra of Cl₂, Br₂ and BrCl between 190 and 600 nm

Illies, A.J., and Takacs, G.A.
Gas phase ultra-violet photoabsorption cross-sections for nitrosoyl chloride and nitryl chloride
J. Photochem. 6, 35-42 (1976)

Janowski, B., Knauth, H.-D., und Martin, H.
Chlornitrit, ein metastabiles Zwischenprodukt der Reaktion von Dichlormonoxid mit Nitrosylchlorid

Jobson, B.T., Niki, H., Yokoushi, Y., Bottenheim, J., Hopper, F., and Leaitch, R.
Measurements of C₂ - C₆ hydrocarbons during the polar sunrise 1992 experiment: evidence for Cl atom and Br atom chemistry

Kawashima, Y., Takeo, H., and Matsumura, C.
Microwave spectrum of cis chlorine nitrite, ClONO

Knauth, H.-D.
Über den thermischen Zerfall von ClONO₂ in Gegenwart von NO, ClNO und N₂

Knauth, H.-D.
Über die Reaktion von NO und ClNO mit ClONO₂ in der Gasphase (Teil 2)

Kreutter, K.D., Nicovich, J.M., and Wine, P.H.
Kinetics and thermochemistry of the Br (2P₃/2) + NO₂ association reaction
Lee, T.J.
Ab Initio Characterization of ClNO₂, cis-ClONO, and trans-ClONO

Lee, T.J.
Characterization of BrNO₂, cis-BrONO, and trans-BrONO. Implications for atmospheric chemistry

Leu, M.-T.
Kinetics of the Reaction Cl + NO₂ + M

Leu, M-T, Timonen, R.S., Keyser, L.F., and Yung, Y.L.
Heterogeneous reactions of HNO₃(g) + NaCl(s) → HCl(g) + NaNO₃(s) and N₂O₅(g) + NaCl(s)
→ ClNO₂(g) + NaNO₃(s)

Livingston, F.E., and Finlayson-Pitts, B.J.
The reaction of gaseous N₂O₅ with solid NaCl at 298 K: estimated lower limit to the reaction propability and its potential role in tropospheric and stratospheric chemistry

Photochemical bromine production implicated in Artic boundary-layer ozone depletion
Nature 355, 150-152 (1992)

Melen, F., and Herman, M.
Vibrational bands of H₃N₂O₂ Molecules
Mellouki, A., Poulet, G., and LeBras G.
Upper limit of the rate constants for the reactions of N₂O₅ with OH, HO₂, Cl, and ClO at 293 K
J. Geophys. Res. 92, 4217-4221 (1987)

Mellouki, A., Laverdet, G., Jourdain, J.L., and Poulet, G.
Kinetics of the reactions Br + NO₂ + M and I + NO₂ + M

Molina, L.T., and Molina, M.J.
Ultraviolet Absorption Spectrum of Chlorine Nitrite, ClONO

Mozurkewich, M.
Mechanism for the release of halogens from sea-salt particles by free radical reactions

Nelson, H.H., and Johnston, H.S.
Kinetics of the Reaction of Cl with ClNO and ClNO₂ and the Photochemistry of ClNO₂

Nicovich, J.M., Shackelford, C.J., and Wine, P.H.
Kinetics of the Br₂-CH₃CHO photochemical chain reaction

Niki, H., Maker, P.D., Savage, C.M., and Breitenbach, L.P.
Fourier Transform IR Spectroscopic Observation of Chlorine Nitrite, ClONO, Formed via Cl + NO₂ (+M) → ClONO (+M)
Oltmans, S.J., and Komhyr, W.D.
Surface ozone distributions and variations from 1973 - 1984 measurements at the NOAA geophysical monitoring for climate change baseline observations
J. Geophys. Res. 91, 1174-1180 (1986)

Orlando, J.J., and Tyndall, G.S.
Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂

Patrick, R., and Golden, D.M.
Third-Order Rate Constants of Atmospheric Importance

Ramacher, B., Rudolph, J., and Koppmann, R.
Hydrocarbon measurements during tropospheric ozone depletion events: evidence for halogen atom chemistry

Ravishankara, A.R., Smith, G.J., and Davis, D.D.
A Kinetics Study of the Reaction of Cl with NO₂

Ryason, R., and Wilson, M.K.
Vibrational spectrum and structure of nitryl chloride

Sander, R., and Crutzen, P.J.
Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea
Sander, S.P
Temperature dependence of the NO₃ absorption spectrum

Properties of pure nitryl bromide. Thermal behavior, UV/VIS and FTIR spectra, and
photoisomerization to trans-BrONO in an Argon matrix

Schmeisser, M., und Brändle, K.
Halogennitrate und ihre Reaktionen
Angew. Chem. 11, 388-393 (1961)

Schönle, G., Knauth, H. D., and Schindler, R. N.
Pressure dependence of the exchange reaction between ClONO₂ and ¹⁵NO₂

Schroeder, W.H., and Urone, P.
Formation of nitrosyl chloride from salt particles in air

Schweitzer, F., Mirabel, P., and George, C.
Multiphase chemistry of N₂O₅, ClNO₂ and BrNO₂

Seeley, J.V., Jayne, J.T., and Molina, M.J.
Kinetic studies of chlorine atom reactions using the turbulent flow tube technique

Siebert, H.
Anwendung der Schwingungsspektroskopie in der Anorganischen Chemie
Springer Verlag; Berlin-Heidelberg (1966)
Solberg, S., Schmidbauer, N., Semb, A., Stordal, F., and Hov, O.
Boundary-layer ozone depletion as seen in the Norwegian Arctic in spring
J. Atmos. Chem. 23, 301-332 (1996)

Sturges, W.T., and Barrie, L.A.
Chlorine, bromine and iodine in arctic aerosols
Atmos. Environ. 22, 1179-1194 (1988)

Tellinghuisen, J.
Resolution of the visible-infrared absorption spectrum of I₂ into three contributing transitions
J. Chem. Phys. 58, 2821-2834 (1973)

Tevault, D.E.
Matrix reactions of bromine atoms and NO₂ molecules
J. Phys. Chem. 83, 2217-2221 (1979)

Timonen, R.S., Seetula, J.A., and Gutman, D.
Kinetics of the reactions of alkyl radicals (C₃H₇, i-C₃H₇, and t-C₄H₉) with molecular bromine

Timonen, R.S., Seetula, J.A., Niiranen, J., and Gutman, D.
Kinetics of the reactions of halogenated methyl radicals with molecular bromine
J. Phys. Chem. 95, 4009-4014 (1991)

Van den Bergh, H., and Troe, J.
Kinetic and thermodynamic properties of INO and INO₂ intermediate complexes in iodine recombination
J. Chem. Phys. 64, 736-742 (1976)

Vikis, A.C., and MacFarlane, R.
Reaction of iodine with ozone in the gas phase
Vogt, R., Crutzen, P.J., and Sander R.
A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer

Wängberg, I., Etzkorn, T., Barnes, I., Platt, U., and Becker, K.H.
Absolute determination of the temperature behavior of the NO₂ + NO₃ + (M) ↔ N₂O₅ + (M)
equilibrium

Watson, R.T.
Rate constants for reactions of ClOₓ of atmospheric interest

Wilkins, Jr., R.A., Dodge, M.C., and Hisatsune, I.C.
Kinetics of nitric oxide catalyzed decomposition of nitryl chloride and its related nitrogen isotope
exchange reactions

Wilson, W.W., and Christe, K.O.
Bromine nitrates

zitiert als private Mitteilung in Kreutter et al. (1991)

Zahniser, M.S., Chang, J.S., and Kaufman, F.
Chlorine nitrate: kinetics of formation by ClO + NO₂ + M and of reaction with OH