Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems

Dateibereich 2286

4,21 MB in einer Datei, zuletzt geändert am 22.01.2018

Dateiliste / Details

DateiDateien geändert amGröße
dc1107.pdf22.01.2018 12:42:084,21 MB

This treatise is intended for mathematicians and computational engineers that work on modeling, coupling and simulation of electromagnetic problems. This includes lumped electric networks, magnetoquasistatic field and semiconductor devices. Their coupling yields a multiscale system of partial differential algebraic equations containing device models of any dimension interconnected by the electric network. It is solved in time domain by multirate techniques that efficiently exploit the structure. The central idea is the usage of lumped surrogate models that describe latent model parts sufficiently accurate (e.g. the field model by an inductance) even if other model parts (e.g. the circuit) exhibit highly dynamic behavior. We propose dynamic iteration and a bypassing technique using surrogate Schur complements. A mathematical convergence analysis is given and numerical examples are discussed. They show a clear reduction in the computational costs compared to single rate approaches.

Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultäten und Einrichtungen:
Fakultät für Mathematik und Naturwissenschaften » Mathematik und Informatik » Dissertationen
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 510 Mathematik » 510 Mathematik
Stichwörter:
Magnetoquasistatics, Eddy Currents, Electric Circuits, Modeling, Coupling, Transient Analysis, Cosimulation/Dynamic Iteration, Convergence Analysis, Multirate, Schur Complement
Sprache:
Englisch
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Dateien geändert am:
22.01.2018
Datum der Promotion:
20.05.2011
Medientyp:
Text
Quelle:
Auch erschienen im VDI-Verlag/Düsseldorf 2011: Fortschritt-Berichte VDI Reihe 21 - Elektrotechnik Band Nr. 398 ISSN 0178-9481 ISBN 978-3-18-339821-8