Kohomologie mit Schranken und Fortsetzung holomorpher Funktionen durch lineare stetige Operatoren

Dateibereich 335

524,4 KB in einer Datei, zuletzt geändert am 22.01.2018

Dateiliste / Details

DateiDateien geändert amGröße
d070105.pdf22.01.2018 12:51:43524,4 KB

In dieser Arbeit lösen wir die Korandgleichung δc = d mit Schranken für Koketten mit Werten in einer kohärenten Untermannigfaltigkeit eines endlichen Produktes der Strukturgarbe OpΩ, wobei Ω eine Steinsche Mannigfaltigkeit sei. Insbesondere wird die Existenz endlich vieler globaler Erzeuger nicht vorausgesetzt. Unser Ergebnis ist daher für die Idealgarbe JV OCN von Keimen holomorpher, auf einer abgeschlossenen analytischen Untergarbe V CN verschwindender Funktionen anwendbar. Obgleich wir hauptsächlich an den Abschätzungen für die Lösungen der Gleichung δc = d interessiert sind, führen die eingesetzten Techniken zu einem Beweis des klassischen Theorems B von Cartan für kohärente Untergarben von OpΩ, ohne das Mittag-Leffler Verfahren zu verwenden. Wir zeigen mit diesen Techniken einen Fortsetzungssatz für holomorphe Funktionen auf V mit Kontrolle des Wachstumsverhaltens.

Als Folgerung konstruieren wir einen linear zahmen Fortsetzungsoperator H(V ) → H(CN) unter der Voraussetzung, daß H(V ) linear zahm isomorph zu dem Potenzreihenraum unendlichen Typs Λ(k1/ n ), n = dimCV, ist, wobei diese Voraussetzung auch notwendig ist. Hierbei verwenden wir für die Supremumnormen die Suprema über den Schnitten von V mit den Polyzylindern mit den Polyradien em, m ∈ IN. In [2] fragt Aytuna, wie weit und welcher Art Informationen über die komplexanalytische Struktur von V in der Fréchetraumstruktur von H(V ) enthalten sind. Wir zeigen, daß H(V ) genau dann linear zahm zu einem Potenzreihenraum unendlichen Typs ist, wenn V algebraisch ist.

Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultäten und Einrichtungen:
Fakultät für Mathematik und Naturwissenschaften » Mathematik und Informatik » Dissertationen
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 510 Mathematik » 510 Mathematik
Sprache:
Deutsch
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Dokument erstellt am:
23.11.2001
Dateien geändert am:
22.01.2018
Datum der Promotion:
29.10.2001
Medientyp:
Text